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CONTINUITY OF CERTAIN PSEUDODIFFERENTIAL
OPERATORS IN SPACES OF GENERALIZED SMOOTHNESS

HEIIEPEPBHICTD JEAKHUX IICEBJOU®EPEHIIAJIbHUX
OIIEPATOPIB Y IPOCTOPAX Y3AT'AJIBHEHOI I''TAIKOCTI

We investigate the continuity of a pseudodifferential operator in some spaces of generalized smoothness.
Some properties of the spaces of generalized smoothness and the generalized Lipschitz spaces are
proved.

HocJ1iixKeHOo HenepepBHICTb NceBAoAnepeHIiaIbHOrO onepaTopa y AesKUX NPOCTOpax y3araabHEeHOl
ryagkocti. [JoBe/leHO AesAKi BJIACTMBOCTI MPOCTOPIB y3araJbHEHOI I'JIAAKOCTI Ta y3araJlbHeHHX
nipocTopiB Jlimmmiis.

1. Introduction. In this paper we investigate the continuity of a pseudodifferential
operator p(x, D), the symbol p(x, &) of which for fixed x is a continuous negative
definite function, in the spaces of generalized smoothness. Such a continuity result
enables us to add p(x, D) as a perturbation to certain generator of an L,-sub-
Markovian semigroup, and still obtain the generator of an L, -sub-Markovian
semigroup.

For the survey on pseudodifferential operators with continuous negative definite
symbol we refer to [1, 2], and the literature given therein, in particular, we mention [3,
4], where the symbolic calculus in L, for such operators was developed. In [5]! the
symbolic calculus for pseudodifferential operators in L, was developed, and it was
proved that under certain conditions on the symbol p(x, &) of a pseudodifferential
operator p (x, D), this operator is continuous between some (related) w-Bessel
potential spaces. Such conditions are similar to those in L,-case, but much stronger,

since to guarantee the continuity of p(x, D) between subspaces of L p(R") the

Lizorkin’s Fourier multiplier theorem is applied.

Our approach is a bit different. We will pose the conditions on the Lévy measure of
p(x, &), and prove that under such conditions p(x, D) is continuous between related
generalized Lipschitz spaces. Assuming also that p(x, D) 1is continuous between
certain \-Bessel potential spaces, we obtain our main result by interpolation
arguments. Thus, our conditions on the symbol are different from those given in [5].

In the second section we give the necessary definitions concerning the spaces of
generalized smoothness. The third section contains some technical statements on such
spaces as well as some properties of the generalized Lipschitz spaces. In the fourth
section under some conditions on the Lévy measure of continuous negative define
symbol p(x, &) we prove the continuity of p(x, D) in generalized Lipschitz spaces.
In the last section we prove that p(x, D) is continuous in the related spaces of
generalized smoothness. This result allows us to use p(x, D) as the perturbation of a
generator of an L ,-sub-Markovian semigroup.

If it is not specially indicated, all the function spaces, considered in the paper, are

over R

2. Preliminaries. We start with some preliminary definitions and results.
Definition 1. A. A sequence (Y;) jeN, of positive numbers is called strongly
increasing if there is a positive constant d and a natural number ¥ such that
equations

! This manuscript can also be found on the web-page of the author, http:// www.math.etzh.ch//farkas/.
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dy; < Y forall j.k, 0 <j <k,
and
2y <y forall j ok, with j+ K<k

are satisfied.

B. A sequence (Y;) of positive numbers is of bounded growth if there exists

JeNy
a positive constant d and a number J € Ny, such that
Yis1 S dY; forany j 2 J.

C. A sequence (G i) is called admissible if

JjeNg
doG]S Gj+1 < dlcj forall JGN
holds for some positive dy and d; .

For a fixed strongly increasing sequence N = (N;);cy, and fixed Je N define
the covering

QN = {EeRMIEISN ) if j=0,1,.,0%
and
QY = {EeR": N;_j <|E|SNj | if j=JJk+1, ..

for some «.

Definition 2. Let @/ be a collection of functions ((pﬁv ’J)jeN such that

0
B) ¢ e CTR") and ¢}7(€) 20 if e R" for Je Ny
B,) suppe;™’ = Q"

B3) forany ye Nj there exists a constant ¢y>0 such that for any J € Ny

‘Dy(pj-v’J(&_,)‘ < |&|" forany yeR";

By) there exists a constant cy>0 such that
0 < Z(pj-v’l(&) = ¢y <o forany §eR"
j=0

We will give a general definition of the spaces of generalized smoothness, Flfq’N

and B[?éN , which are the generalizations of Triebel — Lizorkin and Besov spaces
respectively (see [6]).

Definition 3. Let (Nj)jeNo be a strongly increasing sequence of bounded
growth, and let (G) jeN, be an admissible sequence.

1) Let 0 <p, g <oo. The Besov space of generalized smoothness is

<oo .
I,(L,)

i) The 0 < p < oo, 0 < g < oo, The Triebel — Lizorkin space of generalized

smoothness is
oo }
L,{,)

o,N
B[’q

{fe St gy = (o500 D))

JjeNg

o,N
FP(Z

{feS': £z = (50} @1)

JjeNy
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640 V. P. KNOPOVA

Remark 1. For 0 < p, g < oo the spaces B;,ZN and FIfq’N can be defined
without the restriction that (N;) ey, 1s of bounded growth.

Such spaces are the generalizations (due to the standardization theorem) of those
introduced by Kaljabin [7, 8]; they are equivalent to the spaces given in [7, 8] if ¢ is
strongly increasing and of bounded growth (see [6] for details).

s s —_ ("
Denote by ¢~ the sequence (C})jen, = 2 )jeN, -
Remark 2. For N;=2/ and 6=c" the spaces F,, N and ng’N coincide with

A N :
F,, and B, respectively (see [6]).

We are interested in the situation when the strongly increasing sequence N is
associated with a function which satisfies some additional conditions. For the
following definition we refer to [6] (see also [5]).

Definition 4. Let A be the class of all nonnegative functions a: R'— R of

class C* with the following properties:

A)  lim a(§) = oo

|§[—e0

B) a(&) is almost increasing in |§|, i.e., there exist constants 8y =1 and R >
>0 such that a(§)<dya(n) if R<|E|<n;

C) there exists m >0 such that a(§)|&|™" is almost decreasing in |§|, i.e.,
there exists a constant 9,,, 0<9,, <1, and R>0 such that

a@®E[™ 2 §,am)|n|™" i R<[E|<n;

D) for every multiindex o = (a,...,0,), o, € NU{0}, i =1,...,n, there

exists some ¢, >0 such that

—|o]

|D%a(®)| < cua®)(1+]EF) . i |&] 2 R

The functions from A are called admissible functions.

It was proved that for an admissible symbol a (&) the sequence N“= (N;-”)J.eN )
0

where

N{" = sup{\&\: a(g) <27 }, je Ny, (1

is strongly increasing, see Lemma 3.1.16 from [6]. Note that the definition of the
strongly increasing sequence by (1) does not require the radial symmetry of the
symbol.

Recall the definition of the y-Bessel potential space of order s:

H;”S(Rn) = {u: HFﬁl((1+W(§))S/2F”@))HL <m}’

where Y is a continuous negative definite function, Fu is the Fourier transform of
function u, and s> 0 (see [9] for details).
For the admissible continuous negative functions a(§)

N
FoyN = Hy, s>0

(see [6]).
For the following definition we refer to [2, p. 293, 294], or [10] (§ 1.9.1).
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Let G={ze C; 0<Rez<1}. For two complex Banach spaces (XO, HHXO) and
(Xl, -l Xl) both embedded into some Hausdorff space %, set X :=X,+ X;, equipped

with the norm ||-||x := maX(H~HX0, HHX,) which is equivalent to the norm |||y~ +
+ H-HXI, and which turns X into a Banach space. Denote by W(G, X) the space of

all continuous functions ®: G — X with the following properties:

1) o|g isanalyticand supllo(z)[y < oo;
z2eG

2) w(iy)e Xy and o(l +iy)e X;, for y € R with continuous maps y
H o(y) and y—o(l +iy);

3) lolyg.x = max(supo@y)lly . sup|od+iyly | < .

By the maximum principle (W(G, X, - lwe, X)) is the Banach space. We call

{Xy, X1} an interpolation couple, and for any interpolation couple define its
complex interpolation space

[Xo, X11g := {ue X; there exists m € W(G, X) such that ®(0)= u}

On [X,, X|]g we introduce the norm

el %1, = inf ([|ollyg, x) ®€W(G, X) and (©)=u). 2)

With this norm the space ([XO,X1 lo- I H[XO’XI ]9) is a Banach space.

3. Some properties of the spaces of generalized smoothness and generalized
Lipschitz spaces. In this section we give some auxiliary technical results, which will
be necessary to prove our main results in Section 5.

I 1-
Lemmal. Let 0< py, qg,p1,q; S, and 0<0 < 1. Then for — = —e+
p

p
6 1 1-6 ©
+—, —=——+ — and s=(1-0)sy+0s; we have
Pt 4 490 4
0 1
¢’ ,N po’ N _ po’,N
|:BP0¢70 ’Bplfh ] - qu ’

Proof. Let {(pjy’J }j20 € dDN’J, and Sf= {f * (pﬁ-v’J }jzo' From the definition of
o' N
B,,;" wehave

fe BN o Sfe (L),

where l(‘; = {(aj)]zo? 2° aj)j>o € lq } Therefore, by the definition of W(G, X) and
(2) we see that for 0 <0< 1

0 1 0 1 0 1
o' ,N po’ N _ o' N o' N . o' N o' N
[Bﬁoqo ’qul :L - {fe BPoq() + B[’O‘]O rJdoe W(G’ B[’Oq() + B[’l% )’
such that co(e):f} -
_ 50 st . 6"'0 st
= {Sfe lgy (Lpy) + 1, (Lm) r3doe W(G’ gy (Ll’o) +ly, (Lm ))
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642 V. P. KNOPOVA

such that g(0)= Sf} =

- {Sf Sfe[qo (L, )L} = {sr:sreiw,} = BN

The lemma is proved.

Remark 3. Similarly, for 0 < pg, g9, p;,¢q; <o and 0<0 <1, 1 = 1-8 +
4 p

0

>

1 1-6 6
- + —, s=(1-0)sy+0s;, we can prove that
)2 40 q1

6 .N c6"',N _ o’ N
FI’oQo Thar fg T FPq :
. . GS’N G‘Y’N . .
The embedding properties of the spaces F,, " and B, " are similar to those of
, since the construction of the spaces of generalized smoothness is

A N
F,, and B,
only in the choice of the decomposition of unity

different to those of F,, and B,
and the sequence ¢°. We will give a chain of embeddings, which will be useful for us
when we prove the mapping properties of certain pseudodifferential operators.
Lemma2. Let N = (N;l’z)jEN , 0<g<p<oo, and 0<e<s <oo. Then the
' 0

following embedding take place:
o’ ,N o’ ,N o’ N VAR
F,y " cF ;7 cB,;” CF
Proof. Two left-hand embeddings follow from [, c [, for g <p and the

N N N
FG =B, 2 < p <. Indeed, for fe F;q

observation that p

- 1/p
jis. NJ p
| £llggin < el flpsin = ¢ (Ezw,- (D) f| J <
j=0

L,
- 1/q
j q
< | X [2 v} D) f| J = cllfllgg v <
Jj=0 L
P
- 1/2
; 2
< ¢ (22”\417’@)]‘ j = cllfllge
Jj=0 L ’
4
i.e., we obtain two left-hand embeddings.
iti Note,

To obtain the right-hand embedding, we will follow Proposition 2.3.2/2 [7].

that for a sequence (a f)jz 0

- 1/q 1/q
[EZj(‘Y_e)aj qJ < sup‘2”a [22 ]8‘]] <
=0

j=0

< csup‘Z’Saj‘.
=0

c’,N
Then for fe B,,
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CONTINUITY OF CERTAIN PSEUDODIFFERENTIAL OPERATORS IN THE SPACES ... 643

- 1/q
HfHF;j_E,N = ¢ [Z ‘21(#8) \I/?”(D)fq] <

Jj=0
L,

< c

- 1/p
) ,
<c [221 wj.”(D)f\ ] = cl fligs,
j=0

L,

sup| 27y} (D) f |
j=0

L,

which proves the right-hand embedding.
The lemma is proved.

Remark 4. Since S(R") is dense in H," = F;é’N, (N))jen, = (N;"z)jeNo,

then all the embeddings in Lemma 2 are dense.
Denote by a (D) the operator with symbol a(§). For the following theorem we
again refer to [6] (see also Theorem 2.3.8 from [12]). Let a(&) and (Nj)jENO be as

before. For any real s we have

(I+a(D)": BS" N 5 BIN, 0 < pg <

isomorphically.

Similarly to the Lipschitz spaces of order o one can define the spaces A (see

()
[11]), where the function | t|u is substituted by some function K“(t). In what follows,
we denote by A; the space of Lipschitz functions on R".

Definition 5. Let A(f): R" — R, be a continuous nonnegative function and | >
>0 be a real number such that

) A®—0 as |t|—>0, and A(f) = oo as |t|—>°o;

n+1
2) hmw —
t—0 ‘t‘

>

3) A(®) has no other zeros except at t = 0.

Define
Ap = 1 eCatlfa=0=f@lc, <A 0],
and let
If(x =)= f(0)lc
= + su =
171y, = 11 sp =
be the normin A, 0

We need to make an additional assumption about the relation between the operator
a(D) and the function A"(7).

Assumption 1. Assume, that A"(r) is such that (1+a(D))™" maps C.

continuously into A, o

Of course the choice of such a function A"(f) may be not unique.
Lemma 3. Let o° = (2‘js)jzo, N = (qu’r)jzo be defined as in (1), and the
function (Xu(t)) satisfy Assumption 1.

Then
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644 V. P. KNOPOVA

0 0
BS N cCuc B2 3)

and

N KN
BV < Ay © B2 .. 4)
Proof. The proof of (3) is similar to the proof of Proposition 2.5.7 [12]. Let

N.J N.J c’.N
((pj )jeNo € ® , and fe B.;" . Then

Iz, =

> oV (D) f(x)
j=1

< iH(Pjy’J(D)f(x)HLM = £ llget-
L, =l

Since (p§v ’J(D) f(x) is bounded and continuous (by Paley — Wiener theorem), and
hence uniformly continuous in R" then fe C., and thus we have the left-hand
embedding in (3).

Now let fe C.. Since by B; the function (pj-v “/(x) is a Fourier multiplier, then

| £llgot = sup [ D) f||, < sup|le} D], 171, < elflle.,
' JjeNg o jeN, o

which proves the right-hand embedding. (By H (pjy (D) HL we understand the norm

of the operator which corresponds to the symbol (pj-v ’J(i) )

By the lifting property of (1+a(D))™/" (see [6]) we get (4) from (3).
The lemma is proved.

Remark S. Similarly to Proposition 2.3.2/2 [12], one can prove that Bg:g’N c
c Bgi’N for some € >0, which leads to

pte n
BS. c Ay © BN, (5)

Proof. We only need to show that BS,?:’N C iji’N holds for € > 0, then (5)
will follow from (4).

-finite

Since for a sequence (a; ) 20 with ‘aj

z Z”‘aj‘ < sup‘Z’(”e)aj‘z 278 < csup‘Z-’(”e)aj‘
j=0 j=0 j=0 Jj=0

holds, then for fe Bgfl:’N we obtain
1 lgein = 3 27} @)f], < sup(2 o) Drs], )3 27 <
’ j=1 >~ Jj20 =120

< csup(Zj(He)H(Pj'V’J(D)fHL ) = cf fllgetren-
20 = ’

. 0
Let 0 < p < 1. Define now by AX(t)“

|-, -norm. Similarly to Theorem III.3.3 from [13], we have the following lemma.
MM

the closure of C; with respect to

0

Lemma 4. The space Ak e 0 < u <1, coincides with the space of functions

from Ak(t)“ Sfor which
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=D FOle
lim =

\z\l—>o MM ©

Proof. Since C; c Ajc A and C;, is dense in A;, we see, that the

A

Sl s N
space A; * " isequivalentto Cy Mo

We will follow the proof given in [13]. Clearly, for all functions from A; (6)

holds. Let f,,€ A; and f,, =f in A;\u(t)- Fix €>0. There exists N, such that

€
b, < e Mn=fly, <5

forall m >N, andlet & be such that for |7| <& we have

e
Mo o 2c
Then
[f=D= O] _ [f&x =D~ fue =)= (f) = fuD)] |
A1) a N (1)
, =0 = £,
N ()
and f satisfies (6).
Letnow fe A,y o and satisfy (6). We will show that f belongs to A&u W’

we will show that there exists a sequence ( f,),,>o from A, that converges to f in
|-, ~ -norm.
O]

il _ e
< Hfm_fHA;J-l(,) + HmeAIM <3

+

€
- =g,
2

1.e.,

Consider

x+1/m 1/m

fu@) = m [ fdt - m | foar.
X 0

Here and further we denote by

x+1/m x+l/m  x,+1/m
j .dT = J f ...dty...dt,,
x x| X

1/m
and analogously for J;) ...dT.
The functions f,,, m= 0, are once continuously differentiable (by each x;), and
therefore belong to A . Changing the variables, we obtain
1/m

fu®) = m [ [ f(x+6)- £(6)]d6,
0

which gives

1/m

m [ [f0e+0)= f(8) - £(x)]d6.

0

Jm@) =f(x)

Define

[fm(-x+t)_f(-x_t)] - [fm(-x)_f(-x)] = \P(fm_.f; t);
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646 V. P. KNOPOVA

in this notation

Y (f = S D]
- = + sup —2——"—,
1=l = 1= Fle. + s =
Since fe A)&‘ o and (6) holds, then for chosen € >0 there exists >0 such that for

|#| < f satisfies

[+ —f)] _ &

Vxe R"
W) 2

Then

P fu— [0 _ m
(1) (1)

1/m

j [f(x+0+1)— f(x+1)— f(x+0)+ f(x)]dO

= E&.

<m J(f(x+9+t) f(x+0)| f(x+t)—f(x))de . ml(g+s)
m\ 2

() () 2

0
Let |7]|>8. Then
Y= f01 f k”(e)(f(x+9+t) fa+n] | fx+6)- f(x))

(1) () ) )
1/m 1/m
Ao
sszAMwJMde_2CfA N O

where C is such that A"(r) < C for || >3, and we again may chose large N,
such that for all m =N,

1/m

m [ W @)de < £
0

2111y,

Therefore || £, _fHAx < ¢ for m>N,, and in such a way fe A)\H(I)

Lemma 4 is proved.
Let A: (0, 1) —> R, be anondecreasing, continuous function, lim, ,qA(f) = 0

andletfor 1<p,g<c and Me N
oM 0 ane v
n > t
B, (B = {fL[f(x()) x()] <°°}’
0

o, (f,0) = sup AN uC),
\h|<t Ly

where

and AA];’ is the finite difference of order M in h.

() ()

In addition, let 1+~ — be increasing, and ¢+ be almost decreasing, then

A ny _ c!.N
B[’q(R ) - qu ’
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CONTINUITY OF CERTAIN PSEUDODIFFERENTIAL OPERATORS IN THE SPACES ... 647

where (01) = (21)j20, N;= hi’ where 7; is such that l(hj) =277 M) (see [14]).

J
In the following we suppose that A (1) = 1.

Clearly, if the function AM(¢) satisfies the conditions above, we obtain from the
definition of A, that

Au(R") = BE(R"). @)

. . . . I+p
Moreover, if an operator (1+ a(D)) is an isomorphism between ng N and

(5” N oy e . . GHH G“ . .
qu’ , it is an isomorphism between B..,, and B where the function A is

uniquely determined by a(&).

4. The continuity of a pseudodifferential operator in generalized Lipschitz
spaces. Let the pseudodifferential operator be of the form

P D) = [ (flx=y) = fOO)V(x,dy), (8)
R"\{0}

where Vv(x,dy) is a Lévy measure, which depends on x.
Theorem 1. Let p (x,D) be as in (8), v(x,dy) = g(x,y)dy, where the
Sfunction g(x,y) is differentiable in x and satisfies

SUP[ [ g yldy+ | [ghx, y)dy] < e €)

n
xeR7\ | yl<1 [y21

for any direction h, and

SUP{X‘“(h) | ¥l yldy+am | gh(x,y)dy]—>0 as |h|—0,

xeR”

lyI<|h] [y >[h]
(10)
where g (x,y) is the derivative of g(x,y) with respect to x in direction h.
Then
. AD 0
p(x,D): A?J”'(t) - A?&‘(z)'
Proof. Let fe A(;Jm o’ For such f we have
up IfCe = =fOllc .
u oo,
ly[>0 ()
Since
1P DI, < el £l (an

we will check weather the following inequality is satisfied:

1
M (h) —h=y)= flx=h —h,dy) -
S | L S E =D = f= Ve )

R"

= [ (=2 = FO) VO =, dy)

R"

<
< el fllgn

C
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648 V. P. KNOPOVA

Again, for |h|>1 we obtain

J(f( —h=y)= fx=m)Vx—hdy) = [ (fx=y)= f(0)V(x, dy)

R"

7»“ (h)

C| [ (fGx=y)= FO0)V(x, dy)

R"

< 2C| p(x, D) fc_>

0
and then for fe A?J”‘(z)

| p(x=h, D) f(x=h) = p(x, D) f(x)]|c_
sup
|h[=1 M (h)

< +
< el £l (12

Next consider the case | h | < 1. It is convenient to decompose
p(x—h, D) f(x—h) - p(x,D)f(x) =
[LrG=n=y) = fxr=m) = (f(x=y) = f(0) }g(x, )y +

Rﬂ
+ [ (fa=h=y)= fx=m)(glx—h y) = gCx, )dy = I + I,
Rn
and consider /; and I, separately.
From the mean-value theorem we have

|g(x—h,y)—g(x, y)| = |hl|gn(xg.y)

for some x, where g;(x,y) is the derivative of g with respectto x in direction h,
and consequently in view of (9) we obtain

lf(x=h=y)= f(x=h)lc
I < |h| sup =
Izl |y150 ()

| M )5 (x, ) ldy +
lyl<1

+ 2l flle, [ IgiGo-nldy < (Rl

[y|=1
Therefore for 1, we obtain
ILle. |0
< = o(|h h|— 0.
s S ol Ml = Al e (]
4 HC"“ we have using (9) and (10)
0, s
Il _
My
h— h d
l”(h)( {h{(f(x )= f(x=h) = (f(x=y) = f(0) }g(x, y(dy) +
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<

[ {(fa=h=y) = fa=m) = (fx=y) - f(x) g, y)u(dy)]

Iy [2lh]

C.

<

I(fx=h=y)= fx=m)=(fx=y)= ).
sup X

[y1>0 A (y)
P
T £7» Mlglx, y)ldy +
[(f(x=h=y)= f(x=y)=(flx=h) = f())]c T
+ su = Mh) [ g(x, y)dy <
o< Ny J stxnay
< Clfla,, o(lh]) as [h[—0,
WMo
and thus
| p(x = h, D) f(x —h) — p(x, D) f(x)||
= < C ) 13

\?\131 M () HfHA?»”“(r) ()

Combining (13) with (12) and (11), we arrive at
P D)flly . < Clflly ., -
W W

Moreover, we can see from (13) that

__|lp(x=h, D) f(x—h) = p(x, D) f(x) ||
lim =0,
|7 |—0 N(h)

which completes the proof.

5. Continuity of a pseudodifferential operator in some spaces of generalized
smoothness. In this section we give the theorem on the continuity of some
pseudodifferential operator in the Besov spaces of generalized smoothness.

We start with an auxiliary theorem, see [13] or [1] for the reference.

Theorem 2. Let (XO,H-HXO) and (XlsH'Hxl) be two Banach spaces as above,
and let (YO,H-HYO) and (Yl

conditions as X, and X . Suppose that T:X,— X, is a bounded linear
operator such that A fe Y, for fe X;, and

IAfly, < Ml fly,. k=01

HYI) be two Banach spaces satisfying the same

Then A maps continuously Xq = [ Xy, X, |y into Yy = [Yy, Y |y, and we have the
estimate:

IAfly, < Mo "Ml fl,, ©e€l0,1]

Next we need a theorem which gives the continuity of pseudodifferential operator
between the generalized Bessel potential spaces in L,. For our convenience we quote
the necessary conditions.

Let us split the symbol p(x, D) into two parts:

p(x,8) = p1(&) + pr(x, &), (14)

where p,: R"— C is a continuous negative definite function, and p,: R"x R" — C

is continuous.
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Assumption 2. We assume that the function p(x, &) admits the decomposition
(14), where p;: R"— C is some continuous negative definite function, and p, : R" x

x R" — C is continuous, and suppose that the following conditions are satisfies:

C,. The function p; satisfies for some v, >0 and 7y, Y, =0:

Yoa(&) < Repy(§) < yja(§) forall [&] =1
and

[Imp,(&)| < ,Rep (&) forall &e R"

C,. For m e N, the function x p,(x, §) belongs to C"”, and the estimate

0% 45 (x, &)| < Qg ()1 +a(®))

holds for all o e N, |o|<m, with ¢, € L.

(See Assumption 2.3.5 from [2] for the reference.)

For the following theorem we refer to Proposition 2.3.6 and Theorem 2.3.11
from [2].

Theorem 3. Let the conditions C| and C, with m =2 n + [t]+ 1 of Assumption
2 hold for the symbol p(x, &) of the pseudodifferential operator p(x, D). Then
p(x, D) is continuous from H*'** to H*' forany t=0.

Theorem 4. Let p(x, D) be as in Theorem 1, and in addition assume that it
satisfies the conditions of Theorem 3, and for large |§| it holds

ag) 2 |E]% 0<a<2.
_1(2+n
Thenfor s> p | —+(p-2)u |, p=2,
o
s+1 s
p(x.D): BS, N — BS N

continuously, where N = (Nj)jzo, N;= \s““‘(a)_l (22j).
Proof. From Theorem 3 we have

p(x,D): H$'™? — HS! (15)

continuously, in particular, (15) holds for all 7> % For such ¢ the space H @2 g
o

continuously embedded into C,,.

I+u 1+
We know that BS_ N = B

e = A , W =0. By Theorem 1 the operator

M

o _l+o

o o o o
p(x, D) is continuous from Ajx**'(;) = BSeo N 1o Ay = BV, ie.,

IpCx, D) fllgeen < cll fllggen-

2+n
Further, for > 2—, we have
o

t+1 o __l+a
o't N
B, N c A c B,

t o 0o
o'.N % N
By" c Al C Bows

and these embeddings are dense.
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i s i o _s
Since the norms in the interpolation spaces [BSZ’N BN ] and [BfZ’N , BN :|
6 0
coincide for ¢, s >0, 0<0 <1, we obtain by Theorem 2 that p(x, D) is continuous

SN 6N 2 B _2t+(p-2u .
from B, , to B, ;" for p= —e and s=(1-0)r+0u = T Since

t> % then s > p_l(m+(p—2)u) = §, and since s depends on ¢ linearly
0] o

M . Therefore

p
. . s+l s _ 24+n
p(x, D) is continuous between By , N and ng’N for all s > p 1(— +
: : o

- . 2+n
then for any s, > § there exists #,> ey such that s, =
o

+ (p—z)u) and p>2.

Theorem 4 is proved.
Theorem 4 together with Lemma 2 give us that under the conditions of Theorem 4

s+1 s 1 2+n
p(x.D): Fgy N —> BN for s> p 1(—+(p—2)|u) and p=2
\ \ o
continuously, or to make our notation easier we will write

. a,s+1 c*,N
p(x,D): H, - B,
s
where H,* = F;z’N is an a-Bessel potential space.

Theorem 4 allows us to use such operators p(x, D) as perturbations of some
generators of L,-sub-Markovian semigroups. To do this, we will quote Theorem 2.8.1
from [2], from where our result easily follows.

Theorem 5. Let (—A, D(A)) be a pseudodifferential operator which generates
a sub-Markovian semigroup in L,, 1 <p <. If an operator p(x,D) is L,

dissipative, A-bounded, i.e., D(p(x, D)) c D(A), and for some €€ [0,1) and
6>0

Ip(e. Dyl < ellAul, + 8lul, . we DAY,

and in addition (-A —p(x, D), D(A)) is an L, Dirichlet operator, then (-A —
—p(x,D),D(A)) is a generator of an L,-sub-Markovian semigroup.

We arrive at the following theorem:

Theorem 6. Let (— y(D), HI‘,V’Z) be the generator of an L,sub-Markovian

semigroup, and let p(x, D) satisfy conditions of Theorem 4. Assume that for ,
such that

. (1Y
() () (x) =1, (16)

the operator (\II(D), H‘I"z) is y(D)-bounded. Then the operator (—y(D) — p(x,

D), H[‘i" 2 ) is the generator of an L,-sub-Markovian semigroup.

Proof. From (7) we see, that if  satisfies (16) and p (x, D) satisfies the
BGS,N

o5 where

conditions of Theorem 4, then p(x, D) is continuous from Hl‘j” oo

V= (N Y . 2j
N=(8)) o N =sup{|E]: W& <2*}.
Since our operator is a Dirichlet operator (as an operator with continuous negative
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define symbol), and therefore it is dissipative, the statement of the theorem follows
from Theorem 5.

Acknowledgement. The author would like to thank Prof. Walter Farkas for fruitful
discussions and remarks.

1. Jacob N. Pseudodifferential operators and Markov processes. Vol. 1. Fourier analysis and
semigroups. — London: Imper. Coll. Press, 2001. — 493 p.

2. Jacob N. Pseudodifferential operators and Markov processes. Vol. 2. Generators and their potential
theory.— London: Imper. Coll. Press, 2002. — 453 p.

3. Hoh W. A symbolic calculus for pseudodifferential operators generating Feller semigroups //
Osaka J. Math. — 1998. — 35. — P. 798-820.

4. Hoh W. Pseudodifferential operators generating Markov processes. — Bielefeld: Habilitationsschrift,
1998.

5. Farkas W. Function spaces of generalized smoothness and pseudodifferential operators associated
to a continuous negative definite function. — Munich: Habilitationsschrift, 2003. — 150 p.

6. Farkas W., Leopold H.-G. Characterization of function spaces of generalized smoothness // Ann.
mat. pures et appl. — 2004.

7. Kaljabin G. A. Description of the traces for anisotropic Triebel — Lizorkin type spaces // Tr. Mat.
Inst. Akad. Nauk SSSR. - 1979. - 150. — P. 160—-173.

8. Kaljabin G. A. Theorems on extension, multiplicators and diffeomorphisms for generalized
Sobolev — Liouville classes on domains with Lipschitz boundary // Tr. Mat. Inst. Akad. Nauk SSSR.
—1985.-172. - P. 173-186.

9. Farkas W., Jacob N., Schilling R. Function spaces related to continuous negative definite
functions: y-Bessel potential spaces // Diss. Math. — 2001. — 393. — P. 1-62.

10. Triebel H. Interpolation theory, functional spaces, differential operators. — Amsterdam: North
Holland Publ. Co., 1978. — 207 p.

11. Kufner A., John O., Fucik S. Function spaces. — Leyden: Noordhoff Int. Publ., 1977. — 454 p.

12. Triebel H. Theory of function spaces // Monogr. Math. — 1983. — 78. — 284 p.

13. Krein S., Petunin Yu., Semenov E. Interpolation of linear operators. — Moscow: Nauka, 1978. —
400 p.

14. Kaljlc)lbin G. A., Lizorkin P. I. Spaces of functions of generalized smoothness // Math. Nachr. —
1987. - 133. - P. 7-32.

Received 26.10.2004,
after revision — 18.03.2005

ISSN 1027-3190. Ykp. mam. sxypn., 2006, m. 58, N°5



