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ASYMPTOTIC BEHAVIOR OF EIGENVALUES
AND EIGENFUNCTIONS OF THE FOURIER PROBLEM
IN A THICK MULTILEVEL JUNCTION

ACUMIITOTUYHA ITOBEJAIHKA BJJACHUX 3HAYEHD
TA BJJACHUX ®YHKIIIN 3AJTAYI ®YP’€
B I'YCTOMY BATATOPIBHEBOMY 3’€IHAHHI

A spectral boundary-value problem is considered in a plane thick two-level junction 2., which is the
union of a domain Qg and a large number 2N of thin rods with thickness of order ¢ = O(N~1). The thin
rods are divided into two levels depending on their length. In addition, the thin rods from each level are
e-periodically alternated. The Fourier conditions are given on the lateral boundaries of the thin rods. The
asymptotic behavior of the eigenvalues and eigenfunctions is investigated as € — 0, i.e., when the number
of the thin rods infinitely increases and their thickness tends to zero. The Hausdorff convergence of the
spectrum is proved as ¢ — 0, the leading terms of asymptotics are constructed and the corresponding
asymptotic estimates are justified for the eigenvalues and eigenfunctions.

Po3msinaethes criekTpanbHa KpaiioBa 3aj1aua y III0CKOMY JBOPiBHEBOMY 3’€THaHHI )., sIke € 00’ € THAHHAM
o6macti Qo Ta Benukoro uncna 2N TOHKMX CTEP)KHIB TOBIIMHOW nopsaky € = O(N~1). Touki cTepkHi
PO3IIICHO Ha JBa PiBHI B 3aJIGKHOCTI BiJ iX JOBKUHHA. KpiM TOro, TOHKI CTEpXHi 3 KOXXHOTO DIiBHS
€-TepioANYHO 4epryroThest. Ha BepTHKaIBHUX CTOPOHAX TOHKHMX CTEPXKHIB 3a/1aHO KpaiioBi ymoBu Dyp’e.
BuByeHO acMMNTOTHYHY HOBEHIHKY BJIACHHMX 3HAa4€Hb Ta BiIAacHUX (QyHKUill mpu € — 0, TOOTO KOJIK
YHCIIO TOHKHMX CTEP)KHIB HEOOMEXKEHO 3pOcTae, a iX TOBLIMHA NpAMye 10 Hyis. JloBeneHo xaycaopdoBy
30DKHICTD crekTpa npu € — 0, HOOyI0BaHO HEpPIIl WICHH ACHUMITOTUKHM Ta OOIPYHTOBAHO BIANOBIIHI
ACHMIITOTHYHI OLIHKH IJIsI BIACHUX 3HAYCHb Ta BIACHUX (DYHKILIH.

1. Introduction and statement of the problem. As has been stated in [1], multiscale
modeling and computation is a rapidly evolving area of research that will have a
fundamental impact on computational science and applied mathematics. This is connected
with the prospect of development of more efficient methods that should be symbiosis
of a new class of numerical and analytical modeling techniques. There is a long
history in mathematics for the study of multiscale problems. One class of multiscale
problems is boundary-value problems in perturbed domains. There are many kinds of the
domain perturbations and we need different asymptotic methods to study boundary-value
problems in perturbed domains (see, e.g., [2—11] and references there).

Perturbed spectral boundary-value problems deserve special attention, since the
asymptotic behaviour of the spectrum is highly sensitive to the perturbation and it
is unexpected (see, e.g., [12]). If the perturbation is smooth and in some sense small,
then with the help of a family of diffeomorphisms we can reduce a perturbed spectral
problem to investigation of behaviour of the spectrum of operators defined in some fixed
domain. But there are many problems with singular perturbed domains and it is not
possible to use above-mentioned approach. The extensive review of such problems was
presented in [13].

In this paper a new kind of perturbed domains, namely, thick multilevel junctions
is considered. Boundary-value problems in thick one-level junctions (thick junctions)
are very intensively investigated in the last time. As was shown in the papers [10, 14],
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Fig. 1. The thick two-level junction Q..

such problems lose the coercitivity and compactness as ¢ — 0. This creates special
difficulties in the asymptotic investigation. In [13, 15 — 22], classification of thick one-
level junctions was given and basic results were obtained both for boundary-value and
spectral problems in thick junctions of different types. It was shown that qualitative
properties of solutions essentially depend on the junction type and on the conditions
given on the boundaries of the attached thin domains. A survey of results obtained in
this direction is presented in [13, 15 — 22]. Here we mention only the pioneer papers
[7, 23, 24], where the asymptotic behaviour of Green’s function of the Neumann problem
for the Helmholtz equation in unbounded thick junctions was studied.

1.1. Statement of the problem. Let a, di, da, b1, ba, hy, ho be positive real
numbers and let di > da, 0 < by < by < 1,0 < by —h1/2, b1 + h1/2 < by — ha/2,
by + ho/2 < 1. The last restrictions mean that the intervals I, (by) := (b1 —h1/2,b; +
+ h1/2) and I, (b2) := (ba — ha/2,bs + ha/2) belong to (0, 1) and don’t intersect. Let
us divide the segment I := [0, a] on N equal segments [¢j,e(j+1)],7=0,...,N—1.
Here N is a large integer, therefore, the value ¢ = a/N is a small discrete parameter.

A model plane thick two-level junction €2, (Fig. 1) consists of the junction’s body

Qo:{x€R2:0<x1<a, O<:C2<'y(a:1)},

where v € C([0,a]), ¥(0) = v(a), minjg 4 v > 0, and a large number of the thin rods

. eh

G;l)(a) = {x ER?:jwy —e(j+b1)| < 71, x9 € (—dl,O]},
. eh

GP(e) = {a e R oy —e(j+ ba)| < 32, @2 € (~d, 0]},

j=0,1,....,N -1,

ie, Q. = QUG U ng), where GV = Uéy;Ongl)(s), G? = ij;()ng»Q)(s).
We see that the number of the thin rods is equal to 2NV and they are divided into two
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levels Ggl) and Gg) depending on their length. The parameter ¢ characterizes the
distance between the neighboring thin rods and their thickness. The thickness of the
rods from the first level is equal to eh; and it is equal to ehy for the rods from the second
one. These thin rods from each level are e-periodically alternated along the segment
Iy ={z : 71 € [0,a], x2 = 0} (the joint zone of this thick two-level junction).

Denote by Ty’i)(s) the lateral sides of the thin rod Gy)(a), the signs “+" or “—"

indicate the right or left side respectively; the base of Gg»i) (¢) will be denoted by @gi) (e).
Also we introduce the following notations:

1 — i,+ 1 — 7 .
OB = UV (P (e), el =ulMlele), i=12.
In Q. we consider the following spectral problem:

A, u(e,x) = Ae)u(e,x), x € Q.
oule,z) = —ekju(e,z), x€ Tgl’i),
dyule,x) = —ckou(e,z), z €YY, (1)
P u(e,0,x2) = O u(e,a,x2), x2€[0,7(0)], p=0,1,
Ou(e,z) =0, zeTl..

a . .
Here 0, = — is the outward normal derivative; 0,, = ——; the constants k; and ko
Ov Oz’

are positive; I’ = @gl)U@?)U(IOﬁ@QE)UDY7 where ', = {z : x2 = y(z1), 21 € Lo}
It is well known that for each fixed £ > 0 there is a sequence of eigenvalues of
problem (1)

0<A(e) < e)<...<Ae)<iii— 400 as n — o0, )

and a sequence of the corresponding eigenfunctions {u,(e,-) : n € N} can be
orthonormalized by the following way:

(u'ruum)ﬂE = 6n,m7 {nvm} S N7 (3)

where (-, )y is the scalar product in L?(Y), and 6, ,, is the Kronecker delta.

Our aim is to describe the asymptotic behavior of eigenvalues {\,(¢) : n € N} and
eigenfunctions {u,(e,-) : n € N} as ¢ — 0 (N — +00), to find other limiting points
of the spectrum of problem (1), and to describe corresponding eigenfunctions.

1.2. Features of the investigation. As was showed in [13, 15-22], the corresponding
limit problem for a boundary-value problem in a thick one-level junction is derived from
the limit problems for each domain forming the thick junction with the help of the
solutions to junction-layer problems around the joint zone. However, the junction-layer
solutions behave as powers (or logarithm) at infinity and do not decrease exponentially.
Therefore, they influence directly the leading terms of the asymptotics. The model
problems describing the junction-layer phenomenon are posed in unbounded domains
having outlets to infinity. The principal terms of the inner expansion is nontrivial
solutions to the corresponding homogeneous junction-layer problem. In the case of a
thick one-level junction such a solution is identically defined. But for a thick p-level
junction, dimension of the kernel of the corresponding homogeneous junction-layer
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problem is equal to p + 1 and the problem is how to define the principal terms of
the inner expansion. This fact very complicates the construction of the asymptotic
approximation for the solutions. We should modify the view of the inner expansion
and consider outer expansions in each thin domains from each level. Matching these
asymptotic expansions, we deduce the nonstandard limiting spectral boundary-value
problem (41) in an anisotropic Sobolev vector-space.

In this paper we consider the Fourier conditions 0,u. = —ck;u. on the lateral
boundaries Tgi’i), 1 = 1,2, of the thin rods. At first sight it seems that there is no
difference between these Fourier condition and the homogeneous Neumann conditions
since the terms k;u., ¢ = 1,2, are multiplied by the factor €. But this is quite false. As
was mentioned above the boundary conditions on the boundaries of the attached thin
domains of thick junctions have essentially influence on the asymptotic behaviour of
the solutions. For problem (1) this leads to the appearance of special coefficients in the
differential operator of the limit problem.

The Fourier conditions or the nonhomogeneous Neumann conditions make the
process of homogenization and approximation more complicated. For this the method
of the integral identities was proposed in [20, 22].

For the first time a boundary-value problem in a plane thick multilevel junction
was considered in [25], where some results for problem (1) were announced. Then
the development of rigorous asymptotic methods for boundary-value problems in thick
multilevel junctions of different types have been continued in [26 - 29].

2. Auxiliary inequalities. In the subspace H. = {u € H'() : u(0,22) =
u(a, x2), 2 € [0,7(0)]} we introduce a new norm || - ||z , .k, that is generated by the
following scalar product:

(U, Ve kg oy = /Vu - Vudx + ek / wvdze + ko / uvdxsy.
Q.

Tgl,j:) TgZ,:t)

Lemma 1. For ¢ small enough, the usual norm || - || g1 (q.) in the Sobolev space
HY () and the norm ||v||c k, .k, are uniformly equivalent, i.e., there exist constants
C1 >0, Cy > 0 and g such that for all values € € (0,e¢) and any function v € H. the
following inequalities hold:

Cilvlar o) < lle ks ks < Collvlmr (.- “)

Remark 1. Here and further all constants {c¢;, C;} in asymptotic inequalities are
independent of the parameter ¢.

Proof. 1t follows from the assumptions made for the numbers by, bo, h1, ho that
there exists a such number & that by + h1/2 < dg < by — ha/2. Defined the following
function:

—t+by, t€ [0, 50),
Y(t) = 5)
—t+b2, te [(50,1),

and then periodically extend it into R. Integrating by parts in the integral

€ / Y(21/€)0p,v dx, i=1,2,

el

ISSN 1027-3190. Vkp. mam. scypn., 2006, m. 58, Ne 2



ASYMPTOTIC BEHAVIOR OF EIGENVALUES AND EIGENFUNCTIONS... 199

we get the identity

27 1p, / vde:/vdz—e/Y(%)axlvdx YoeH., i=1,2 (6)

Since maxg |Y| < 1, it follows from (6) that
||\@UHL2(T§1¢>UY22¢>) < Coflvll (cOuc)

for any v € H.. Therefore, the right inequality in (4) holds.
Using (6), we obtain

ol oy = [ 1VoPde+ [o2des
Qe Qo

2
+e271 Zhl / v2deg + ¢ / Y (%) 200, vdx <
i=1

ri® ¢Puct?®

S%WﬁMb+/ﬁw+s / e,
Qo Ggl)ung)

whence

ol < 4 mﬁMb+/&m . ™
Qo

Now let us show that there exists a positive constant c5 such that for € small enough

/’U2d$ < C5||11||§,,€17,€2 YoveH.. ®)
Qo

We argue by contradiction. Then there exist sequences {e,, : m € N} and {v,,} C H
such that lim,,, g &,, =0,

Em

/ v2dr =1, 9)
Qo
2 1
/ ‘V’Um|2d$+€m2k‘i / ’Ugnd.ﬁg < —. (10)
Q. = "

Since the sequence {v,,} is bounded in H'(£2y), we may assume without loss of
generality that it is a Cauchy sequence in L?(£2). From inequality (10) it follows that
{v,n} is a Cauchy sequence also in H' () : |lvm, — vn”%ﬂ(ao) < v — vn||%2(90) +

1 1 .
+—+—. Hence, {v,, } converges to some element vy € H! (). Obviously, vy = const
m n

in H'(Qp). Due to (9), vo = |Q9|~ /2, where || denotes the measure of the domain
Q. Then, the sequence of the traces of {v,,} converges to vy in L?(9€0) as well and
it is easy to verify that
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/ m(@1,0)dy = Z/Xz (x1/€m)vh, (21,0)day —

Io(em) = lIU

—>Zh /vo 21,0)dzy = (h1 + h2) Q] Pa #0 as m — oo, (11)
=1 g
where Iy(e) := Ip N2, and x;(+) is 1-periodic function such that
1, tebi—hi/2,b;+hi/2],
xi(t) = i=1,2. (12)

0, te [0,1] \ [b7 7h1/2,b7 +hi/2],

1
Obviously, that x;(z1/¢) — / xi(t)dt = h; weakly in L?(0,a) as € — 0.
0

On the other hand, from (6) and (10) it follows that ||v,,]|?

Ce
< — and
H(GOueR) —m

c .
therefore, / vﬁl(arl, 0)dzy < —7, where the constants cg, c7 are independent of m.
Io(em) m
This means that

v, (21,0)dz; — 0 as m — oo. (13)
IO(ETIL)

However (13) is at variance with (11). This contradiction establishes estimate (8).

Thus, by virtue of (8) and (7), we obtain the left inequality in (4).

The lemma is proved.

Definition 1. A number \(e) is called an eigenvalue of problem (1) if there exists
a function u(e,-) € H. \ {0} such that for all functions ¢ € H. the following integral
identity:

<ua <p>6,k1,k2 = )‘(5) (ua @)Qa (14)

holds. The function u(e,-) is called the eigenfunction that corresponds to \(g).
Define the operator A, : H. — H. by the following equality

(Acu, V)e oy oy = (W, 0)0,  Yu,v € He. (15)

It is easy to verify that A. is self-adjoint, positive, compact, and the spectral problem (1)
is equivalent to the spectral problem A.u = A\~'(¢)u in H.. Due to Lemma 1, there
exist positive constants C; and &¢ such that for all € € (0,&9) ||Ac|| < Ci. Therefore,

Cit < (e) VneN. (16)

Denote by D; the rectangle {x cx1 € (0,a), z2 € (—d;,0)} which is filled up by
the thin rods ng‘) (€),7=0,1,...,N — 1, in the limit passage as ¢ — 0 (N — +00);
1 =1,2. Let L, (51, N gbn) be the n-dimensional subspace of H. that is spanned on
n linearly 1ndependent functions ¢k, k=1,...,n, such that gbk =0in QU G(l)
¢ = ¢ in G , where ¢1,..., ¢, are orthonormal in L?(D,) eigenfunctions of a
mixed boundary-value problem for the Laplace operator in the rectangle Dy with the
Neumann conditions on the vertical sides and the Dirichlet conditions on the horizontal
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ones. Denote by {u,} the corresponding eigenvalues of this problem. By virtue of the
minimax principle for eigenvalues and Lemma 1, we have

oli2
An(€) = min % =
E€E, v€EE, v#O ”UHQE

/ |Vo|? dz
Q

< C3 min  max —+1| <
ECE, vEE, v£0 / V2da
2
Q.

/|Vv\2dm vide
< (C3 max 2 +1|=0C5| pn max S B

0#veL, 0#veL,
7 / v2das 7 / v2das
Q. ¢

Here E,, is a set of all subspaces of H. with dimension n. By the same arguments as
we have proved (8), we can show that for € small enough

/ v3dx
Do

;nmé ——— < (.
0£veLl,
U2dI2

G (e)

Thus, for any fixed n € N there exists a constant C;(n) such that for € small enough,
we have

An(g) < Ci(n). a7
From (3), (14), Lemma 1 and (17) it follows that
[un(e; )@, < Ca(n). (18)

3. Formal asymptotics of the solution on the thin rods. 3.1. Outer expansions.
Because of (16)—(18), we seek the leading terms for A, () in the form

Ae) ~ po +epr + ..+, (19)

and for the corresponding eigenfunction wu, (e, -), restricted to €, in the form
u(e, z) = v (z) + Ze vk x,€) (20)
and, restricted to each thin rod Gy) (), in the form

u(e, z) ~ vy~ —1—25 vk (x,&1 — ), @

& =¢e tag, ]:O,...,N—l7 i=1,2.
Hereafter the index n is omitted. The expansions (20) and (21) are usually called outer
expansions. Substituting series (20) and (19) in the equation of problem (1), in the

boundary conditions on 9€2y and collecting coefficients of the same powers of €, we get
the following relations for function vj and number g :
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A, v (2) = povg (z), € Q,
P v (0,22) = 08 vg (a,22), x2 €[0,7(0)], p=0,1, (22)

oy () =0, zel,.

Now we find limiting relations in the rectangle D;, i = 1,2. Assuming for the
moment that the functions v;’~ in (21) are smooth, we write their Taylor series with
respect to the 1 at the point z1 = £(j + b;) and pass to the "fast" variable £&; = e ey,

Then (20) takes the form

+o00
u(e,2) 2o (e + b)) + D VI (€ m), 2€G(e),  (23)
k=1

where

Vil (€)= v (G bi) s = ) +

+Z 1= 2 b" a”]jnm( (G402, 6 — ). )

Let us substitute o and (23) into (1) instead of A(¢) and u(e, -) respectively. Since
20
05y~ 03’
of the same power of € gives us one dimensional boundary value problems with respect
to § 1-
The first problem is the following:

the Laplace operator takes the form A, = ¢ the collection of coefficients

R, Vi (m0) =0, & €In (b)), 0, Vi (bi £ hif2,22) = 0, (25)
0 0?
O
(9§ 181 852
on &;. We restrict ourselves to the leading term of the asymptotics and set Vf’] = 0.
Then, due to (24), we have

Ui’7 (5(j +bi), 22,61 — j) = _80617)6’7 (E(j +b;), 302) (51 —j— bi)~
The problem for the function V7 is as follows:

82151 (6171‘2)

where O¢, = From (25) it follows that function V; "I doesn’t depend

=02, v (65 + bi), 22) + povg (€(G + bi)yx2), €1 € T, (by), (26)

Oe, Vi (b; + i )2, 02) = kvl ™ (€(j + i), z2) .
The solvability condition for problem (26) is given by the differential equation

—hi03,0, 06 (€0 + i), x2) + 2kivg ™ (€(J + bi), ) = hiptovy ™ (e(j +bi), 22) -
27)
Due to the Neumann conditions for the eigenfunction u(e, -) on the bases 0l (e), we
must require from vy~ to satisfy the following condition:

Dpy 05~ (e(4 + b;), —d;) = 0. (28)
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To find conditions in points of the joint zone [y, we use the method of matched
asymptotic expansions for the outer expansions (20), (21) and an inner expansion that is
constructed in the following subsection.

3.2. Inner expansion. In a neighborhood of the joint zone Iy we introduce the
"rapid" coordinates £ = (£1,&), where £ = e 'z and & = e~ lx,. The Laplace
operator takes the following form e 2A¢ in the coordinates £. We seek the leading
terms of the inner expansion in a neighborhood of the joint zone I in the form

ue(z) ~ vy (21,0) + e(Zl (z/€) Oz, va (71,0) + Zo (z/¢) (91-21}3_(%1,0)) +..., (29

where functions Z;(§) and Z2(€), € € 11, are 1-periodic with respect to &;. Here II is
the union of semiinfinite strips IT* = (0,1) x (0, +o0), IT, = I, (b1) x (—00,0] and
I, = In,(b2) x (—00,0]. Substituting (29) in the differential equation of problem (1)
and in the corresponding boundary conditions, collecting the coefficients of the same
power of ¢, we arrive junction-layer problems for the functions Z; and Z5 :

—A¢ Z;(§) =0, €ell,

85221'(5170) =0, &€ (071)\(Ih1(b1)UIh2(b2))7
(30)
06, Zi(€) = =8, € € (Ol \ I, (b0) ) U (0115, \ T, (b2) )

8?1 Zl(07£2) = 851Z7;(17£2)? 52 > Oa p= Oa 1.

The main asymptotic relations for the functions {Z;} can be obtained from general
results about the asymptotic behaviour of solutions to elliptic problems in domains with
different exits to infinity [6, 30, 31]. The proofs simplify substantially if the polynomial
property of the corresponding sesquilinear forms is employed [32]. However, for the
domain II, we can define more exactly the asymptotic relations and detect other properties
of the junction-layer solutions 71, Z5 similarly as in the papers [16, 17].

Statement 1. There exist two solutions E1, =5 € Hy,, (IT) to the homogeneous
problem (30) (i = 2), which have the following differentiable asymptotics:

62 + O(eXp(—Qﬂ'EQ)), 52 — +00, £ S H+7

21(€) = { hi'e + ol + Ofexp(rhi'6)), & — —oc0, €€, (1)

al? + O(exp(rhy &), & — —o0, £ €I,
62 + O(eXp(—Q’inQ)), 62 - +OO, g S H+7
E2(€) = { ad! + O(exp(mhi ), £ — o0, £l , (32

hy'és +af? + Olexp(nhy &), & — —o0, £ €11, .

Any other solution to the homogeneous problem (30), which has polynomial grow at
infinity, can be presented as a linear combination By + 121 + [F2=.

The solution Z; to problem (30) at i = 1 has the following asymptotics:
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O(exp(72ﬂ§2)), 52 — +00, g € H+a
Z1(8) = { —& + by + o) + O(exp(nhi &), & — —oo, £ €11, (33)

—& 4o+ al? + Oexp(nhy &), & — —o0, Eell; .

Here Hy\,.(TT) = {u: IT — R [ u(0,&) = u(1,&) for any & > 0, u € H'(Ig) for
any R > 0}, where llp =TIN{{: —R < & < R} agi),aéi),agi), 1= 1,2, are some
fixed constants.

Now we verify the matching conditions for the outer expansions (20), (21) and
the inner expansion (29), namely, the leading terms of the asymptotics of the outer
expansions as o — =£0 must coincide with the leading terms of the inner expansion
as & — +oo respectively. Near the point (£(j + b;),0) € I, the function v has the
following asymptotics:

03(5(3 + bl)v 0) +e 5205621)3_ (6(] + b2)> 0) + 0(5253)7 x2 — 0+0.

We see that the matching condition is satisfied for the expansions (20) and (29) if Zy =
= (1Z1 + (1 = B1)=a.
The asymptotics of (21) is equal to

vy (0 + bi), 0)+
e (=60 +bi+ 1) 000 (20 +0),0) + E200,05 ™ (£ +8:),0) )+ (34)

as 29— 0-0, z¢€ G‘gi)(e), i=1,2.
The asymptotics of (29) is equal to

o (G +01),0) + e (=€ 4+ by + a§) Buyu (G + 1), 0)+

{81 (h'e +af?) + (1= B1) o } 0if (2 +00),0)) +... (39)

as § — —oo, Cell

and it is equal to

0 (e +82),0) + 2 (=€ 45+ ba + a8 ) 01 (G + b2), 0)+

+ {(1 ~B) (h;lgz + a§2>) n 51a§2>} a0 (207 + o), 0)) Y. (36)

as & — —oo, C€ll .
Comparing the first terms of (34), (35), and (36), we get
vg (e +0:),0) = vy~ (e(f +1:),0), j=0,1,....,N—1, i=1,2.  (37)
Comparing the second terms of (34) and (35), and (34) and (36), we find
P10 (5 +b1),0) = hadry vy ((7 + b1), 0), (38)
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(1= B1) Bayvf (6(4 4 b2),0) = hadpyvg ™ (e(j + b2),0), j=0,1,...,N —1. (39)

Since the segments {x : z1 = &(j + b;), @2 € [-d;,0]}, j = 0,1,...,N — 1, fill
out the rectangle D; in the limit passage as ¢ — 0 (N — +o00) both for i = 1 and for
i = 2, we can spread the equation (27) into rectangle D = Iy x (—d;,0) for i = 1 and
into rectangle D> for ¢ = 2. On the basis of the same arguments, we spread the relations
(28), (37), (38), and (39) into all interval 1. From the limiting relations (38) and (39) it
follows that

Oz,vg (71,0) = hlamzvé’_(:m,O) + hzan’Ug’_(ﬂ?l,O), x1 € Io.
Now define the following vector function:

vg(m), z € Qo,
vo(z) = vé’_(x), x € Dy, (40)

ve' " (), x € Ds.
As follows from the foregoing the components of this function must satisfy the relations

—A, v (%) = povd (z), = € Qo
I v (0,22) = 08 v (a,x2), p=0,1, a3 € [0,7(0)],
ovg(x) =0, zel,,

—h1 2, vy () + 2kivy T (x) = hapovy T (), @ € Dy,

oo
8w2v3’7(x17 —dl) =0, x1€ I(), (41)

—hpd2,, ve () 4 2kovy T (x) = hopovy " (x), @ € Dy,

r2x2
812’03’7(1'1, —dg) =0, x1 € I,
vf (21,0) = 05~ (21,0), =12, @€l

hl&wvé’_(xl,()) + h28$21}g7_($1, 0) = Oz,vg (71,0), a1 € Ip.
These relations form the spectral limiting problem for problem (1); here i is the spectral
parameter. Let us investigate its spectrum.

4. The resulting limit problem and its spectrum. Denote by V), the vector-space
L?(Q) x L?(Dy) x L?(Dy) with the following scalar product:

2
(u,v)vo = /uovodx + Zhi/uividﬂc,
Qo =1 p,
where u = (ug, u1,u2) and v = (vg, v1,v2) belong to V. Also we define the Hilbert
space Ho = {u € Vo : ug € HY(Q), uo(0,22) = ug(a,z2) for o € (0,7(0));
3 812’[1,1 € L2(D1), 3 8121142 € L2(D2), UO(I'l,O) = ul(xl, 0) = 'I.LQ(CL’l,O) forx; € Io}
with the following scalar product:
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2
(u, V)HO = /Vuo - Vodzx + Z/(hiaxzuiamvi + Qkiuivi)dm.
Qo i:1Di
Obviously, Hy continuously embeds in V. If we define the operator Ag : Hyg — Hy
by the following equality:

(Aou,v)yy, = (u,v)y, Vu,veH, (42)

then problem (41) is equivalent to the spectral problem Agvg = pg Vo in Ho. It is
easy to verify that Ag is self-adjoint, positive, continuous, noncompact and 0 ¢ o(Ay).
Thus o(Ag) C (cp, +00), where ¢ is some positive constant.

2k1 2ks
hy ha
Remark 2. Solving the ordinary differential equations of problem (41) in the rectangles
D, and D, with regard of the first conjugation condition in the joint zone I and the
Neumann conditions on the opposite sides of these rectangles, we get

_ +
vy (z) = v (21,0) cos <\/,U0 — 2k;hi (o + dl)> , 1=1,2.
cos (d“/,uo — 2k¢hi1>
(43)

Substituting these relations into the second conjugation condition, we obtain the following
spectral problem:

Next we assume that ¢y > max ; the other cases we will be discussed in

—A, v0+(:v) = uov()*(x), x € Qo,
aglvg_(07 1‘2) = 85)1118_((17332)7 Tg € [Oa’Y(O)]’ b= Oa 1a
oy (r) =0, zeTl,, (44)

axzvar(xh 0) =

2
= —va'(xl,()) Zh“/uo — Qkihi_l tan (dm/ Mo — Qkiih;l) ,  x1 € I,
=1

with the spectral parameter o occurring both in the differential equation and in the
boundary condition on I, where it enters in a nonlinear way. Problem (44) is called the
resulting problem for problem (1).

Multiplying the differential equation of problem (44) with an arbitrary function
¢ e Hy, (Q) = {uec H'(Q) : uis l-periodic with respect to 21} and integrating
by parts in €2y, we reduce the nonlinear spectral problem (44) to the spectral problem

L(,u)v0+:0 in Hﬁl’xl(ﬂo), i€ [eo, +00),

for the following operator-function:

2 2k; 2k;
L(p) = (n+ DA+ hiy/p— tan (dig = T2 Ay =1 (49)
i=1 ‘ ‘

where I is the identity operator in H, 1@1 (Q0); Ay, A, are self-adjoint, compact operators
in Hy , (Qo) such that for all o, € H} , (Q0)

(gD = [ ez,

Qo
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(A2, ) 11 (0) = /50(33170) Y(x1,0)dx;.
0

Theorems on existence and concentration of the spectrum for such self-adjoint
discontinuous operator-functions and minimax principles for the eigenvalues were proved
in [33, 34]. From these results it follows the following theorem.

Theorem 1.  The spectrum of L consists of normal eigenvalues and points {P,, :
m € N} of the essential spectrum, which are poles of the functions

tan (dm/u — Qkih;1> , 1=1,2, pe€ (co,+00).

These points divide the eigenvalues into the sequences

CO<M§1)§...§;¢£})§...—>P1,

Pm_1<u(1m)§...<u£lm)§...ﬂ n aS M — 00.

We recall that an eigenvalue is called normal eigenvalue if it has finite multiplicity
and the corresponding eigenvectors have no Jordan chain.

. 2k 2k _.
Remark 2. Consider for example the case h—l <y < h—g Then vé’ is represented
1 2
by (43) and

vg-,*(x) — vg(xlao)

cosh (d“ / 2k2h§1 — Lo

Using these representations, we similarly as before reduce problem (41) to the nonlinear
spectral problem for the following operator-function:

2k 2k
L(p):=(pn+1)A + <h1 - h—ll tan(d1 - T;)+
2k2 2k2 2]{}2
+h2\/7 Wtanh(dg T u)) Ay -1, pe (co, T ) .

2k
It follows from [33, 34] that the spectrum of L on (co, h2) consists of normal
2

eigenvalues and points of the essential spectrum, which are poles of function

2k
tan <d1 A/ o — 2k hl_l) on <co, hQ) . In addition, the points of the essential spectrum
2

are left accumulation points of the normal eigenvalues. Thus, in fact, Theorem 1
describes structure of the spectrum of problem (41) in all cases.

5. Asymptotic approximations. 5.1. The case of the discrete spectrum. Let
o be an eigenvalue of the limiting problem (41) and vy = (var ,vé’f,vg’f) is the

) cosh ( 2kohy ' — po(wa + d2))) :

corresponding eigenfunction, i.e., var is the eigenfunction of problem (44) and v,
t = 1,2, are defined by (43). With the help of vy and the junction-layer solutions
Z1,Z1,Z2 (see Section 3), we define the leading terms in (20), (21), and (29). Then
matching these expansions, we construct an asymptotic approximation R. belonging to
‘H.. It is equal to
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RE (@) = of (2) + exolen) N (Zoa1), @ €, (46)

R v (0 (2) g 0w (B), 0

reGW,  i=1,2
Here

N (& 1) = Z1(€) 0, vf (21,0) + (B1E1(8) + (1 — B1)(E2(§) — &2)) Duyvg (21,0),
N7 (& z1) = (Z1(8) = Y1(£1)) Oay v (21,0)+

+(B1E1L(E) + (1= 1) (E2(8) — Ya(&2))) Oy v (1,0),

where £ = x/e, Y7 and Y5 are l-periodic functions with respect to & and on the
corresponding cells of periodicity they are equal to

—a+bi+al”, & e0,6),
Yi(61) =
_51 + b2 + Oéz()’Z), 51 € [507 1)a

Bi(hTie + i)+ (1 - B, cely,
Y5(&2) =
Bral® + (1 - 1) (hy e + o)), €€l

the number (3, is defined from relation (38), (39) and it is equal to
2k‘1 2kfl
hiy/po ——t dyy[po — ——
14/ Ho hy an( 14/ Ho h )
9 / 2k; 2k \’
Zi:l hz Mo — hl tan d1 Mo — hl

the function X is a smooth cut-off function such that yo(22) = 1 for |z3] < ap/2 and
Xo(z2) = 0 for |22 > g, where 0 < ap < 27! min{dy, da, ming ,) y(z)}.

5.1.1. Discrepancies in the domain €. Taking into account the properties of the
functions Z;, =1, =5 and var , we conclude that Rj is a-periodic with respect to x1,
dyRf =0onT,, and 9,, RT (x1,0) = 0 forany z1 € I\ Io(g). Thus R satisfies all
boundary conditions for problem (1) on 92y N 9. Putting R} and o in the equation
of problem (1), we get

P =

—A R — RS =
= (_X66§2N+<£a 371) - X08§1§1N+(€7x1) - anz (X6N+(w/€a 3?1)) -

~ox00s, (e N (6 21)) lgmaye) = cpoxeN (€ a)| _ o v @®)

Further, the arguments of functions involved in calculations are indicated only if their
absence may cause confusion. We multiply the identity (48) by a test function ¢ € H,
and integrate by parts in g :
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/ Opy RT (21,0 1/)d3:1+/v RY -V Ydx — ,uO/RﬂZJdm—ZIJ“ (e,1), (49)

Io(e) Qo
where

I ed) = = [ X (0aNF €a) | _ v

Qo

B

Hew) == [xo @A) | vds

Qo

I (e,7) = 5/)(6N+ (g,m) Oy bda,

Qo

) =2 [x0 @ N (Em)|_ o,

Qo

(%) = —epio [ xolaaN* (€n)| _, v,

Qo

5.1.2. Discrepancies in the thin rods. 1t is easy to calculate that 0., R~ (21,

&ﬁ?@hmfﬁ( )%mﬁ(mm+&gﬁuﬂm 21 € LN GY,
(50)

) (5D
e=2

Putting R%~ and o in the differential equation of problem (1), we obtain

8, R:™ (2) = e <Y1< L) 02,406 (@) + Xo(@2) (9, N~ (€ 2) |

reY®H =12

—AL R (z) — poRY™ (z) =
= —X0(22) (B, N7 (&, 1)) le=2 — xo(22) (02,6, N~ (&, 71)) == —

—e0u, (Xo ()N~ (Lo01)) = exoey (0, N7 (€ 0)) lemz)

—dw(YiC%)V%(&n%ﬁ))—euobﬁ( )&mv ~(x) + xoN (—;m))

—2k;h7 i (@), zeGW) i=1,2. (52)

Using (6) and taking into account the boundary values of 9, R~ (see (60), (51)),
we multiply (52) by a test function ¢» € H. and integrate by parts in G¢”, i = 1,2.
This yields
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/5I2R2'(331,0)1/1d:61+ / VIR?_-VwQ/Jd:E—&-
Io(e) a®

+ek; / RE"4pdwy — po / R (x)ydr =
Téi) Ggi}
=1 (e )+ ...+ I (e, 0), (53)
where

= [ 0N € es v

G

I;"i - / Xo (85151'/\/7(571.1)) |£:§¢dl”

el

17 == [N (L) o,

G

R R C G [

el

I8 (e,4) = —epo / (Y1 (%) D05 () + XN~ (g,m)) Ydz,

ad

I (e,0) = ¢ / Y (%) v, (azlv:;*) -V ybda,

c

Bo(ew) = ke [ Rigdea—tie [ o pdna-

T(Ei) Téi’i)

_ z i—
ok le / v (%) 0, (v w)d.
el
Summing (49) and (53), we see that the function R, constructed by formulas (46)
and (47) satisfies the following integral identity:

2
/VxRE~wadx+EZki / R5¢dx2—uo/R5wdm = F.(¢)) V€ He, (54)
Q. i=1

T“’) (E) QE

where

F.(0) = (e 0) + ...+ I5(e,0) + I (e,9) + I7 (e,4),
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+ —
IJ (577@:[;(571@4‘]3 (57¢)7

D) =170 + I (64), j=1,...,7.

Using (6), Lemma 1 and doing similar calculations as in the paper [16], we can show that
for any positive fixed number ¢ and for any ¢ € H, the following inequality |F. ()| <
< ¢(0)e'7?||%||7. holds. Then with the help of the definition of operator A. and the
Riesz theorem, we deduce from (54) that for any 6 > 0

|Re = poAcRe 3. < c(8)' . (55)
5.2. The case of the essential spectrum. Let py € 0ess(Ap), i.€., 1o coincides

with one of the numbers {P, : m € N} [they are poles of the functions

tan (dm/u — 2kih;1>, € (co,+00), i = 1,2; see Theorem 1>. For definiteness

we assume that ¢ = 1. Then we choose the following approximation function:

We(z) =
2 cos\/po — 2k1hy (o + dy), € G(-l)(s)
= E(hl + k‘l)dl(,uo — Qkilhfl) ! ’ Jo ’
0, z € QG (o),

(56)

where G%) (¢) is an arbitrary rod from the first level. It is easy to verify that ||W¢ ||+, = 1.

Substituting the function W, and the number pq in problem (1) instead of u(e, -) and
A(e) respectively, we find residuals and deduce that there exist constants ¢ > 0 and eq
such that for any values € € (0, ) the following inequality is satisfied:

[We — moAWell,, < cet. (57)

6. Justification and asymptotic estimates. To justify the constructed asymptotic
approximations we use the scheme proposed in [13], where an abstract scheme of
investigation of the asymptotic behaviour of eigenvalues and eigenvectors of some
family of abstract operators {A. : ¢ > 0} acting in different spaces was proposed.
This scheme generalizes the procedure of justification of the asymptotic behaviour of
eigenvalues and eigenvectors of boundary value problems in perturbed domains.

In our case this is the family of the operators {A. : € > 0} acting in the spaces
{H: : € > 0} and they are defined by (15). Recall that operator A, corresponds to
problem (1) and operator Ag : Hy — Hp, which is defined by (42) corresponds to the
limiting problem (41).

Then we should define special coupling operators P- and S¢. For better understanding,
we write the diagram

H. CcC V.
R
Z0C Ho TV

in which the imbedding H C ) means that the space H is densely and only continuously
embedded into V), but the imbedding H CC V is compact in addition. Here Z; =
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= {u = (ug,u1,uz) € Vo : ug € H(Q0), uo(0,22) = ug(a,xs) for x5 € (0,7(0));
uy € Hl(Dl); Ug € H1<D2); U()(!Ijl,()) = ’U,1(1‘170) = uz(ml,O) for z1 € I()} is a
Hilbert space with the scalar product (u,v)z = (uo,v0)m1 () + (u1,v1)m1 (D)) +
+(u1,v1) g1 (D, )- Obviously, that Zy CC V.

The operator S¢ : Vg — V. assigns to any vector-function v = (vg, vy, v2) from Vg
a function S.v, which is equal to vy in €y and to vi|G(i> ,1 = 1,2, where vi|G<i) is the
restriction of v; on fo). It is easy to verify that operator S. is uniformly bounded with
respect to €. Thus the condition (C1) in the scheme [13] is satisfied.

The operator P. from condition (C2) is associated with special extension operator
P, — (P&”, sz)) , where P - H'(Qo UG (e)) — H(Qy) and P2 : H'(Qy U
U GP(e)) — H'(Qy), where Q; is the interior of Qg U D;, i = 1,2. The operators
Pgl) and P§2) can be constructed similarly as in [16] (see also [26]). Thus operator
P. : H. — 2 every u from H. puts in the correspondence a vector-function u =
= (u|90, Pgl)u|D1 , PgQ)u|D2) from Zj. Despite the fact that the norm of this operator
takes an infinitely large value as € — 0, the norm of its restriction to an arbitrary finite

combination of eigenfunctions of problem (1) is uniformly bounded with respect to ¢, i.e.,
the following statement is true: Vn € N3¢ > 03eg > 0Ve € (0,e0) : [|Peun(s, )|z, <

< e(n)||un (g, -)||7. . Furthermore, this operator is also uniformly bounded on sequences
from condition (C2) (the proof of this fact is analogous to the corresponding part of the

proof of Theorem 5.4 [18]).

Conditions (C5) and (C6), in fact, have been verified in the previous section. The
result of the action of the operator R. from the condition (C5) is the construction of
the approximation function R. (see (46) and (47)) on the basis of an eigenfunction of
the limit spectral problem (41). In addition, this approximation function satisfies the
estimate (55), which coincides with similar estimate from condition (C5). The estimate
(57) coincides with similar estimate from condition (C6). To verify conditions (C3) and
(C4) we prove the following theorem.

Theorem 2. Let {\(e) : & > 0} be a sequence of eigenvalues of problem (1)
such that ili% Ae) = A and " ¢ 0oss(Ao); let {u®} be the corresponding sequence
of eigenfunctions such that ||u®||12(q.) = 1 for any value ¢ and P.u® — u* =
= (ua',u(l)’_, ug"_> weakly in Zy as € — 0.

Then A is the eigenvalue of the limiting problem (41) and u* is the corresponding
eigenfunction.

Proof. Using operator P, and the functions x; and x» defined in (12), we can
rewrite the equality (u®, u®)g_ =1 in the following form:

2 2
1 :/(ua)2 d:c—i—/xl(xl/s) (Pgl)ue) d:v—l—/xg(xl/e) (P?)us) dx.
Q[) D1 D2

Passing to the limit in this relation as & — 0, we obtain 1 = [Ju*[|}; , whence u* # 0.

With the help of the identity (6), the extension operators Pgi) and the functions x;,
1 = 1,2, we rewrite identity (14) in the following way:
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/Vu8 - Vpodz+

Qo

) 2k; p
/Xi(xl/s)v (Pg)ua) -Vdx + . /xi(:cl/s)Pg‘)uegoid:c —
i
D; D;

1

+

2

i=1

2
- 28;;2 / Y (%) 0z, (U ;) dx =

el

= A(e) / u*(x)w(w)dwfj / vi(ar/e) (PO (@)pi(a)dz | (58)

Qo ilei

v((p()a L1, QOQ) € ZO'

Obviously, that the last summand in the left-hand side of (58) vanishes as ¢ — 0.
Now, passing to the limit in (58) and taking the theorem conditions into account, we
obtain

2 2
/Vuar - Vodx + Z /Z aj(-l) (2)0y,; i(x)dx 4 2k; / ué’_goidx =
O i=1 \p. i=1 b
2 .
=A /uo(x)cpo(x)da? + Z h; / ug (z)pi(x)dx (59)
Qo =l p,

V (@0, p1,92) € 2o,

where aﬁi) is the weak limit of the sequence y; (E) Or, (Pg)ua), 1=1,2,1=1,2.
Next we should find these limits. ©

In order to determine U%i), 1 = 1,2, we consider the integral identity (14) with the
following test functions :

0, z € QUG
Yi(z) =¢

Y (21/e)pi(z), zeGL,

0, zeQUGHY,
wg(lﬂ) =&

Y(z1/e)¢a(z), z €GP,

where ¢; and ¢ are arbitrary functions from C§°(D;) and C§°(D3) respectively. It is
obvious that 1, and 12 belong to H.. As a result, we get

[ (2) 0. PO w)ods = o)

D,
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/Xg) (x)aw1P§2)(u6)¢2dx =0(), ¢—0,
D»

whence a%l) =0 and O'%Q) =0.
Next let us define og), i = 1,2. Take any function ¢ € C§°(D;) and pass to the

limit in the following relation:

/&mu@@xm%ﬁwmm:—/mwda@@mymwm (60)

D; D;

As a result, we get that O'Qi) (z) = hibpyuy ™ (), € Dy, i = 1,2.

Thus, we obtain that u* satisfies the following identity (u*,v),, = A (u*,v),, for
any vector-function v = (g, ¢1, p2) € Zo. This identity is the corresponding integral
identity for the spectral limiting problem (41) (see (42)). This means that A is the
eigenvalue of problem (41) and u* is the corresponding eigenfunction.

The theorem is proved.

Thus, all conditions (C1)—-(C6) of the scheme from [13] are satisfied for problems
(1) and (41). Applying this scheme, we get the following theorems.

Theorem 3 (the Hausdorff convergence). Only the points of the spectrum of problem
(41) are accumulation points for the spectrum of problem (1) as € — 0.

The eigenvalues {\,(¢)} at fixed indices n, are usually called low eigenvalues (see
[21]); the corresponding eigenfunctions are called low frequency oscillations.

Definition 2 [21]. The value T := sup,,cn lime .o\, (€) is called the threshold of
the low eigenvalues of problem (1).

Theorem 4 (low-frequency convergence). Let {\,(¢) : n € Ny} be the ordered
sequence (2) of eigenvalues of problem (1), let {u,(e,-) : n € N} be the corresponding
sequence of eigenfunction orthonormalized by condition (3), and let cy < ,ugl) < ...
o< u,(}) < ... — Py be the first series of eigenvalues of the limiting problem (41)
(see Theorem 1).

Then the threshold of the low eigenvalues of problem (1) is equal to Py, and for any
neNM(e) — usbl) as € — 0. There exists a subsequence of the sequence {c} (again
denoted by {c}) such that P.u, (e, ) — v\ weakly in Zo as e — 0, where v are
the corresponding eigenfunctions of the limiting problem (41) that satisfy the condition

(V%O),vgg)) =p,m-
Vo

Theorem 5. Let MS) = M&)_I =...= ugll_?_,._l be an r-multiple eigenvalue of
problem (41) from the first series (see Theorem 1) and let v;,l), e ,vflllT._l be the
corresponding eigenfunction orthonormalized in V.

Then for any § > 0 and i € {0,1,...,r — 1}, there exist ¢g > 0,C; > 0, and
{air(e), k=0,1,...,r — 1} C R, such that for any € € (0,¢&p) :

r—1
71+l 1—6
H@)—;%@WWWbW<WW”’

r—1
0<er <Y (o(e))? < ca,
k=0
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where {Rﬁ"“)} is approximation function defined by (46) and (47) with the help of
1)

Vot
For any 6 > 0 and n € N and sufficiently small e, we have |\,(g) — ,usll)| <
< co(n, 6)er 0.

Theorem 6. Let ﬂgm) = ,ugﬁ)l = ... = ,ugﬂ)rfl be an r-multiple eigenvalue
of problem (41) from the m-th series (see Theorem 1) and vﬁbm), . ,vgi)rfl be the

corresponding eigenfunction orthonormalized in V.

Then, for any § > 0, there exist €, > 0 and ¢ > 0 such that for all value of
the parameter € € (0,&y, ) in the interval I, ;,(g) = (MEZ") —cel 9, ,ug,,m) + 051_5)
contains exactly r eigenvalues of problem (41).

For the approximation function RPT™ i =0,1,...,r— 1, constructed by (46) and

(47) on the basis of vf:_rf_)i, the following asymptotic estimate is true:

Rg-i—i,m - _ ~
T e <emm et 0ie e = 1
5 He

where U‘Z (e,) is a linear combination of the eigenfunctions of problem (1) that correspond
to the eigenvalues from the interval I, ,,, ().

Theorem 7. Let po coincides with one of the points of the essential spectrum
{P,, : m € N} of the limiting problem (41).

Then there exist co > 0 and ¢ > 0 such that for all values of the parameter € €
1 1

€ (0,¢e9), the interval ( - Coé‘%, — + cos}l> contains finitely many eigenvalues of
Ho Ho

the operator A..
There exists a finite linear combination U (||U||- = 1) of the eigenfunction ug,

e)+i’
i = 0,p(e), that correspond, respectively, to the eigenvalues (Ak(e)ﬂ-(s))fl of the
1 1 ~
operator A. from the segment { — 005%, — + cosé} , such that HWE - U; <
Ho Ho e

< 25%, where W is defined by (56).
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