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ON ITERATION STABILITY OF THE BIRKHOFF
CENTER WITH RESPECT TO POWER 2 

*

ITERACIJNA STIJKIST| CENTRA BIRKHOFA

VIDNOSNO STEPENQ 2

It is proved that the Birkhoff center of a homeomorphism on an arbitrary metric space coincides with the
Birkhoff center of its power 2.

Dovedeno, wo centr Birkhofa homeomorfizmu na dovil\nomu metryçnomu prostori zbiha[t\sq z

centrom Birkhofa joho stepenq 2.

It is known that nonwandering set of a homeomorphism can change when we take a
power of the homeomorphism.  Such examples are shown in [1, 2].  On the other hand,
the sets of recurrent points [3], chain recurrent points [4], and the limit set do not
change when we take a power.  A natural question arises: What can happen with the
Birkhoff center of a dynamical system when we take its power?  Here, we prove that
the Birkhoff center of dynamical systems on arbitrary metric spaces coincides with the
Birkhoff center of their power 2.

Let  M  be a metric space and let  f, g :  M → M  be homeomorphisms of  M.  Denote
by  Ω  ( f )  the set of nonwandering points of  f.  Iterate the construction of the

nonwandering set.  Let  Ω 1 ( f ) = Ω ( f ).  Define by induction  Ω  n + 1 ( f ) = Ω Ωf
n f( )( ) .

Denote by  Ω ω ( f )  the intersection of the obtained sequence of embedded closed
invariant sets.  This process can be continued using transfinite induction.  According to
the Zorn lemma, the process will stop at an ordinal number  α  for which  Ω  α ( f ) =

= Ω Ωf fα ( )( ) .  The obtained closed invariant set is called the Birkhoff center and is

denoted by  B C ( f ).

Lemma 1.  Ω ( g n ) ⊆ Ω ( g ).
Proof.  Let  x ∈ M \ Ω ( g )  be a wandering point of  g.  By definition, there exists a

neighborhood  U  of  x  such that  g k ( U ) ∩ U = ∅.  Then  gn k ( U ) ∩ U  = f k ( U ) ∩ U  =

= ∅,  k ∈Z,  and  x  is a wandering point of  f.  Thus,  M \ Ω ( g  ) ⊆ M  \ Ω ( gn )  and

Ω ( g ) ⊇ Ω ( gn ).
Definition 1.  A point  ξ  is called tied with a point  µ  by  g   if for all

neighborhoods  U (µ )  and  V  (ξ )  of points  µ  and  ξ ,  correspondingly, there

exists  N ∈ Z  such that  U ( µ ) ∩ g VN ( )ξ( ) ≠ ∅.

Definition 2.  If one can choose  N ∈ Z  
–  (  N ∈  Z  

+
 )  in the previous definition,

then the point  ξ   is called  α -tied  ( ω-tied) with the point  µ .  The point  α-
and  ω-tied with the point  µ  is called bi-tied with the point  µ.
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Definition 3.  Points  ξ0 , … , ξn – 1   are called cyclically tied with a cycle length
n  if there exists  k ∈ 1, … , n – 1  such that for each  i = 1, … , n – 1,  the point  ξi

is  ω-  (α-)tied with the point  ξ m
 ,   m = k + i ( mod n ).

Lemma 2.  Let  ξ ∈  Ω ( g ) \ Ω ( gn ).  Then the trajectories  O g
g

i
n ( )ξ( )  ,  i  = 1, …

… , n – 1,  related to  g  n   on which the trajectory  Og
 ( ξ )  is split are wandering

cyclically tied ones.

Proof.  Let  ξ ∈  Ω ( g ) \ Ω ( gn ).  Since  ξ ∈  Ω ( g  ),  we have  ∀  U (ξ )  ∃ m : 

g m ( U (ξ ) ) ∩ U (ξ ) ≠ ∅.  Further, since  ξ ∉ Ω ( gn ),  ∀  l ∈ Z :  g l n ( U (ξ ) ) ∩ U  (ξ ) ≠ ∅.

We obtain that  m ≠ 0 mod n  and, hence,  ξ  and  g m ( ξ )  belong to different trajectories

related to  g n.  Choose  U (ξ )  to be the set  B1
 

/
 

p
 (ξ )  of  1 / p-neighborhoods of the point

ξ, p ∈ N.  Since  n  is finite, but the set of values of  p  is infinite, there exists  k ≠ 0

mod n  such that  m (p ) = k mod n  for infinite number of values of  p  in the previous

formulae.  Show that  ξ  is tied with  g k ( ξ ).  Let  V1
 ( ξ )  and  V2

 ( g  k (ξ ) )  be arbitrary

neighborhoods of points  ξ  and  g k ( ξ ).  Choose  p  such that  m (p ) = t n + k  to be large

enough for inclusions  B 1
 

/
 

p
 (ξ ) ⊂ V 1

 ( ξ )  and  g  k ( B1
 

/
 

p
 (ξ ) ) ⊂  V 2

 ( g  k (ξ ) ).  Then

g t n + k ( B1
 

/
 

p
 (ξ ) ) ∩ B1

 

/
 

p
 (ξ ) ≠ ∅  and, hence,  V1

 ( ξ ) ∩ g V gtn k
2 ( )ξ( )( )  ≠ ∅.

Cyclicity of tying follows from the fact that  g  maps tied points into tied ones.
The lemma is proved.
Theorem 1.  A nonwandering set coinciding with the whole space is iteration

stable with respect to power 2.

Proof.  Suppose on the contrary that  M = Ω ( f ) ≠ Ω ( f 2 ).

Let  x ∈ Ω ( f ) \ Ω ( f 2 ).  Then, according to Lemma 2,  x  and  y = f ( x )  are tied:

∀  n ≥ 1   ∃  an ∈  B1
 

/
 

n
 ( x )   ∃  An :  f aA

n
n ( )  ∈  B1

 

/
 

n
 ( y ).  Assume for definiteness that  x

and  y  are  ω-tied (including the bi-tied case too).  Then  An > 0.  Otherwise,  x  and  y

are  α-tied, and this case reduces to previous one but with  f – 1  instead of  f,  because

by definition the nonwandering sets of  f  and  f – 1  coincide.  Note that we can assume

all  an  to be wandering points of  f 2  because the set of wandering points is open.

Denote  bn = f f aA
n

n− ( )1 ( ) .  The sequence  f aA
n

n ( )   tends to  y.  The sequence

( bn
 )  tends to  x  by continuity.  Denote with  Bε

 ( x )  the open ball of radius  ε  around

the point  x.  According to Lemma 2,  b n  and  f aA
n

n ( )   are tied.  Then  ∀  n ≥ 1 

∀  m ≥ ≥ 1   ∃ cm  n ∈  B1
 

/
 

m
 ( bn

 )   ∃  Km  n :  f cK
mn

mn ( ) ∈  B f am
A

n
n

1/ ( )( ) .  Similarly, we

can assume  cm n  to be wandering points of  f 2.  Since  bn  and  f aA
n

n ( )   are tied, there

exists a subsequence such that either  bn  and  f aA
n

n ( )   are  ω-tied or  bn  and  f aA
n

n ( )

are  α-tied.  Switching to such subsequence, we can assume that all  bn  and  f aA
n

n ( )
are  ω-tied  (or  α-tied).

Assume that they are  ω-tied.  Then  Km  n  > 0.  Consider the sequence  ( cn
 

n
 ).  By

construction,  ( cn
 

n
 )  tends to  x  and  f cA

nn
n−( )( )   tends to  y.  But  f cK

nn
nn ( )( )  also

tends to  y.  Since  An > 0  and  Km n  > 0, Kn n ≠ – An .  We obtain that the point  y  is self-
tied and, hence, is nonwandering.

Assume that they are  α-tied.  Consider the sequence  f – 1 ( cn
 

n
 ).  By continuity, it

tends to  y.  According to Lemma 2,  f – 1 ( cm
 

n
 )  and  ( cm

 

n
 )  are tied.  The further proof
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is reduced to the considered cases.  If we can choose a subsequence from  f – 1 ( cn
 

n
 )

which consists of points  ω-tied to their images, then, repeating the reasons for  ω-tied

bn  and  f aA
n

n ( ) ,  we obtain that  x  is nonwandering point.  Otherwise,  bn  and

f aA
n

n ( )   are  α-tied and the sequences  f – 1 ( cm
 

n
 )  and  ( cm

 

n
 )  which tie them are also

α-tied.  This case reduces by substituting  f  with  f – 1  to already considered one when
points are  ω-tied and the sequences which tie them are also  ω-tied.

The theorem is proved.

Lemma 3.  B C ( g n ) ⊆ B C ( g ).
Proof.  Consider the family of nonwandering sets in the definition of the Birkhoff

center  Ω ( f ) = Ω 

1
 ( f ) ⊇ Ω 

2
 ( f ) ⊇ … ⊇ Ω 

ω
 ( f ) ⊇ Ω 

ω
 

+
 

1
 ( f ) ⊇ …  indexed with ordinal

numbers.  The family is ordered by inclusion.  At that relations,  Ω  

α
 ( f ) ⊇ Ω 

β
 ( f )  and

α ≤ β  are equivalent.  Consider the same family for  f n.

Prove that  Ω 

λ
 ( f n ) ⊆ Ω 

λ
 ( f )  for each ordinal  λ  using transfinite induction.  When

λ = 1,  it is Lemma 1.  Let it be true for each  α < λ.  Show that it is true for  λ.  If  λ
is limit ordinal, then by construction,  Ω 

λ
 ( f ) = β λ β<∩ Ω ( )f  ⊇ β λ β<∩ Ω ( )f n  =

= Ω 

λ
 ( f n ).  Otherwise,  λ  has previous ordinal  λ̂ .  According to inductive proposition,

Ω ˆ ( )
λ

f  ⊇ Ω ˆ ( )
λ

f n .

Denote  f
λ̂

 = f fΩ ˆ ( )
λ

 : Ω ˆ ( )
λ

f  →  Ω ˆ ( )
λ

f   and  ′f
λ̂

 = f n
f nΩ ˆ ( )

λ
 : Ω ˆ ( )

λ
f  →

→ Ω ˆ ( )
λ

f .  Note that  Ω f
λ̂( )  ⊇  Ω f

n

λ̂( )( )  according to Lemma 1 and  ′f
λ̂

 =

= f
n

f nˆ ( )ˆλ λ
( ) Ω .  Hence,  Ω 

λ
 ( f  ) = Ω Ωf fˆ ( )

λ
( ) = Ω f

λ̂( )  ⊇  Ω f
n

λ̂( )( ) ⊇

⊇ Ω Ωf
n

f nˆ ( )ˆλ λ
( )



  = Ω ′( )f

λ̂
 = Ω Ωf n

f n
ˆ ( )
λ





  = Ω 

λ
 ( f n ).  The second inclusion

follows from the fact that the nonwandering set of a map cannot be smaller that the
nonwandering set of its restriction.

Let  λ,  λ  ′  be depths of centers  B C ( f )  and  B  C  ( f n ),  correspondingly.  Denote

β = max ( λ, λ  ′ ).  Then  B C ( f ) = Ω 

β
 ( f ) ⊇ Ω 

β
 ( f n ) = B C ( f n ). 

The lemma is proved.
It follows that the iteration stability of Birkhoff center is equivalent to the iteration

stability of nonwandering set coinciding with the whole space.  As a consequence, we
have the following theorem:

Theorem 2.  The Birkhoff center is iteration stable with respect to power 2.
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