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CONTINUITY OF CERTAIN PSEUDODIFFERENTIAL
OPERATORS IN SPACES OF GENERALIZED SMOOTHNESS

NEPERERVNIST| DEQKYX PSEVDODYFERENCIAL|NYX

OPERATORIV U PROSTORAX UZAHAL|NENO} HLADKOSTI

We investigate the continuity of a pseudodifferential operator in some spaces of generalized smoothness.
Some properties of the spaces of generalized smoothness and the generalized Lipschitz spaces are
proved.

DoslidΩeno neperervnist\ psevdodyferencial\noho operatora u deqkyx prostorax uzahal\neno]

hladkosti.  Dovedeno deqki vlastyvosti prostoriv uzahal\neno] hladkosti ta uzahal\nenyx

prostoriv Lipßycq.

1.  Introduction.  In this paper we investigate the continuity of a pseudodifferential
operator  p ( x, D ),  the symbol  p ( x, ξ )  of which for fixed  x  is a continuous negative
definite function, in the spaces of generalized smoothness.  Such a continuity result
enables us to add  p  ( x, D  )  as a perturbation to certain generator of an  Lp-sub-
Markovian semigroup, and still obtain the generator of an  Lp-sub-Markovian
semigroup.

For the survey on pseudodifferential operators with continuous negative definite
symbol we refer to [1, 2], and the literature given therein, in particular, we mention [3,
4], where the symbolic calculus in  L  2  for such operators was developed.  In [5]1 the
symbolic calculus for pseudodifferential operators in  Lp  was developed, and it was
proved that under certain conditions on the symbol  p  ( x, ξ )  of a pseudodifferential
operator  p  (  x, D  ),  this operator is continuous between some (related)  ψ-Bessel
potential spaces.  Such conditions are similar to those in  L 2-case, but much stronger,

since to guarantee the continuity of  p ( x, D  )  between subspaces of  L p ( R 
n

 )  the

Lizorkin’s Fourier multiplier theorem is applied.
Our approach is a bit different.  We will pose the conditions on the Lévy measure of

p ( x, ξ ),  and prove that under such conditions  p ( x, D )  is continuous between related
generalized Lipschitz spaces.  Assuming also that  p  ( x, D  )  is continuous between
certain  ψ-Bessel potential spaces, we obtain our main result by interpolation
arguments.  Thus, our conditions on the symbol are different from those given in [5].

In the second section we give the necessary definitions concerning the spaces of
generalized smoothness.  The third section contains some technical statements on such
spaces as well as some properties of the generalized Lipschitz spaces.  In the fourth
section under some conditions on the Lévy measure of continuous negative define
symbol  p ( x, ξ )  we prove the continuity of  p ( x, D )  in generalized Lipschitz spaces.
In the last section we prove that  p ( x, D  )  is continuous in the related spaces of
generalized smoothness.  This result allows us to use  p ( x, D )  as the perturbation of a
generator of an  Lp-sub-Markovian semigroup.

If it is not specially indicated, all the function spaces, considered in the paper, are
over   R 

n.

2.  Preliminaries.  We start with some preliminary definitions and results.
Definition 1.  A.  A sequence  ( )γ j j∈N0

  of positive numbers is called strongly

increasing if there is a positive constant  d  and a natural number  κ  such that
equations

1 This manuscript can also be found on the web-page of the author, http:// www.math.etzh.ch//farkas/.
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d γj  ≤  γk   for all   j, k,   0  ≤  j  ≤  k,

and

2 γj  ≤  γk    for all    j, k,    with    j  +  κ  ≤  k

are satisfied.
B.  A sequence  ( )γ j j∈N0

  of positive numbers is of bounded growth if there exists

a positive constant  d  and a number  J ∈ N0 ,  such that

γj  + 1  ≤  d γj    for any    j  ≥  J.

C.  A sequence  ( )σ j j∈N0
  is called admissible if

d0 σj  ≤  σj + 1  ≤  d1 σj    for all    j ∈ N

holds for some positive  d0  and  d1 
.

For a fixed strongly increasing sequence  N = ( )Nj j∈N0
  and fixed  J ∈ N  define

the covering

Ω j
N J,   =  ξ ξ κ∈ ≤{ }+R

n
j JN:     if   j  =  0, 1, … , J κ,

and

Ω j
N J,   =  ξ ξκ κ∈ ≤ ≤{ }− +R

n
j J j JN N:     if   j  =  J κ, J κ + 1, …

for some  κ.

Definition 2.  Let  Φ 
N, J  be a collection of functions  ϕ j

N J
j

,( ) ∈N0
  such that

B1 
)  ϕ j

N J,  ∈ C n
0
∞( )R   and  ϕ ξj

N J, ( )  ≥ 0  if  ξ ∈ R 
n  for  J ∈ N0 ;

B2 
)  sup ,pϕ j

N J  ⊂ Ω j
N J, ;

B3 
)  for any  γ ∈ N0

n   there exists a constant  cγ > 0  such that for any  J ∈ N0

D j
N Jγ ϕ ξ, ( )   ≤  | ξ | 

γ
    for any    γ ∈ R 

n
 ;

B4 
)  there exists a constant  cϕ > 0  such that

0  <  
j

j
N J

=

∞

∑
0

ϕ ξ, ( )  =  cϕ  <  ∞    for any    ξ ∈ R 
n.

We will give a general definition of the spaces of generalized smoothness,  Fpq
Nσ,

and  Bpq
Nσ, ,  which are the generalizations of Triebel – Lizorkin and Besov spaces

respectively (see [6]).
Definition 3.  Let  ( )Nj j∈N0

  be a strongly increasing sequence of bounded

growth, and let  ( )σ j∈N0
  be an admissible sequence.

i)  Let  0 < p, q ≤ ∞.  The Besov space of generalized smoothness is

Bpq
Nσ,   =  f S f D fB j j

N J
j l Lpq

N

q p

∈ ′ = ( ) < ∞






∈

: ( ),
,

( )
σ σ ϕ

N0
.

ii)  The  0 < p  < ∞,  0 < q  ≤ ∞.  The Triebel – Lizorkin space of generalized
smoothness is

Fpq
Nσ,   =  f S f D fF j j

N J
j L lpq

N

p q

∈ ′ = ( ) < ∞






∈

: ( ),
,

( )
σ σ ϕ

N0
.
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Remark 1.  For  0 < p ,  q  < ∞  the spaces  Bpq
Nσ,   and  Fpq

Nσ,   can be defined
without the restriction that  ( )Nj j∈N0

  is of bounded growth.
Such spaces are the generalizations (due to the standardization theorem) of those

introduced by Kaljabin [7, 8]; they are equivalent to the spaces given in [7, 8] if  σ   is
strongly increasing and of bounded growth (see [6] for details).

Denote by  σ 
s  the sequence  ( )σ j

s
j∈N0

 = ( )2
0

sj
j∈N

.

Remark 2.  For  Nj = 2 
j  and  σ = σ 

s  the spaces  Fpq
Nsσ ,   and  Bpq

Nsσ ,   coincide with

Fpq
s   and  Bpq

s   respectively (see [6]).
We are interested in the situation when the strongly increasing sequence  N  is

associated with a function which satisfies some additional conditions.  For the
following definition we refer to [6] (see also [5]).

Definition 4.  Let  A  be the class of all nonnegative functions  a :  R 
n →  R   of

class  C 
∞  with the following properties:

A)  lim ( )
ξ

ξ
→∞

a   =  ∞;

B)  a ( ξ )  is almost increasing in  |  ξ |,  i.e., there exist constants  δ0 ≥ 1  and  R >

> 0  such that  a ( ξ ) ≤ δ0 a ( η )  if  R ≤ | ξ | ≤ η;

C)  there exists  m > 0  such that  a ( ξ ) | ξ | 
– m  is almost decreasing in  | ξ |,  i.e.,

there exists a constant  δm 
,  0 < δm ≤ 1,  and  R > 0  such that

a ( ξ ) | ξ | 
– m  ≥  δm 

a ( η ) | η | – m    if    R ≤ | ξ | ≤ η;

D)  for every multiindex  α = ( α1 , … , αn ),  α i ∈  N ∪ {  0 } ,  i = 1, … , n,  there

exists some  cα > 0  such that

| D α
 a ( ξ ) |  ≤  cα a ( ξ ) 1 2+( )−

ξ
α

,    if    | ξ |  ≥  R.

The functions from  A  are called admissible functions.

It was proved that for an admissible symbol  a ( ξ )  the sequence  N  a = Nj
a r

j
,( ) ∈N0

,

where

Nj
a r,   =  sup ξ ξ: ( )a rj≤{ }2 ,    j ∈ N0 , (1)

is strongly increasing, see Lemma 3.1.16 from [6].  Note that the definition of the
strongly increasing sequence by (1) does not require the radial symmetry of the
symbol.

Recall the definition of the  ψ-Bessel potential space of order  s:

Hp
s nψ, ( )R   =  u F Fus

Lp
: ( ) ( )− +( )( ) < ∞








/1 21 ψ ξ ξ ,

where  ψ  is a continuous negative definite function,  Fu  is the Fourier transform of
function  u,  and  s > 0  (see [9] for details).

For the admissible continuous negative functions  a ( ξ )

Fp
Ns

,
,

2
σ   =  Hp

a s, ,    s > 0

(see [6]).
For the following definition we refer to [2, p. 293, 294], or [10] (§ 1.9.1).
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Let  G = { z ∈ C;  0 < Re z < 1 }.  For two complex Banach spaces  X X0 0
, ⋅( )  and

X X1 1
, ⋅( )  both embedded into some Hausdorff space  χ,  set  X : = X0 + X1 

,  equipped

with the norm  || ⋅ || X : = max ,⋅ ⋅( )X X0 1
  which is equivalent to the norm  ⋅ X0

 +

+ ⋅ X1
,  and which turns  X  into a Banach space.  Denote by  W ( G, X  )  the space of

all continuous functions  ω :  G  → X  with the following properties:

1)  ω G   is analytic and  sup ( )
z G

Xz
∈

ω   <  ∞;

2)  ω ( i y ) ∈ X0  and  ω  ( 1 + i y ) ∈ X1 ,  for  y  ∈  R  with continuous maps  y �

� ω ( i y )  and  y � ω ( 1 + i y );

3)  ω W G X( , )  : =  max sup ( ) , sup ( )ω ωi y i yX X0 1
1 +( )  <  ∞.

By the maximum principle  W G X W G X( , ), ( , )⋅( )   is the Banach space.  We call

{ X0 , X 1 }  an interpolation couple, and for any interpolation couple define its
complex interpolation space

[ X0 , X1 ] θ  : =  { u ∈ X;  there exists  ω ∈ W ( G, X )  such that  ω ( θ ) = u}.

On  [ X0 , X1 ] θ  we introduce the norm

u X X0 1,[ ]θ
  : =  inf , ( , ) ( )( , )ω ω ω θW G X W G X u∈ =( )and . (2)

With this norm the space  X X X X0 1 0 1
, , ,[ ] ⋅( )[ ]θ θ

  is a Banach space.

3.  Some properties of the spaces of generalized smoothness and generalized
Lipschitz spaces.  In this section we give some auxiliary technical results, which will
be necessary to prove our main results in Section 5.

Lemma 1.  Let  0 < p0 
, q0 

, p1 , q1  ≤ ∞,  and  0 < θ < 1.  Then for  
1
p

 = 
1 − θ

p
 +

+ 
θ
p1

,  
1
q

 = 
1

0

− θ
q

 + 
θ
q1

  and  s = ( 1 – θ ) s0 + θ s1  we have

B Bp q
N

p q
Ns s

0 0

0

1 1

1
σ σ

θ

, ,,





  =  Bpq
Nsσ , .

Proof.  Let  ϕ j
N J

j
,{ } ≥0

 ∈ Φ N, J,  and  S f = f j
N J

j*
,ϕ{ } ≥0

.  From the definition of

Bpq
Nsσ ,   we have

f ∈ Bpq
Nsσ ,  ⇔ S f ∈ l Lq

s
p( ),

where  lq
s = ( ) : ( )a a lj j

s
j j q≥ ≥ ∈{ }0 02 .  Therefore, by the definition of  W ( G, X  )  and

(2) we see that for  0 < θ < 1

B Bp q
N

p q
Ns s

0 0

0

1 1

1
σ σ

θ

, ,,





  =  f B Bp q
N

p q
Ns s

∈ +

 0 0

0

0 0

1
σ σ, ,  :  ∃ ω ∈ W G B Bp q

N
p q

Ns s
, , ,

0 0

0

1 1

1
σ σ+



 ,

such that  ω ( θ ) = f }  =

=  { S f ∈ l Lq
s

p0

0

0
( )  + l Lq

s
p1

1

1( ) :  ∃ ω ∈ W G l L l Lq p q
s

p

s
,

0

0

0 1

1

1

σ ( ) + ( )
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such that  g ( θ ) = S f }  =

=  S f S f l L l Lq
s

p q
s

p: ,∈ ( ) ( )[ ]{ }0

0

0 1

1

1 θ
  =  S f S f l Lq

s
p: ( )∈{ }   =  Bpq

Nsσ , .

The lemma is proved.

Remark 3.  Similarly, for  0 < p0 
, q0 

, p1 , q1  < ∞  and  0 < θ < 1,  
1
p

 = 
1 − θ

p
 +

+ 
θ
p1

,  
1
q

 = 
1

0

− θ
q

 + 
θ
q1

,  s = ( 1 – θ ) s0 + θ s1 ,  we can prove that

F Fp q
N

p q
Ns s

0 0 1 1

0 1σ σ

θ

, ,,[ ]   =  Fpq
Nsσ , .

The embedding properties of the spaces  Fpq
Nsσ ,   and Bpq

Nsσ ,    are similar to those of

Fpq
s   and  Bpq

s ,  since the construction of the spaces of generalized smoothness is

different to those of  Fpq
s   and  Bpq

s   only in the choice of the decomposition of unity

and the sequence  σ 
s.  We will give a chain of embeddings, which will be useful for us

when we prove the mapping properties of certain pseudodifferential operators.

Lemma 2.  Let  N = Nj
a

j
,2

0
( ) ∈N

,  0 < q ≤ p < ∞,  and  0 < ε < s < ∞.  Then the

following embedding take place:

Fp
Ns

,
,

2
σ  ⊂ Fp q

Ns

,
,σ  ⊂ Bp p

Ns

,
,σ  ⊂ Fp q

Ns

,
,σ ε−

.

Proof.  Two left-hand embeddings follow from  l q ⊂  l p  for  q  ≤ p   and the

observation that  Fp p
Ns

,
,σ  = Bp p

Ns

,
,σ ,  2 ≤ p < ∞.  Indeed, for  f ∈ Fp q

Ns

,
,σ

f Bp p
s N
,

,σ   ≤  c
 

f Fp p
s N

,
,σ   =  c D f

j

js
j
N J p

p

Lp
=

∞

∑










/

0

1

2 ψ ( )   ≤

≤  c D f
j

js
j
N J q

q

Lp
=

∞

∑










/

0

1

2 ψ ( )   =  c
 

f Fp q
Ns

,
,σ   ≤

≤  c D f
j

js
j
N J

Lp
=

∞

∑










/

0

2
1 2

2 ψ ( )   =  c
 

f Fp
Ns

,
,

2
σ ,

i.e., we obtain two left-hand embeddings.
To obtain the right-hand embedding, we will follow Proposition 2.3.2/2 [7].  Note,

that for a sequence  aj j( ) ≥0

j

j s
j

q
q

a
=

∞
−∑











/

0

1

2 ( )ε   ≤  sup
j

j s
j

j

j q

q

a
≥ =

∞
−∑











/

0 0

1

2 2 ε   ≤

≤  c a
j

js
jsup

≥0
2 .

Then for  f ∈ Bpp
Nsσ ,
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f Fpq
Nsσ ε− ,   =  c D f

j

j s
j
N J q

q

Lp
=

∞
−∑











/

0

1

2 ( ) ( )ε ψ   ≤

≤  c D f
j

js
j
N J

Lp

sup ( )
≥0

2 ψ   ≤  c D f
j

js
j
N J p

p

Lp
=

∞

∑










/

0

1

2 ψ ( )   =  c f Bpp
Nsσ , ,

which proves the right-hand embedding.
The lemma is proved.

Remark 4.  Since  S ( R 
n

 )  is dense in  Hp
a s,  = Fp

Ns

,
,

2
σ ,  ( )Nj j∈N0

 = Nj
a

j
,2

0
( ) ∈N

,

then all the embeddings in Lemma 2 are dense.
Denote by  a  ( D )  the operator with symbol  a ( ξ ).  For the following theorem we

again refer to [6] (see also Theorem 2.3.8 from [12]).  Let  a  ( ξ )  and  ( )Nj j∈N0
  be as

before.  For any real  s  we have

1 +( ) /a D r( ) µ
 :  Bpq

Ntσ µ+ ,  → Bp q
Nt

,
,σ ,      0  <  p, q  ≤  ∞,

isomorphically.
Similarly to the Lipschitz spaces of order  α  one can define the spaces  Λλµ ( )t

  (see

[11]), where the function  | t | α  is substituted by some function  λ 

µ
 (t).  In what follows,

we denote by  Λ1  the space of Lipschitz functions on  R 
n.

Definition 5.  Let  λ (t) :  R 
n → R+  be a continuous nonnegative function and  µ >

> 0  be a real number such that

1)  λ  (t) → 0  as  | t | → 0,  and  λ  (t) → ∞  as  | t | → ∞;

2)  lim
( )

t

t

t→

+

0

1λµ
  =  ∞;

3)  λ  (t)  has no other zeros except at  t = 0.

Define

Λλµ ( )t
  =  f C f x t f x A tC∈ − − ≤{ }∞ ∞

: ( ) ( ) ( )λµ ,

and let

f
t

Λ
λµ ( )

  =  f ∞  + sup
( ) ( )

( )t

Cf x t f x

t>

− −
∞

0 λµ

be the norm in  Λλµ ( )t
.

We need to make an additional assumption about the relation between the operator

a (D)  and the function  λµ( )t .

Assumption 1.  Assume, that  λµ( )t   is such that  1 +( )− /a D r( ) µ   maps  C ∞
continuously into  Λλµ ( )t

.

Of course the choice of such a function  λµ( )t   may be not unique.

Lemma 3.  Let  σ s = ( )2 0
j s

j≥ ,  N  = Nj
a r

j
,( ) ≥0

  be defined as in (1), and the

function  ( λ 

µ
 (t) )  satisfy Assumption 1.

Then
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B N
∞,

,
1
0σ  ⊂ C∞ ⊂ B N

∞ ∞,
,σ0

(3)
and

B N
∞,

,
1

σµ
 ⊂ Λλ µ( )t

 ⊂ B N
∞ ∞,

,σµ
. (4)

Proof.  The proof of (3) is similar to the proof of Proposition 2.5.7 [12].  Let

ϕ j
N J

j
,( ) ∈N0

 ∈ Φ 

N,
 

J
,  and  f ∈ B N

∞,
,

1
0σ .  Then

f L∞
  =  

j
j
N J

L

D f x
=

∞

∑
∞

1

ϕ , ( ) ( )   ≤  
j

j
N J

L
D f x

=

∞

∑
∞1

ϕ , ( ) ( )   =  f B N
∞,

,
1

0σ .

Since  ϕ j
N J D f x, ( ) ( )  is bounded and continuous (by Paley – Wiener theorem), and

hence uniformly continuous in  R 
n,  then  f ∈  C∞  ,  and thus we have the left-hand

embedding in (3).

Now let  f ∈ C∞ .  Since by B3 the function  ϕ j
N J x, ( )  is a Fourier multiplier, then

f B N
∞ ∞,

,σ 0   =  sup ( ),

j
j
N J

L
D f

∈ ∞N0

ϕ   ≤  sup ( ),

j
j
N J

L LD f
∈ ∞ ∞

N0

ϕ   ≤  c f C∞
,

which proves the right-hand embedding.  (By  ϕ j
N J

L
D, ( )

∞
  we understand the norm

of the operator which corresponds to the symbol  ϕ ξj
N J, ( ) .)

By the lifting property of  1 +( )− /a D r( ) µ   (see [6]) we get (4) from (3).
The lemma is proved.

Remark 5.  Similarly to Proposition 2.3.2/2 [12], one can prove that  B N
∞ ∞

+

,
,σµ ε

 ⊂

⊂ B N
∞,

,
1

σµ
  for some  ε > 0,  which leads to

B∞ ∞
+

,
σµ ε

 ⊂ Λλ µ( )t
 ⊂ B N

∞ ∞,
,σµ

. (5)

Proof.  We only need to show that  B N
∞ ∞

+

,
,σµ ε

 ⊂  B N
∞,

,
1

σµ
  holds for  ε > 0,  then (5)

will follow from (4).

Since for a sequence  ( )aj j≥0   with  aj -finite

j

j s
ja

=

∞

∑
0

2   ≤  sup ( )

j

j s
j

j

ja
≥

+

=

∞
−∑

0 0

2 2ε ε   ≤  c a
j

j s
jsup ( )

≥

+

0
2 ε

holds, then for  f ∈ B N
∞ ∞

+

,
,σµ ε

  we obtain

f B N
∞,

,
1

σµ   =  
j

j s
j
N J

L
D f

=

∞

∑
∞1

2 ϕ , ( )   ≤  sup ( )( ) ,

j

j s
j
N J

L
j

jD f
≥

+

=

∞
−

∞
( ) ∑

0 0

2 2ε εϕ   ≤

≤  c D f
j

j s
j
N J

L
sup ( )( ) ,

≥

+
∞

( )
0

2 ε ϕ   =  c f B N
∞ ∞

+
,

,σµ ε .

Let  0 < µ < 1.  Define now by  Λλ µ( )t
0   the closure of  C0

∞   with respect to

⋅ Λ
λ µ( )t

-norm.  Similarly to Theorem III.3.3 from [13], we have the following lemma.

Lemma 4.  The space  Λλ µ( )t
0 ,  0 < µ < 1,  coincides with the space of functions

from  Λλ µ( )t
  for which
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lim
( ) ( )

( )t

Cf t f

t→

⋅ − − ⋅
∞

0 λ µ   =  0. (6)

Proof.  Since  C0
∞  ⊂  Λ1 ⊂  Λλ µ( )t

  and  C0
∞   is dense in  Λ1 

,  we see, that the

space  Λ
Λ

1

⋅
λµ ( )t   is equivalent to  C t

0
∞ ⋅ Λ

λµ ( ) .
We will follow the proof given in [13].  Clearly, for all functions from  Λ  1  (6)

holds.  Let  f m ∈ Λ 1  and  f m → f  in  Λλµ ( )t
.  Fix  ε > 0.  There exists  N0 

,  such that

fm Λ1
  <  c,      f fm

t
− Λ

λµ ( )
  <  

ε
2

for all  m ≥ N0 
  and let  δ  be such that for  t  < δ  we have

t

tλµ ( )
  <  

ε
2c

.

Then

f x t f x

t

( ) ( )

( )

− −
λµ   ≤  

f x t f x t f x f x

t
m m( ) ( ) ( ) ( )

( )

− − − − −( )
λµ   +

+  
f x t f x

t
m m( ) ( )

( )

− −
λµ   ≤  f fm

t
− Λ

λµ ( )
  +  f

t

t
m Λ1 λµ ( )

  <  
ε
2

  +  
ε
2

  =  ε,

and  f  satisfies (6).

Let now  f ∈ Λλµ ( )t
  and satisfy (6).  We will show that  f  belongs to  Λλµ ( )t

0 ,  i.e.,

we will show that there exists a sequence  ( )fm m≥0   from  Λ 1 ,  that converges to  f  in
⋅ Λ

λµ ( )t
-norm.

Consider

f m 
(

 
x

 
)  =  m f d

x

x m+ /

∫
1

( )τ τ  –  m f d
m

0

1/

∫ ( )τ τ.

Here and further we denote by

x

x m

d
+ /

∫ …
1

τ   =  
x

x m

x

x m

m

m

n

d d

1

1 1 1

1

+ +/ /

∫ ∫… … …τ τ ,

and analogously for  
0

1/
∫ …

m
dτ .

The functions  f m ,  m ≥ 0,  are once continuously differentiable (by each  x i ),  and
therefore belong to  Λ 1 .  Changing the variables, we obtain

f m ( x )  =  m f x f d
m

0

1/

∫ + −[ ]( ) ( )θ θ θ ,

which gives

f m ( x ) – f  ( x )  =  m f x f f x d
m

0

1/

∫ + − −[ ]( ) ( ) ( )θ θ θ .

Define

f x t f x tm( ) ( )+ − −[ ]  –  f x f xm( ) ( )−[ ]  =  Ψ  ( f m – f, t  );
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in this notation

f fm
t

− Λ
λµ ( )

  =  f fm C−
∞

  +  sup
( , )

( )t

mf f t

t>

−
0

Ψ
λµ .

Since  f ∈ Λλµ ( )t
  and (6) holds, then for chosen  ε > 0  there exists  δ > 0  such that for

| t | < δ  f  satisfies

f x t f x

t

( ) ( )

( )

+ −
λµ   <  

ε
2

    ∀x ∈ R 
n.

Then

Ψ( , )

( )

f f t

t
m −
λµ   =  

m

t
f x t f x t f x f x d

m

λ
θ θ θµ ( )

( ) ( ) ( ) ( )
0

1/

∫ + + − + − + +[ ]   ≤

≤  m
f x t f x

t

f x t f x

t
d

m

0

1/

∫ + + − + + + −





( ) ( )

( )

( ) ( )

( )

θ θ
λ λ

θµ µ   <  m
m

1
2 2
ε ε+



   =  ε.

Let  | t | ≥ δ.  Then

Ψ( , )

( )

f f t

t
m −
λµ   =  m

t

f x t f x t f x f x
d

m

0

1/

∫ + + − + + + −





λ θ
λ

θ
λ θ

θ
λ θ

θ
µ

µ µ µ
( )

( )

( ) ( )

( )

( ) ( )

( )
  ≤

≤  2
0

1

m f
t

d
t

m

Λ
λµ

λ θ
λ

θ
µ

µ
( )

( )

( )

/

∫   ≤  2
0

1

C f m d
t

m

Λ
λµ

λ θ θµ
( )

( )
/

∫ ,

where  C  is such that  λ µ− ( )t  ≤ C   for  | t | ≥ δ,  and we again may chose large  N0 

such that for all  m ≥ N0 

m d
m

0

1/

∫ λ θ θµ ( )   <  
ε

λµ
2C f

t
Λ

( )

.

Therefore  f fm
t

− Λ
λµ ( )

 < ε  for  m ≥ N0 
,  and in such a way  f ∈ Λλµ ( )t

0 .

Lemma 4 is proved.
Let  λ :

 
 (

 
0, 1

 
) →  R

 +  be a nondecreasing, continuous function,  lim ( )t t→0 λ  = 0

and let for  1 ≤ p, q ≤ ∞  and  M ∈ N

Bpq
nλ ( )R   =  f L

f t

t

d t

tp
p
M q q

∈














 < ∞












∫

/

:
( , )

( )
( )

( )
0

1
1

ω
λ

λ
λ

,

where

ω p
M f t( , )   =  sup ( )

h t
p
M

L
u

p<
⋅∆ ,

and  ∆ p
M   is the finite difference of order  M  in  h.

In addition, let  t � 
λ( )t

tM   be increasing, and  t � 
λ

δ
( )t

t
  be almost decreasing, then

Bpq
nλ ( )R   =  Bpq

Nσ1, ,
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where  (
 
σ

 

1
 
) = ( )2 0

j
j≥ ,  Nj = 

1
hj

,  where  hj   is such that  λ
 
(

 
hj 

) = 2 1− j λ( )   (see [14]).

In the following we suppose that  λ
 
(

 
1

 
) = 1.

Clearly, if the function  λµ ( )t   satisfies the conditions above, we obtain from the
definition of  Λλµ   that

Λλµ ( )R
n   =  B n

∞∞
λµ

( )R . (7)

Moreover, if an operator  1 +( )a D( )   is an isomorphism between  Bpq
Nσ µ1+ ,   and

Bpq
Nσµ , ,  it is an isomorphism between  B∞∞

+σ µ1
  and  B∞∞

σµ
,  where the function  λ  is

uniquely determined by  a
 
(

 
ξ

 
).

4.  The continuity of a pseudodifferential operator in generalized Lipschitz
spaces.  Let the pseudodifferential operator be of the form

p ( x, D ) f ( x )  =  
R

n

f x y f x x dy
\

( ) ( ) ( , )
0{ }

∫ − −( )ν , (8)

where  ν( , )x dy   is a Lévy measure, which depends on  x.
Theorem 1.  Let  p  (  x, D  )  be as in (8),  ν( , )x dy  = g ( x, y  ) dy,  where the

function  g ( x, y )  is differentiable in  x  and satisfies

sup ( ) ( , ) ( , )
x y

h
y

h
n

y g x y dy g x y dy
∈ <

+

≥
∫ ∫′ + ′











R 1

1

1

λµ   <  ∞ (9)

for any direction  h,  and

sup ( ) ( ) ( , ) ( ) ( , )
x y h y h

h
n

h y g x y dy h g x y dy
∈

−

<

+

>
∫ ∫+











R

λ λ λµ µ 1  → 0   as   | h | → 0,

(10)

where  ′g x yh( , )  is the derivative of  g ( x, y )  with respect to  x  in direction  h.
Then

p ( x, D ) :  Λλµ+1
0

( )t
 → Λλµ ( )t

0 .

Proof.  Let  f ∈ Λλµ+1
0

( )t
.  For such  f  we have

sup
( ) ( )

( )y

Cf x y f x

y>
+

− −
∞

0
1λµ   <  ∞.

Since

p x D f C( , )
∞

  ≤  c f
tΛλ

µ
( )
+1 , (11)

we will check weather the following inequality is satisfied:

sup
( )

( ) ( ) ( , )
h h

f x h y f x h x h dy
n>
∫ − − − −( ) −

0

1

λ
νµ

R

 –

– 
R

n

f x y f x x h dy

C

∫ − −( ) −
∞

( ) ( ) ( , )ν   ≤  c f
tΛλ

µ
( )
+1 .
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Again, for  | h | ≥ 1  we obtain

1

λ
νµ ( )

( ) ( ) ( , )
h

f x h y f x h x h dy
n

R

∫ − − − −( ) −  – 
R

n

f x y f x x dy∫ − −( )( ) ( ) ( , )ν   ≤

≤  C f x h y f x h x h dy
n

R

∫ − − − −( ) −( ) ( ) ( , )ν  +

+ C f x y f x x dy
n

R

∫ − −( )( ) ( ) ( , )ν   ≤  2C p x D f C( , )
∞

,

and then for  f ∈ Λλµ+1
0

( )t

sup
( , ) ( ) ( , ) ( )

( )h

Cp x h D f x h p x D f x

h≥

− − −
∞

1 λµ   ≤  c f
tΛλ

µ
( )
+1 . (12)

Next consider the case  | h | < 1.  It is convenient to decompose

p x h D f x h( , ) ( )− −  – p x D f x( , ) ( )  =

=  
R

n

f x h y f x h f x y f x g x y dy∫ − − − −( ) − − −( ){ }( ) ( ) ( ) ( ) ( , )   +

+  
R

n

f x h y f x h g x h y g x y dy∫ − − − −( ) − −( )( ) ( ) ( , ) ( , )   =  I1  +  I2 
,

and consider  I1  and  I2  separately.
From the mean-value theorem we have

g x h y g x y( , ) ( , )− −   =  h g x yh′ ( , )0

for some  x0 
,  where  ′g x yh( , )  is the derivative of  g  with respect to  x  in direction  h,

and consequently in view of (9) we obtain

I C2 ∞
  ≤  h

f x h y f x h

y
y g x y dy

y

C

y
hsup

( ) ( )

( )
( ) ( , )

>
+

<

+− − − −
′∞ ∫

0
1

1

1
0λ

λµ
µ   +

+  2
1

0h f g x y dyC
y

h∞
≥
∫ ′ ( , )   ≤  h f

t
Λ

λµ +1 ( )
.

Therefore for  I2  we obtain

I

h
C2 ∞

λµ ( )
  ≤  

h

h
f

tλµ
λµ( ) ( )

Λ +1
  =  o h f

t
( )

+Λ
λµ 1 ( )

    as    | h | → 0.

For  
I

h
C1 ∞

λµ ( )
  we have using (9) and (10)

I

h
C1 ∞

λµ ( )
  =  

=  
1

λ
µµ ( )

( ) ( ) ( ) ( ) ( , ) ( )
h

f x h y f x h f x y f x g x y dy
y h<
∫ − − − −( ) − − −( ){ }




  +
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+  
y h C

f x h y f x h f x y f x g x y dy
≥
∫ − − − −( ) − − −( ){ }




∞

( ) ( ) ( ) ( ) ( , ) ( )µ   ≤

≤  sup
( ) ( ) ( ) ( )

( )y

Cf x h y f x h f x y f x

y>
+

− − − −( ) − − −( )
∞

0
1λµ  ×

× 
1

0

1

λ
λµ

µ

( )
( ) ( , )

h
y g x y dy

h

∫ +   +

+  sup
( ) ( ) ( ) ( )

( )0 1
1

< <
+

− − − −( ) − − −( )
∞

h

Cf x h y f x y f x h f x

hλµ λ( ) ( , )h g x y dy
h

∞

∫   ≤

≤  C f o h
t

Λ
λµ+

( )
1 ( )

    as    h  → 0,

and thus

sup
( , ) ( ) ( , ) ( )

( )h

Cp x h D f x h p x D f x

h≤

− − −
∞

1 λµ   ≤  C f
t

Λ
λµ+1 ( )

. (13)

Combining (13) with (12) and (11), we arrive at

p x D f
t

( , )
( )

Λ
λµ

  ≤  C f
t

Λ
λµ+1 ( )

.

Moreover, we can see from (13) that

lim
( , ) ( ) ( , ) ( )

( )h

Cp x h D f x h p x D f x

h→

− − −
∞

0 λµ   =  0,

which completes the proof.
5.  Continuity of a pseudodifferential operator in some spaces of generalized

smoothness.  In this section we give the theorem on the continuity of some
pseudodifferential operator in the Besov spaces of generalized smoothness.

We start with an auxiliary theorem, see [13] or [1] for the reference.

Theorem 2.  Let  X X0 0
, ⋅( )  and  X X1 1

, ⋅( )  be two Banach spaces as above,

and let  Y Y0 0
, ⋅( )  and  Y Y1 1

, ⋅( )  be two Banach spaces satisfying the same

conditions as  X0  and  X 1  
.  Suppose that  T :

 
 X0 →  X 1   is a bounded linear

operator such that  A f ∈ Yk  for  f ∈ Xk 
,  and

A f Yk
  ≤  M fk Xk

,    k  =  0, 1.

Then  A  maps continuously  Xθ = X X0 1,[ ]θ  into  Yθ = Y Y0 1,[ ]θ, and we have the
estimate:

A f Yθ
  ≤  M M f X0

1
1

−θ θ
θ

,    θ ∈ [
 
0, 1

 
].

Next we need a theorem which gives the continuity of pseudodifferential operator
between the generalized Bessel potential spaces in  L2 

.  For our convenience we quote
the necessary conditions.

Let us split the symbol  p ( x, D )  into two parts:

p ( x, ξ )  =  p1 ( ξ )  +  p2 ( x, ξ ), (14)

where  p1 :
 
 R 

n → C  is a continuous negative definite function, and  p2 :
 
 R 

n × R  
n →  C

is continuous.
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Assumption 2.  We assume that the function  p ( x, ξ )  admits the decomposition

(14), where  p1 :
 
 R 

n → C  is some continuous negative definite function, and  p2 :
 
 R 

n ×

× R 
n → C  is continuous, and suppose that the following conditions are satisfies:

C1 
.  The function  p1  satisfies for some  γ0 > 0  and  γ1 

, γ2 ≥ 0:

γ0 a ( ξ )  ≤  Re p1 ( ξ )  ≤  γ1 a ( ξ )    for all    | ξ |  ≥  1

and

| Im p1 ( ξ ) |  ≤  γ2 Re p1 ( ξ )    for all    ξ ∈ R 
n.

C2 
.  For  m ∈ N0  the function  x � p2 ( x, ξ )  belongs to  C 

m,  and the estimate

∂ ξα
x q x2( , )   ≤  ϕ ξα ( ) ( )x a1 +( )

holds for all  α ∈ N0
n ,  | α | ≤ m,  with  ϕα ∈ L1 .

(See Assumption 2.3.5 from [2] for the reference.)
For the following theorem we refer to Proposition 2.3.6 and Theorem 2.3.11

from [2].
Theorem 3.  Let the conditions C1  and C2 with  m ≥ n + [ t ] + 1  of Assumption

2 hold for the symbol  p ( x, ξ )  of the pseudodifferential operator  p  ( x, D  ).  Then

p ( x, D )  is continuous from  H 
a,

 
t

 
+

 
2  to  H 

a,
 
t

   for any  t ≥ 0.
Theorem 4.  Let  p  ( x, D  )  be as in Theorem 1, and in addition assume that it

satisfies the conditions of Theorem 3, and for large  | ξ |  it holds

a ( ξ )  ≥  | ξ | 
α,    0  <  α  <  2 . 

Then for  s > p
n

p− + + −





1 2
2

α
µ( ) ,  p ≥ 2,

p ( x, D ) :
 
 Bp p

Ns

,
,σ +1

 → Bp p
Ns

,
,σ

continuously, where  N = ( )Nj j≥0 ,  Nj = ( ) ( )a j−1 22 .
Proof.  From Theorem 3 we have

p ( x, D ) :
 
 Ha t

2
2, +  → Ha t

2
,

 (15)

continuously, in particular, (15) holds for all  t > 
2
2
+ n

α
.  For such  t  the space  H  

a,
 
2

   is

continuously embedded into  C∞ .

We know that  B N
∞∞

+σ µ1 ,  = B∞∞
+λ µ1

 = Λλµ+1( )t
,  µ  ≥ 0.  By Theorem 1 the operator

p ( x, D )  is continuous from  Λ
�

λµ+1( )t  = B N�
∞∞

+σ α1 ,   to  Λ
�

λµ ( )t  = B N�
∞∞
σα , ,  i.e.,

  
p x D f B N( , ) ,

�
∞ ∞σα   ≤  

  
c f B N

�
∞ ∞

+σ α1 , .

Further, for  t > 
2
2
+ n

α
,  we have

B
t N

22
1σ + ,  ⊂ Λ1 ⊂   B

N�
∞∞

+σ α1 , ,

B
t N

22
σ ,  ⊂ Λ1 ⊂   B

N�
∞∞
σα , ,

and these embeddings are dense.
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Since the norms in the interpolation spaces  B B
t sN N

22
σ σ

θ
, ,, ∞∞[ ]   and  

  
B B

t sN N
22
σ σ

θ

, ,,
�

∞∞






coincide for  t, s > 0,  0 < θ < 1,  we obtain by Theorem 2 that  p ( x, D )  is continuous

from  Bp p
Ns

,
,σ +1

  to  Bp p
Ns

,
,σ   for  p = 

2
1 − θ

  and  s = ( 1 – θ ) t + θ µ = 
2 2t p

p

+ −( )µ
.  Since

t > 
2
2
+ n

α
  then  s > p

n
p− + + −





1 2
2

α
µ( )  = s̃ ,  and since  s  depends on  t  linearly

then for any  s0 > s̃   there exists  t0 > 
2
2
+ n

α
  such that  s0 = 

2 20t p

p

+ −( )µ
.  Therefore

p ( x, D  )  is continuous between Bp p
Ns

,
,σ +1

   and  Bp p
Ns

,
,σ   for all  s > p

n− +


1 2
α

 +

+ ( )p − )2 µ   and  p ≥ 2.

Theorem 4 is proved.
Theorem 4 together with Lemma 2 give us that under the conditions of Theorem 4

p ( x, D ) :
 
 Fp

Ns

,
,

2
1σ +

 → Bp p
Ns

,
,σ     for    s  >  p

n
p− + + −





1 2
2

α
µ( )     and    p ≥ 2

continuously, or to make our notation easier we will write

p ( x, D ) :
 
 Hp

a s, +1 → Bp p
Ns

,
,σ ,

where  Hp
a s,  = Fp

Ns

,
,

2
σ   is an  a-Bessel potential space.

Theorem 4 allows us to use such operators  p  ( x, D  )  as perturbations of some
generators of  Lp-sub-Markovian semigroups.  To do this, we will quote Theorem 2.8.1
from [2], from where our result easily follows.

Theorem 5.  Let  (  – A, D ( A ) )  be a pseudodifferential operator which generates
a sub-Markovian semigroup in  Lp ,  1 < p  < ∞.  If an operator  p  ( x, D  )  is  L p-

dissipative,  A-bounded, i.e.,  D ( p ( x, D ) ) ⊂  D  ( A  ),  and for some  ε ∈  [ 0, 1 )  and
δ > 0

p x D u Lp
( , )   ≤  ε Au Lp

  +  δ u Lp
,    u ∈ D ( A ),

and in addition  ( – A – p  ( x, D  ), D ( A ) )  is an  L p-Dirichlet operator, then  ( – A –

– p ( x, D ), D ( A ) )  is a generator of an  Lp-sub-Markovian semigroup.
We arrive at the following theorem:

Theorem 6.  Let  −( )ψ ψ( ), ,D Hp
2   be the generator of an  Lp-sub-Markovian

semigroup, and let  p ( x, D  )  satisfy conditions of Theorem 4.  Assume that for  ψ ,
such that

˜ ( )( )ψ λ( ) 





− −1 1 1
x

x
  =  1, (16)

the operator  ˜ ( ), ˜ ,ψ ψD H 2( )  is  ψ  ( D )-bounded.  Then the operator  ( – ψ ( D ) – p ( x,

D ), Hp
ψ, 2

 ) is the generator of an  Lp-sub-Markovian semigroup.

Proof.  From (7) we see, that if  ψ̃   satisfies (16) and  p  (  x, D  )  satisfies the

conditions of Theorem 4, then  p ( x, D )  is continuous from  Hp
s˜ ,ψ +1  to  Bp p

Ns

,
, ˜σ ,  where

Ñ  = Ñ j j( ) ≥0
,  Ñ j  = sup : ˜ ( )ξ ψ ξ ≤{ }22 j .

Since our operator is a Dirichlet operator (as an operator with continuous negative
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define symbol), and therefore it is dissipative, the statement of the theorem follows
from Theorem 5.
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