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GENERALIZED SOLUTIONS OF MIXED PROBLEMS
FOR FIRST-ORDER PARTIAL FUNCTIONAL
DIFFERENTIAL EQUATIONS

Y3AT'AJIBHEHI PO3B’A3KH MIITAHUX 3AJAY
AJIA @YHKIIOHAJIBHUX [TUOEPEHIIIAJIBHUX PIBHAHD
3 YACTUHHUMHA NOXITHUMMU INEPIIOI'O ITIOPAIKY

A theorem on the existence of solutions and their continuous dependence upon initial boundary
conditions is proved. The method of bicaracteristics is used to transform the mixed problem into a
system of integral functional equations of the Volterra type. The existence of solutions of this system is
proved by a method of successive approximations and by using theorems on integral inequalities.
Classical solutions of integral functional equations lead to generalized solutions of the original problem.
Differential equations with deviated variables and differential integral problems can be obtained from a
general model by specializing given operators.

JloBesieHO TeopeMy Mpo iCHYBaHHS pO3B’sI3KiB Ta IX HENEpepBHY 3aJIeKHICTh BiJ] TOYATKOBUX I'DAaHUY-
HUX yMOB. [lJ1s1 mepeTBOPeHH: MillIaHOi 3a/1a4i y CHCTeMYy iHTerpajbHUX (PYHKIIOHAJIbHUX PiBHAHb
Tuny BoJsibTeppa BUKOpUCTAaHO MeTOf H6iXxapakTepuCTUK. ICHyBaHHS PO3B’s3KiB 1i€i CHCTEMHU [OBEe-
HO 32 JIONOMOI'0I0 METO/1y MOCJIiZIOBHUX HAOJ/IMKEHb Ta TEOPEM Npo iHTerpasibHi HepiBHOCTI. Kutacnuni
PO3B’3KHU iHTer pajibHUX (PYHKLIOHAJILHUX PiBHSHb IPUBOAATH 10 y3araJbHeHUX PO3B’A3KiB MOYaTKO-
BOi 3afavi. I3 3araspHOI MOEsTl 32 IONMOMOT 010 KOHKPEeTH3allii 3a[JaHUX ONepaToOpiB MOXKHA OTPUMATH
nudepeHniaabHi pIBHAHHSA 13 3MIHHUMU, 1110 BIAXUJ/IAIOTECS, Ta AUEpeHIia/IbHI IHTerpabHi 3aadi.

1. Introduction. We formulate the functional differential problem. Let a > 0,
hyeR,, R, =[0,+c), b= (b,....,b,)eR", andlet h = (h,...,h,) € R} be given,
where b, > 0 for 1 < i < n. We define the sets

E =[0,alx[-b,b]l, D = [=hyp,0]%x[=h,h].
b+h and
Ey = [-hy,0] X [-c,c],

E = [0,a] x ([-¢,c]\(=b,b)), E" = E,UEU9,E.

Let ¢ = (c,...,¢c,)

Suppose that z: E “ R and (1, x)€ E are fixed. We define the function 24y - D>
— R as follows:

(18 = z(t+1,x+E), (1.&)eD.

The function z ) is the restriction of z to the set [7—ho, 1] X [x—h, x+h] and this

restriction is shifted to the set D. Elements of the space C (D, R) will be denoted by
w, w and soon. We denote by |-[, the supremum norm in the space C(D, R). Put

Q = ExXC(D,R)xR" and let
f:Q >R, ¢:EUJQE — R,

0gp: [0,a] > R, o:E—> R', o =(...,0,),

be given functions. We denote o, x) = (0to(1), o' (¢, x)), (¢, x) € E. We require that
a(t,x)e E for (t,x)e E and og(t) <t for t € [0,a]. We will deal with the
following mixed problem:

d,z(t, x) = f(t,x, Zo(t,x)> d,z(t, x)), (1
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2(t,x) = @, x) on E,UdyE, 2)

where 0,z = (02, ..., 2).

A function Z:[-hy,E]X[-¢,c] = R where 0 < & < q, is a generalized solution
of (1), (2) if it is continuous and

(i) the derivatives (8)612,...,8,5”2) =0,z existon [0,&] x [-b,b] and the func-
tion Z(-, x): [-hy,&E] = R is absolutely continuous on [0,&] foreach xe[-b,b];

(ii) for each xe[-b,b] equation (1) is satisfied for almost all ¢€[0,] and
condition (2) holds on (Ey U dyE) X [—hy, E] X R".

Note that our hereditary setting contains well-known delay structures as particular

cases.
The simplest differential equation with deviated variables is obtained in the follow-

ing way: put hy = 0, & = 0, and suppose that F': EXR xR" = R is a given functi-
on. Consider the operator f defined by

flt,x,w,q) = F(t,x,w(0,0),q9), (t,x,w,qg)e Q. 3)
Then
%, 2000, 9) = F(t,x,2(0(t, x)), q)
and equation (1) is equivalent to the differential equation with deviated variables
9,z(t,x) = F(t, x, z(o(t, x)), 9, z(t, X)). 4)

We require that o.(z,x)e E for (t,x)€ E and op(t) < ¢t for t€ [0, a].
A general class of equations with deviated variables can be obtained in the follow-

ing way: suppose that Bo: [0,a] > R, B':E — R" B" = (B1,...,B,) are given
functions and

—hy < Bo®) — o £0, —-h< B(t,x) — o(t,x) < h, (t,x)e E. (5
For the above given function F, we define the operator f as follows:

f(t’ X, w, Q) = F(t» X, W(BO(I)_ OCO(t), B,(I’ .X')— a/(th))’ q)’ (t’ X, W, ‘I)e 9(6)
Then

f(t’ X, Z(x(t,x)’ 61) = F(t’ X, Z(B(I, X)), Q),

where B(t,x) = (Bo(1), B’ (£, x)) and equation (1) is equivalent to
0,z(t,x) = F(t,x,z(B(, x)),0,2(t, x)). @)
Now we consider differential integral equations. Suppose that V,: [0,a] — R,
Y:E —-R" Y =(y,....v,) are given functions and
—hy < Vo) — ag(t) €0, —h S Y(@tx) - (tx)<h, (Lx)eE. (8)

For the above given functions B and F, we define the operator f in the following
way:

Yo(t)—0 (1) Y'(t,x)—o(t,x)
flt,x,w,q) = F|t,x, J JW(T, y)dydnr, q |, 9
Bo()—0i(1) B'(t,x)—0'(2,x)

where (¢, x,w, g)e Q. Then
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Y1, %)
ft X 244009 = F|t,x, jz(r, y)dydrt, q
B, x)

and (1) reduces to the differential integral equation

)
9,2(t,x) = F|t,x, Jz(‘r,y)dydr,&xz(t,x) . (10)
B(r.x)

We will discuss the question of the existence of solutions of problem (1), (2).

Different classes of weak solutions of mixed problems to partial functional diffe-
rential problems are considered in literature. Almost linear systems in two-independent
variables were investigated in [1, 2]. A continuous function is a solution of a mixed
problem considered in the papers if it satisfies an integral functional system arising
from functional differential system by integrating along bicharacteristics. Note that pa-
pers [1, 2] initiated investigations of first order partial functional differential equations.

The class of Carathéodory solutions consists of all functions which are continuous,
have their derivatives almost everywhere in a domain and the set of all points where the
differential equation or the system is not fulfilled is of Lebesgue measure zero. The
existence and uniqueness results for quasilinear systems with initial boundary condition
in the class of almost everywhere solutions are given in [3, 4]. Right-hand sides of
equations contain operators of the Volterra type and unknown functions depend on two
variables. A general class of mixed problems and Carathéodory solutions for quasili-
near equations is investigated in [5]. Functional differential problems considered in
these papers are equivalent to integral functional equations which are obtained by
integration along bicharacteristics. Under natural assumptions, continuous solutions of
functional integral equation are Carathéodory solutions of original problems.

Generalized solutions in the Cinquini Cibrario sense for equations without a func-
tional dependence were first treated in [6 — 8]. This class of solutions is placed betwe-
en classical solutions and solutions in the Carathéodory sense. It is important that both
inclusions are strict. This class of solutions is investigated in the case that assumptions
for given functions are extended. Existence results for mixed problems and nonlinear
functional differential equations can be found in [9] and [10] (Chapters IV, V). They
are obtained by a quasilinearization procedure and by construction of functional integ-
ral systems for unknown functions and for their derivatives with respect to spacial vari-
ables. Continuous solutions of integral equations lead to generalized solutions of origi-
nal problems.

Note that the monograph [11] contains an exposition of generalized solutions in the
Cinquini Cibrario sense for nonlinear equations and systems without the functional
variable.

Wide classes of solutions to mixed functional differential equations are investigated
in [10, 12 — 14]. The only derivative with respect to ¢ of unknown functions appear in
equations considered in the above papers.

Viscosity solutions of mixed problems for functional differential equations were
first treated in [15, 16]. Uniqueness results were based on a differential inequalities
method. Existence theorems were obtained by using the vanishing viscosity method.

Further bibliographical information concerning hyperbolic functional differential
equations can be found in the monograph [10].

The paper is a generalization of existence results for nonlinear functional differen-
tial equations with initial boundary conditions which are presented in [9] and [10]
(Chapter V). There are the following differences between the above mentioned results
and our theorems.

I. It is assumed in [10] that the function f of the variables (7, x, w, g) has the fol-
lowing property. Write
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sign dgf = (signd,, f,...,signd, f).

The following condition is important in [10]: the function signd, f* is constanton Q.
We have omitted the above condition in our considerations. It is assumed in [9] that
the function sign aq f is constant on €. This condition can be reduced to the assump-
tion adopted in [10] by changing variables in an unknown function in a differential
functional equation.

II. The functional dependence in partial differential equations is based on the use of
the Hale operator (7, x) = z ) Where z, ) : D — R. The domain of the function z; ,,

considered in [10] has the form D = [y, 0] %[0, I']1x[-Ay, 0] < R where K =
= (hy,.... ), W = (hyyy,....h,). Inourcase we put D = [—hy, 01X [—h, h]. It foll-
ows that the class of differential equations with deviated variables considered in the pa-
per is more general than an adequate class of equations which can be obtained from
[10].

The same conclusion can be drawn for differential integral equations.

III. The right-hand sides of the equations considered in [10] depend on the
functional variable z, ). In our considerations, equation (1) contains the functional
variable z,( ) Itiseasy to see that the class of differential equations which is cover-

ed by our theory is more general than a suitable class considered in [10].

The paper is organized as follows. In Section 2 we prove results on the existence
and uniqueness and on the regularity of bicharacteristics for nonlinear mixed problems.
Integral functional equations generated by (1), (2) are investigated in Section 3. It is
shown that under natural assumptions on given functions there exists a sequence of
successive approximations and it is covergent. The main results on the existence of ge-
neralized solutions and on the continuous dependence of solutions on initial boundary
conditions are presented in Section 4. An application to equations with deviated vari-
ables is given.

The following function spaces will be needed in our considerations. Write E, =
= E'N([~hy, t]xR") and E, = [0,]x[-b,b] where 0 <t < a. We will denote by
|-|, the supremum norm in the spaces C(E,,R) and C(E/,R"). Analogously, we
will use the symbol ||, to denote the supremum norm in  C(E;, R) and C(E, R").
We will denote by M, the class of all n X n matrices with real elements. For

xeR", XeM,,,, where x = (x,...,x,) and
X = [x5lij=1...n

we put

n
Il = X lx| and | X]|
j=1

Il
=
&
ol
I M=
&

The product of two matrices is denoted by “%”. If XeM,,, then X7 is the trans-
pose matrix. We use the symbol “o” to denote the scalar product in R".

Let us denote by |||, the supremum norm in the space C(D, R). Let c®(D, R)
be the set of all w e C(D, R) such that the derivatives (ax] w,..., axnw) =d,w exist

on D and d,weC(D,R"). For weC*(D,R) we put
Iwly, = llwly + max{|d,w(, x)|: (z,x) e D}.

We denote by C(L)’](D, R) the class of all we C%(D,R) such that Iwli,p < +eo
where
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[9,w(t, ) - axw(f’ ]}  x), (%) eD, x) # @, x)}.
lt—t]+]x-X]

wly,, = lwll + sup{
We will consider the spaces

Q=ExCD,R)xR", QY = [-b,b] x c*Y(D,R) x R

and
Qb = [=b,b] x CP(D,R) x R".

Let © be the class of all functions y e C(R,, R,) which are nondecreasing on R, .
Now we define some further function spaces. Given s = (sy, s, 5;) € Rf, we de-
note by Cl’L[s] the set of all functions @ € C(EyUdyE, R) such that
(i) there exists 9,¢(t, x) for (1, x)e EyUJyE,
(ii) the estimates |@(z, x)| < s,
and

‘(P(t’x)_q)(f’x)‘ < sl‘t_f’ Hax(p(tvx)H < S15
Hax(P(t’ X)—ax([)(f, E)H < 52[‘1‘_{‘ + HX—J?H],
are satisfied on EyUJdyE.
Let @eC"L[s] be givenand let 0 < ¢ < a, d = (dy. dj,dy)€RS, d; > s; for
i =0,1,2, we consider the space C(};,Ig[d] of all functions z: E: — R such that
(i) zeC(E,,R) and z(t,x) = ¢(t,x) on (EyUdyE) N ([—hy, c]x R"),
(ii) there exists 9,z(z, x) on E, and the estimates |z(t, x)| < dj,
and
‘Z(t’x)_z(i9-x)‘ < dl‘t_f‘s Haxz(ts-x)H < dl’
0,22, x)—0,2(t, X)| £ dyf|lt—1|+]x—X]].

are satisfied on E,.
Let p=(py,p)e Rer, Po =8, P =5,. We denote by CCO’L[p] the set of all
functions v: E. — R" such that for (¢, x)€ E_. the estimates ||v(, x)|| < p, and
o) —v@ D) < plle=i]+]x-x]]
holdon E,. We will prove that under suitable assumptions on f, o and ¢, and for

sufficiently small ¢ with 0 < ¢ < a, there exists a solution z of the problem (1),
(2) such that 7 e Cghld], 0,7 CO [pl. Write

A‘; = {xe[—b, b] X = bi}’ A: = {xe[—b, b] X = _bi}’
where 1 < i < n, and
n
A= {J(AT U A).
i=1
2. Bicaracteristics of nonlinear equations. We begin with assumptions on f.
Assumption H [d,f]. Suppose that the function f: Q — R of the variables (1, x,
w,q), g =(q1,--.,qn), is such that

) f(,x,w,q):[0,a] > R is measurable for each (x,w, g)e [-b,b]x C(D, R) X

x R" and the partial derivatives
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@y f(P)s- 0y f(P)) = I f(P), P = (1,5 w,q)

exist for (x,w,q) € Q" and for almost all t e [0, al;

2) aq fC,x,w,q): [0,a] — R" is measurable and there is B € © such that
Haqf(t, X, w, q)H < B(|w|,) for (x,w,q)eQ(l) and for almost all ¢ € [0, a]

and there is C € © such that for (x,w,q)eQ(l’L), (x,q)e[-b,b]xX R",
WGCO’I(D, R) and for almost all ¢ € [0, a] we have

|0, f @ % w+iw,3) = 0, £t x,w, | < C(Iwly )[Ix =%+ ], +g-7]];

3) thereis k¥ > 0 suchthatfor 1 < i < n we have

0,1
9y [t x,w,q) 2 x for  (x,w,q) € Aj x C"(D,R) X R"

and
d, f(t.x,w.q) < —x for (x,w,q) € A; x C*'(D,R) x R"

for almost all 7€ [0, a].

Assumption H [a]. Suppose that the functions o: [0,a] — [0,a] and o’: E —
— [=b, b] are such that

1) ag(t) <t for te [0, a] and there is ry € R, such that
log (1) — 0g(7)| < |t —7] on [0,al;
2) o is of class C' and
[0 0/(z,x)| < rg on E;
3) thereis r; € R, such that
19,0/(t, x) = 9,0/, %) < rillx—X| on E.
Write r = (rg, r1).
Suppose that (peCl’L[s] and ze C(lp’,é[d], ue C?’L[p]. We consider the Cauchy
problem
N(1) = = 9,/ (T N(D), Zg(r,nery> WMD), M) = x, (1)

and denote by g[z, u](-,t, x) its solution in the Carathéodory sense. The function
glz, ul(-, 1, x) is the bicharacteristic of equation (1) corresponding to (z, u). Let [

be the domain of g[z,u](-,t, x) and J[z, u](z, x) is the left end of the maximal inter-
val on which the bicharacteristic g[z, u](-,t, x) is defined. Write

Plz,u)(t,t,x) = (T, gz ul(T. £, X). Zoa, gfe.urrny 1 (T gLz Ul(T. 1, X))).
We prove a lemma on bicharacteristics.
Lemma 1. Suppose that Assumptions H [aq f1, H[a] are satisfied and let
¢, ¢eCllsl, zeCgildl, zeChdl, e pl,
be given. Then the solutions glz,ul](-,t,x) and glz,ul(-,t,x) exist on the inter-
vals I, and I, such that for € =0d[z,ul(t,x), & =3[z, ul(t,x) we have

glzul€ t,x)e A and g[z,u] (E, t,x)eA. The bicharacteristics are unique on
Ly and 1, . Moreover we have the estimates
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| glz, ul(t,2, %) = glz, ul(v,i, %) < C[lr—7]+ |x-X]] (12)
for Iel(,,x)ﬂl(;’;), (t,x), (t,X)€E,, and

T
lglz,ul(r, 1, %) = glZ @15, 6,0 < C|[[lz=Zle +[0:2=0,Z ], + lu—it|e) |8
t

13)

for tel, N f(t,x), (t,x)eE., where i(t,x) is the domain of the bicharacteristic
glz, ul(:,t,x) and

C = max{l, B(C}),C(\d\)} exp{cC(|d|)[1+n(d +d)+p]}
and
d =dy+d, |dl =dy+d +d.

Proof. The existence and uniqueness of solutions of (11) follows from the classi-
cal theorem on Carathéodory solutions of initial problems. The function g[z, u](-,1, x)
satisfies the integral equation

glzul(tt,x) = x — [3,f(Plz,ul(& 1, x))dE. (14)
t

Since ze C(lp”% [d] condition 2 of Assumption H [c] shows that

l2aen = Zaenly, € ol +d)lly=7

forall (t,y), (t,y)eE,. It follows from Assumption H[E)q f1 that the function
glz, ul(-,t, x) — glz, ul(-, ¢, x) satisfies the integral inequality

| glz ul(t, 1,0 - glz ul(@ 7, B < max{LB@}[lr=7|+|x=%]] +

T
+ C(dDI+ry(d; + )+ pil| [ [ elz, ul &1, ) = glz, ul (&, 7, D) dE,

t
TEI(I,)C) ﬂ I(ZT,)?)

Now we obtain (12) by the Gronwall inequality. For (t,y), (t,y)€ E. we have the
estimate

HZa(r,y) = Zo(1,5) Hl < Nz =zl + [0z = 952 + Ro(di + d)lly =¥l

It follows that the function gz, u](-,t, x) — g[z, u](:, t, x) satisfies the integral inequa-
lity

H g[Z’ u](ﬂc’ Z, .X) - g[z’ ﬁ](n Z, x) H <

< C(d)) +

T
[1e=2l + 13,2 -0.2lgy + =l Joe
t

+ C(|d)[1+ ry(dy + dy) + pi]

s

[ gtz w1, 1, x) - g2, 71 1, )| dE

t

TE€ Ly [ i(t,x)'
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We get (13) from the Gronwall inequality. This proves Lemma 1.
Now we give a lemma on a regularity of the function &[z, u].

Lemma 2. Suppose that Assumptions H [aq f1, H[a] are satisfied and
0.9 eCsl, zeCyildl, zeCghldl, wieCltpl

Then the functions 8[z,u]l and 8[zZ,u] are continuous on E.. Moreover we
have the estimates
- 2C 7 _
|8z, ul(t, x) = 8z, ul(z, X)| < ?[\f—f\ﬂ\x—x\\] (15)

where (t,x), (t,x)€E, and

2C
K

t
|81z ul(t, x) = 8z, ul(t, )| < == [[lz=Zl +[9,2=3,Z e, + lu—itle)|d& (16)
0

where (t,x)€E,..

Proof. The continuity of 8[z,u] and J[z,u] on E,. follows from classical theo-
rems on continuous dependence on initial conditions for Carathéodory solutions of ini-
tial problems. Now we prove (15). This estimate is obvious in the case 8[z, u](t, x) =
= [z, u](f,x) = 0 (i.e., in the case when solutions of problem (11) are defined on
[0,7] and [0,7]). Supposenow that 0 < 8[z,u](t,x) < 8[z,u](t,x). Then for
€ = 06[z,ul(z,x) we have g[z,ul({,7,X)eA and there exists i, 1 < i < n, such

that | gz, u](E, , f)‘ = b;. Two possibilities can occur, either (i) gz, u](z, t,Xx) = b
or (i) glz, u](z, t,X) = —b;. Consider the case (i). Let x = (xq,...,%,), X =
= (x> X1, by, X;4q, ..., x,). We have the estimate

‘aql.f (t, X, Zgy(g, ) U, X)) = Oy [ (1, X, 2, 5o u(t, D)) | S C(b — xy), (17)
for (1,x)e E,, where ¢ = C(|d|)[1+ry(d; +d,)+ p]. Thus

K

aqif(t9 X, Z(x(t’x)s M(t, .X)) 2 2

for (t,x)eE,. suchthat b, — x; < K(25)_1. It follows from Lemma 1, that
b — glz (G 1,x) = glzul(C,7,%) — glzul(G,1,x) < %

for (¢, x), (f,x)€ E, such that

lt—1]+|x—X| < (18)

K
2¢C°
Then we get

9, (G 8l 1@t ), 2 oy 4G gLzl G ) 2 5 >0,

LS
2
and consequently,

a[gi[z, M](S[Z, M](ZT, f)9 t9 .X) < O
for (1, x), (t,x) € E, satisfying (18). It can be easily seen that g[z, u](-,t,x) is de-
creasing on the interval (8[z, u](t, x), 8[z, u](z, x)). Therefore
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by — glz, ul(tv,t,x) < x
2c

and the estimate
LS
2

holds for te(d[z, ul(z, x), 8[z, ul(t, X)) and (¢, x), (f, x)€ E, such that (18) is satis-
fied. Then

aqif(T’ g[Z, I/t] (T, z, )C), Z(x(‘t,g[z,u](‘r,t,x))’ M(Ts g[Z, M] (T7 1, X))) 2

- g[f)[z, ul(t, x) — d[z, ul(t,x)] =

Blz,u](t,x)

2 - _[ aq[f<T3 g[Z, I/l] (T’ [, x)’ Z(x(‘c,g[z,u](‘r,t,x))’ M(T, g[Z’ M] (T’ t’ )C))) dT =
Sl z,ul(t,x)

= glz, ul(8lz, ul(t, X), t, x) — glz, ul(8[z, ul(t, x),1, x)
> glz, ul(dlz, ul(t, X), t, x) — glz, ul(dlz, ul(t, x),t,X) 2

\

> - Cllt—1|+|x-X]]

Thus the proof of (15) for (#, x), (¢, x) € E,, such that (18) holds, is completed in the
case (i). In a similar way we prove (ii). Let (7, x), (f,x)€ E. be arbitrary. We put
M =||x—X|+|t—1|. Thereexists K€ N such that

(K-D—" <M< kX
2¢cC 2¢C

Let ee R, e=1/K For j=0,...,K we put
iV = jex + (1-jeyx, 1V = jer + (1-je)r.

Note that (7?, x) = 1, x), (%, x5 = (7, ) and

H;C(j) _ f(j+l)H + ‘;(j) _ f(j+l)‘ - M < K
K 2¢C
for j =0,...,K—1. Itis easy to see that
K-1 _ K-1 '
=% = X [¥ - x| and Je-7| = Y [V - 9P|
j=0 Jj=0

Then we have

|8z, ul(t, x) — 8[z, ul(z, X)| <

K-1
z ‘S[Z, u](f(.]), ;C(J)) - 8[z u](f(ﬁl)’ f(./+l))‘ <
Jj=0

IN

< KZIZKC[I(D _;(j+1>‘ +Hfm ‘f(jH)H] _ %[\z—f\ +x—x]].
j=0

Thus we see that (15) holds true for all (7, x), (¢, x) € E.. Now we consider esti-
mate (16). The inequality is obvious if 8[z, u](¢, x) = 8[z, u](t, x) = 0. Suppose now
that 0 < O[z,u](t,x) < 9O[z,u](t,x). Then for { = 08[z,u](r,x) we have
d[z,ul(C t,x)e A andthereis i, 1 < i < n, such that |glz,ul(C 1, x)|=b,. Two
possibilities can happen, either (i) gz, u]( r,x) = b, or (i) glz,ul@Gt,x) = —b;.
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Consider the case (i). We have the estimate (17) for (¢, x) € E,..
It follows from Lemma 1, that

‘gi[Z, u](C, t’ X) - gi[g’ ﬁ](cy t’ X)‘ < Cé[Hz_EHt + Haxz_axZH(z) + Hu_ﬁH(t)]

Thus we have

IN
|

b — glzulGt,x) = glzal& 6 x) - gloulGtx) < —,

for (t,x)eE. and z, z, u, u such that

K

l2=2ll +19:2=9.Zl) + lu—itlyy < == (19)

Then we get

v
DA

aqif(c’ g[Z, M](C, t’ X), Z(x(i;,g[z,u](i;,t,x))’ M(C» g[Z’ M](C, t’ )C)))
and consequently,
a[gi[z, M](B[E, E](t’ x)’ t’ x) < 0

for (t,x)eE. and for z, Zz, u, u satisfying (19). It can be easily seen that
glz, ul(-, ¢, x) is decreasing on (8[z, ul(z, x), 8[Z, u](#, x)). Therefore

b — glzul(t,x) < —
2¢c
and the estimate

K
aqif(r’ g[z’ u](T’ tv x)a Z()L(‘C,g[z,u](‘t,t,x))’ M(T7 g[Z» u](Ta t’ x))) 2 —

\S}

holds for 1€ (8[z, ul(t, x), 8z, ul(t, x)), (t,x)€E. and z, Z, u, u such that (19) is
satisfied. Then

—%[6[2, 1l(t, x) — 8z, ult, x)] =

d[z,u](t,x)
2 — J. aqif(T» g[Za I/l] (T’ t’ -x), ZO((T,g[Z,u](T,I,X))’ M(T’ g[Z7 I/i] (Ta t’ -x))) dT 2
8l z,ul(t,x)
2 glz ul(®lz, ult, x), 1, x) — glz,ul(dlz, ult, x),t,x) 2

| 3lza] )
>-C| | [le=2l +19:2-9.Zl g, + lu-ile|d€| =
t

t
> - Cf[lz-zl +10:2-0:Z g + lu—itle) 6.
0
Thus the proof of (16) for (t,x)e E. and for z, z, u, u such that (19) holds, is

completed in the case (i). In a similar way we prove (ii).
Let z€ C(};,%[d], zZe C%f[d], u, i € COL[p] be arbitrary. We put M = |z — zl, +

+ |0,z = 9,2, + lu—iill,. Thereexists K N such that

K-D—"_ «m< k—X_.
2ccC 2ccC
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Let ee R, e =1/K. For j =0,...,K we put

zj = jez+(-j&)z and u; = jeu + (1-je)u on E..
Note that zy =z, Uy =u, Zx =7, Uy = u and
M K

< K
K 2ccC

1z =z [, + 02 -9z, + |5~ i, =

for j =0,..., K- 1. Itis easy to see that

K-1
lz-zl, = 3} HE/ = Zj41
=0

K-1
. 10,2 -0,2 H(t) = 2 H 9xZj = 9xZju1 H(z)
J=0

and

K-1
lu—ul,, = > H Uj=Ujy H(z) :
j=0
Then we have

|81z, ul(t, x) — 8[Z, ul(t, x)| <

K-1
< X [81% 416 x) = 81Zj1, i1 )| <
=0

—_

2C (|- _ - 7, -0,7 w1
< 328 [l =l + 10525l + 5~ | o =
= 0

~.

2C |
= S lz=zl +]9,2-0,2 — it |dE.
K![Z Zle + 19,2 0,Z e, + lu—1lg, &

Therefore (16) holds true for all ze Cgtld], zeCpkldl, u, weCX*[pl. This
completes the proof of the Lemma 2.

3. Integral functional equations. We denote by CL(D,R) the set of all
continuous and real functions defined on C(D,R) and by |-|, the norm in
CL(D, R"). We formulate now next assumptions on f.

Assumption H [ f]. Suppose that the Assumption H [aq f] is satisfied and

1) thereis By € © such that

N

[t xw. ] < By(lwly) on Q:
2) the partial derivatives

(axlf(P),...,axnf(P)) = d,.f(P), P =(txwq),

and the Fréchet derivative d,,f(P) exist for (x,w,q)€Q and for almost all ¢ €
€ [0,al;

3) the estimates
[0 f @ xw. | < B(lwly), [0,/ xw.l, < B(lwl,).

are satisfied for (x,w,q) € QY and for almost all ¢ e [0, al;

4) the terms

0, f(t, X, w+w,q) — 9, f(t, x, W, q)

>
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19, f(t, X, W +w,q) — 9, f(t, x, w, 9,

are bounded from above by
ClIwh, )z =%+ 1wl +lg—gl]
for (x,w,q)e Qb (5, q)e[-b,b]xR", we c% (D, R) and for almost all e

€ [0, a].

Remark 1. We give a theorem on the existence of solutions of the problem (1),
(2). For simplicity of formulation of the result we have assumed the same estimates for
the derivatives d,f, d,,f, d,f. We also have assumed the Lipschitz condition for
these derivatives with the same coefficient.

Suppose that ¢ € CI’L[s]. Let Cg:f[p] be the class of all functions u: E: - R"
such that u(t, x) = 9,0(,x) on (EyUdE) N (~hy, c]x R") and ul, e pl.
Now we formulate a system of inegral equations which are generated by (1), (2). Write
Olz,ul(t, x) = (8lz, ul(t, x), glz ul(®lz, ul(t, x), t, x)),
@[z, ul(t, x) = @(Qlz ul(t, x)),
Yz ult, x) = 0,0(Qlz,ult, X)), V¥ = (Y,.... ),

W[Z’ M](T, ta x) = u()((‘[’glz,uj(t,[,x)) * axa(T7 g[Z’ M](T, t’ x))

Given (peCl’L[s], zeC&,’,ﬁ[d], and ueC&CL[p], where 0 < ¢ < a. We define

Flz,ul(t,x) = ®[z,ul(t,x) +

t

v [ [P 0) - 9, (Pl Ul 10) o u(t, glzul(x 1 )] de,
S[z,u](t,x)

and

t

Gloult, ) = ylzult,x) + [ [3,f(Plzul(x,1, %) +
dz,ul(t,x)

+ 9, f(Plz,ul(t, 1, x)) Wz, ul(t, 1, x)]dr.
We will consider the following system of functional integral equations:
z(t,x) = Flz,ul(t,x), u(t,x) = Glz, ul(t, x), (20)

1
glzul(t %) = x + [9, f(Plz, ul& 1, ) dg 1)

with initial-boundary conditions

z2=0, u=090 on (EyUdyE) N ([—hy,c]xR"). (22)

Remark 2. Integral functional system (20) — (22) is obtained in the following way.
We introduce first an additional unknown function u, where u = d,z. Then we con-
sider the linearization of (1) with respect to u, i.e.,

atz(t’ .X) = f(U) + aqf(U) ° (axz(t7 .X) - M(t, )C)), (23)
where U = (1, X, Zg, ) U(1, x)). By virtue of equation (1) we get the differential

system for the unknown function u:
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du(t,x) = d, f(U) + 9, f(U) *[0,u(t, of +
+ awf(U)(axZ)(x(;,x) * axa(t, X). (24)

Finally we put d,z = u in (24). System (23), (24) has the following property: the
differential equations of bicharacteristics for (23) and for (24) are the same and they
have the form (11).

If we consider (23), (24) along the bicharacteristics g[z, #](-, t, x), we obtain

da
dr
and

2(t, glz, ul(t,1,x)) = f(Plz,ul(t,1,x)) = 9, f(Plz, ul(%, 1, X)) o u(T, g[z, ul(T, 1, x)),

ditu(’t, glz ul(t, 1, x)) = 0, f(Plz, ul(t, t,x)) + 9, f(Plz, ul(T, t, x)) Wz, ul(T, t, x).

By integrating the above equations on [8[z, u](z, x), ] with respectto T, we get (20),
@20n.
The existence results for (20) — (22) is based on the following method of the suc-

cessive approximations. Suppose that @€ C"Els] and that Assumption H [f] are
satisfied. We define the sequence

Z"mu™y, M E >R, u™:E - R,

in the following way. Let z@: Ef >R, u®: E - R" be arbitrary functions such

that ¥ eCyildl, u®eColipl and 0,291 x) = u”(t,x) on E,.. Now, if

C
(m+1)

@™, u™) e C(]p’f [d] % C&% [p] are known functions, then u is a solution of the

&
equation
u = G"™u] (25)
with the initial-boundary condition
u(t,x) = 9,0, x) on (EyUdyE) N ([—hy, c]x R")

and

"D x) = F[Z,u"™ V)5, x) on E,,

(26)
Z(m+l)(t’ x) = (p(t, x) on (Eo U aOE) ﬂ ([_hO’ c]x Rn)’
where G = (Gl(m), ...,G,(,m)) is defined by

1
Gt = w2 ule + [ [0 f(PE uln 0) +
812, ul(t,x)

+ 0, f(P[2"™, ul(t. 1, x)) W[, u](n, 1, ) d,
and
WLz ul(t 1,0 = "o glzuenny * 90T glz, ul(T.1, ).

We wish to emphasize that the main difficulty in carrying out this construction is the

problem of the existence of the sequence {7, u™}.
Put

r=1+ ro(dl +d2) + Drs
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2B(d)

Ay = C(1+Poro)|: + 7’CC(d)] + CeBW@)(piig + pori)

A=A+ szé[l +%<1+B(51))}
B = 6(’[?(3(3)+P0C(‘d‘)+PIB(3))] +

+ (By(dy) + pOB(cb)(l + ZKC) + 5C [1 + %(1 + B(&))].

Assumption H [¢c,d, p]. Suppose that the constants ¢, d = (dy, di,d>), p = (po,
p1) satisfy the conditions

di = po = s + cB(d)(1+ pyry),
d = p1 2 max{B(c?)(l+p0rO),K,E},

dy 2 sy + c[By(dy)+ B(d)p,].

It follows from the continuity of By, B, Ce® that there are d, p and sufficiently
small ¢ € (0, a] satisfying Assumption H [c, d, p].

Lemma 3. If (peCl’L[s] and Assumptions H [o], H[f], Hlc, d, p] are sa-
tisfied then G™ : Cg:f[p] - C&LL.[p].

Proof. Suppose that u e Cg”; [p]. Then

HG(’")[M](t,x)H < s+ B(&)C(l"'l’oro) on E.. @7)

Now we prove that the function G™u] satisfy the Lipschitz condition with constant
p- If (£,x), (t,X)€E,. then

|Gt x) - GPE@ )| < Ay + Ay
where

b}

Ag = [0,0(Q1"™, ul(t, 0)) - 9,9(QL", ul (7, X))

[ [purPl ), 00) + 9, f(PL, ) (v, ) W[, () | e~
32 ul (1, x)

r

-] PP @ ®) + 9, f(PL ul(n,E, 1) WO, ul (4., 5)|de |
u

It follows from Lemmas 1, 2 that

Ay < szé[l+%(1+B(c?)):|[\t—ﬂ+Hx—)?H],
and
Ap < Bd)(+ pory)|t 1| + Ag[|t =7 |+]x—x]].
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Then using Assumption H [c, d, p] we get
|6 x) - @ D) < plle-7]+]x-x]]
on E,.. This inequality together with (27) imply Lemma 3.

Lemma 4. Suppose that ¢ € CI’L[S] and Assumptions H [o], H[f], H [c, d,
p1 are satisfied. Then there exists exactly one function u e C&LI.‘ [p] satisfying the
equation u = G"™[u).

Proof. Lemma 3 shows that G Cg,’cL [p] = Cg:ff [p]. It follows that there is
A > 0 such that for u, ue ngcL[p] we have

t
|6 » - ¢ 0| < Af Ju = i dr. 28)
0

Now we define the norm in the space C& LL [p] as follows
ful, = max {H u(t, x)le ™™ : (1, x)e EC},

where A > A. Itis easy to see that (Cg:CL[p], I-Il,) is a Banach space. Now we prove
that there exists g €[0,1) such that

|1 = G|, < gqllu—al, for w, deCyilpl. (29)
According to (28), we have
|6t x) - G, x| <

t t
~ ~ A A
< Af|u—itllgyde = Afu— il e e dg <
0 0

t
~ A ~ A ~
< Alu - il [ dg = XHu—uHx(eM—l) < xHu—queM
0

for (¢, x)e E.. Then we have

|Gt x) = Gt e ™ < %HM -l  (tx)€EE.

It follows that the estimate (29) holds with ¢ = A By the Banach fixed point

theorem there exists exactly one u € C&f[p] satisfying the equation u = G lu].
This completes the proof of Lemma 4.

Suppose that ¢ € C E[s]. Let us denote by T the set of all functions ®: E*" > R
such that

(i) o is continuous,

(i) o ‘EanoE = 0.
Write 7= {i: d; > 0}. The following compatibility condition for the problem (1), (2)
will be needed in our considerations.

Assumption H; [ f, @]. Suppose that

1) if o, GJGT(P then
f(tv X, (D(X(t,x)’ q) = f(t7 X, (ba(t,x)’ Q)

for xeA, geR" and for almost all t€ [0, a];
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2) there is a function y: dyE — R", v = (Y, ..., V,), such that
9,0(t,x) = f(t, X, 0y ) W(t x)) for xeA and for almostall 7€ [0, a], (30)

where €T, and y,(t, x) = 9,0, x) for (1,x)€[0, alx AfUA;, ieT.

Remark 3. Relation (30) can be considered as an assumption on ¢ for i€7 and
te [0, ], xeA;r UA; and (30) is the equation for w;(r,x) if iefl,...,n}\ 7,
te[0,c]l, xeAl UA;.

Remark 4. Suppose that by =0, h=0 and F: EXxXRXR' — R is a given
function and f is defined by (3). Then (1) is equivalent to (4). If

o;(t,x) = b; for xeAl and o, x) = -b; for xeA;,

where 1 < i < n then condition 1 of the Assumption H, [ f, @] is satisfied. For the
above given F, consider the operator f given by (6) and the differential integral
equation with deviated variables (7). If

Bi(t,x) = b, for xeA} and B;(t,x) < -b; for xeA;,

where 1 < i < n then condition 1 of the Assumption H, [f, @] is satisfied. If f is
defined by (9) then we have differential integral equation (10). If

B;(t, %), v;(t,x) = b; for xeAl and Bt x), y,t,x) < —b; for xeA],

1

where 1 < i < n then condition 1 of the Assumption H. [f, ¢] is satisfied.

Now we prove the main lemma in this section.

Lemma 5. If Assumptions H [o], H[f], Hlc,d, pl, He [f, @] are satisfied,
then for any m = 0 we have

0.2t x) = u'"™(t,x) on E, 31)

and 7™ e C(})”L,[d].

C
Proof. We prove (31) by induction. It follows from the definition of the sequence

{z', 4™} that (31) is satisfied for m = 0. Supposed now that condition (31) hold

for a given m > 0, we will prove that the function 7D given by (26) satisfies (31).
Put

A x,5) = 2"V x) - 2"V 0 - W@ )0 (3 - ), (32)
where (1, x), (¢, X) € E.. We prove that there exists CeR + such that
At x, %) < C|lx—X%|> on E,. (33)
It follows from (25), (26) that
At x, %) =

= F[z"u™ )@, %) - F[2",u" D], %) — G ™ D], x) 0 (% - x).
(34)
‘Write

g™ x) = gl u" Ve x), 8 x) = 8[2",u" ], ),
S, x) = (8", x), g @1, x). 1, x))

and
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0"(s, 1,1, x5, %) = sP[Z™u"V](1,0,%) + (1-5) P[z"™,u" D] (1,1,x).

Suppose that 8(z, ) < 8™ (z, x). Similar arguments apply to the case 8"(z,x) >
> 8"z, x). For simplicity of formulation of properties of the function A™ we
define

A" x, %) = o(S™1, 1) - (5™, %) -
= 0,0(s"(t, x)) o [ @™ (1, %), 1, X) — " @ "1, 1), 1, )] -
— 0,0(8"(t, ) [8"(t, x) - 8" (¢, x)]
and

B™(t,x,%) = 9,9(s"(t, ) [8"(t. x) - 8"t x)] +

+ 9,08, ) o[ "1, X),1,X) — ™M@, x), 1, x) - (x - %),
t
00 = [ [0, /P "N D) = 9, f(PL a1 G )] e,
T

and
cm = (™, cm).

Moreover we put

8 (2,x)
A w) = [ P, U ) d -
3 (1,%)
3 (1,x)
= [ 9P U 1, D) o™, g (3, %) e
3 (1,%)

It follows from (34) that
A x, %) = (8™, %) — o(S™(r, x)) +

+ [P, u™*D)(3, 1, %) = P, ™ V] (x, 1, x))]de —
8("1)(1‘,)6)

t
= |9 AP, W), 1, ) 0 ™, g3, ) e +
8 (2,x)

t
L W ) o™, g3 )T +
3 (t,x)

+ A", x, %) — G2, x) 0 (x - x).

Having disposed this preliminary step, we apply the Hadamard mean value theorem to
the difference

S, W D)2 6) = fPE™, u™P](x 1, x).
We thus get
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A x, %) = A x, %) + A™(, x, %),
where
Alt,x, %) = A, x, %) +

t 1

+ J Haxf (Q"(s, 1,1, x,%)) -
5 (2,x)0

= 0PI, u"DN(w, 1, )] ds o[ (x, 1, 3) = g™ (3 1, )T+

t 1

+ J. J‘ [an(Q(m)(s9 Ts t3 .x, f)) -

3™z, x)0

_ (m)  (m+1) (m) _ (m)
8W f(P[Z ,u ](T9 1, x))] ds [Za(r,g(m)(r,t,)?)) Z(X(T,g(m)(’lf, t’x))]dt +

t 1
+ ] J[ogr@ms i x®) -

3 (£,x) 0

= 9, f(P[z", u"P)(x, 1, %))]ds o [z, g"(1,1,5)) = u" P (x, g (1,1,3)) ] dn +

t
(m) _ (m+1) (m) _ (m _
+ ) )j awf(P[Z U ](Ts t, x)) [Z(x(‘c,g("’)(‘c,t,)?)) ZO((‘C,g(m)(T,I,X))
8V (t,x)

= WL Y 00(8 (10, ) - 8 (w1 0) [de
and
A" x, %) = Bt x, %) +

t
+ AP u N 00) o [ (e E) - g (T x) - (X - 0)]dt +
3 (z,x)

[ 0P WP 1) X
3™ (1, x)

x | WL WD (1,8, x)o[6(1,1,%) — & (1, 8,x) — (X — x)] |dr —

t

-] [aqf (P[z", " P)(x,1, %)) ~

8 (1, x)

— 0, f(P[2", u"™*D)(x,1, x))]ou(’”“)(r, g™ nx)dt + A, x, X).

We will write an estimate for ‘A(m)(t, X, Tc)‘. Since g(m)(-, t, x) satisfies (14), we have

g(m)(Tv t’ f) - g(m)(T: t’ -x) - (f - -x) = C(m)(rv t’ X, f)

Substituting the above relation into A(m)(t, x,x) and changing the order of integtals
where necessary we obtain
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A™ (¢, x, %) = D" x, X) +
t
[0 P WY 1 %) = 0, f(PI, ™ VN (x 1, 1)) o B (r 3 d,
3 (t,x)

where
8™ (1, x)
D" x %) = [ [fPE V) %) - 0,08, x)]dr +
3™ (1, %)
3" (1, x)
+ [0 x) - u" PV (x, g M ()]0 8, F(PL, u (5,1, )t
81, %)
and
E™(t,t,x) = —u™ (1, 8" (1,1,x)) +

T

+ 0,05 @) + [ [0, f (P u" VN 1, 0) +
3" (1, x)

+ 0, f(PL", uVE 1, ) W2, "V (E, 1, x)] dE.
The next claim is
E™(t,x) =0, (tX)€E, Tel,,. (35)
We have
g5, 1,81, x) = g"(s,t,x) and  8"(1,g™(1,1,x)) = 8", x)
for (1,x)e E;, T,5€l, ), therefore we get by (25)
w1, g (1,1, %) = 9,031, x), g1, x), 1, X)) +

T
+ J 0 f(P[2", ™ V] (s,1, x))ds +
31, x)

T
o [ BRI Y (5, x) WL, GO 5,1, 0) ds
8(’”)(1‘,)6)

for (t,x)e E., T€ I(l’x) and we have E(m)(‘c, t,x) = 0. Then we have proved that

A(m)(t, X, X) = D(m)(t, x,x). We conclude from Assumption H, [f, @] and from
Lemma 2, that thereis C; € R, such that

D™ x, 0] < Glx-% on E,
and consequently

A" 55| < Glx-%F on E. (36)

Now we will write an estimate for ‘Z(m)(t, X, E)‘. It follows from Assumptions
H [aqf], H [ f] that the terms

[0,£ Q5. 7,1, 2, %) = 3, f (Pl u™* V] (3,1, x)

k]
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|9, £ (@™ (s, 7.1, x, %)) = 9, f (P2, u"* "] (x. 1, X))
[0, £ (@5, 7,1, x, %) = 0, f (P, u V] (x, 1, 1))

k)

D
are bounded from above by
C(ld)F| g™ r.x) - ¢ (xrx).
An easy computation shows that
AP x| < 5] g™ @™ 0,15 - g™ A1 0,60

and

‘ 2 _ gm
o(t,g™ (%) Cot,g™ (1.1, x)

< ndy ¢ x) - g™ (1, x)

>

L
Hu(”’ﬂ)(’c,g(m)(’c, 5L,Xx)) — u(mﬂ)(’c,g(m)(‘t,t,x))H < p Hg(m)(’c, 5LX) — g(m)(‘c,t,x)H.

Since
8xz('")(t,x) = 4", x) on E,,
we have
(m) _ ,(m) _ wimy,(m)  (m+1) ol oM™ ) — (M) <
G ey~ e ey~ WO ) g )= g0 S

< [pori + pd) g™ @ 1. — gt 0|

)

The above estimates and the definition of A' imply

A, x, 5] < 55| g™ B0 5, 1,%) - ¢S 0,00+

+ A j Hg('")(r,z, %) - ™11, x)szt,
S(M)(Z,X)

where A* = B(d)[pri + pyii] + C(|d])7*. It follows from Lemmas 1, 2 and from
(14) that

| e @™, %), 1, %) = g™ (@1, x),1, )| < [B(c?)ZKC +C ] | % = x].
Then there exists C, € R, such that
A, x,5)| < Gl - x| (37)

Adding inequalities (36) and (37), we get (33) and consequently
0.2V, x) = u"™ V1, x) on E,.

This completes the proof of (31).

,%[d]. It is clear that z

and 7"V = @ on (EyUdyE) N ([=hy, cIx R"). Moreover from (31) it follows
that

(m+1)

Now we prove that 2 e C(}; is continuous on E,

|0,z w)| < 4

and
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|0,V x) = 3,2 V@, B)| < dyflr — 7]+ x - X|]
on E.. Our assumptions imply the estimates
2"V x| < dy |0 x) - E D] < dyle -

where (1, x), (f,x) € E: . This completes the proof of Lemma 5.

Now we prove that the sequences {z™} and {1} are uniformly convergent on
E. if the constant c is sufficiently small.
Put

A= A+C(d)1+pr). B = A+nrBd), D= B+1+B(d)Be.

Assumption H [c¢]. Suppose that the Assumption H [c, d, p] is satisfied and c¢ is
such small constant that ¢D < 1.

Lemma 6. If Assumptions H [a], H [f], H [c] are satisfied, then the sequen-
ces {Z™} and {(u"™} are uniformly convergent on E,.

Proof. For te[0,c] and m > 1 we put

20y = ||« - Z(m—l)Ht’ U = |u™ — H(t).

We prove that for t€[0,c] we have

ot
vy < B [ @) + Ut 9
0

It follows from Lemmas 1, 2 that we have the estimates

|g™ .t x) - " P < C }[z“")(r) + U™ () + UV ()dt|  (39)
t

and
2C ¢
8, x) = 8" Ve, x| < == [[2 () + U@ + U ()]dr,  (@40)
K
0
where (f,x)e E., T€[0,c]. Then we obtain the integral inequality
t t
U < AJurt@dn + B 2 + U )],
0 0

where t€[0,c]. The above estimate and Gronwall inequality imply inequality (38).
An easy computation shows that for 7€[0,c] we have

, t
Z(m+1)(t) < EJ‘ [Z(m)(,c) + U(m)(’l?) + U('"+1)(T)]dT + B(&)J‘ U(m+1)(‘t)d‘c
0 0

and consequently

2" < (E+B((§)I§e;‘6) (2@ + U™ @lar,  tefo,cl.

o —

The above inequality and (38) imply
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t
Zm D@y + Uty < [)HZ(’”)(r)+ U™ )dt,  tel0.cl, 41)
0

where m > 1.
It follows from Lemma 3 that

ZW + U < 2py+dy),  tel0,c).

Then the uniform convergence of the sequences {z™} and {u™} follows from (41)

and from the condition ¢D < 1.
This completes the proof of Lemma 6.

4. The existence of solutions of nonlinear mixed problems. We are able to state
the main result on the existence of generalized solutions to problem (1), (2). For a

function @€ Cl’L[s] and for a point T €[0, a] we put

max{|o(t, ©)|: (%) € (By UdoE) N (1=l 11 x R},

Il

19,0l = max{[d, 0t x)|: (t,x) € (B UdyE) N ([—hy, T x R")}.

Theorem 1. If Assumptions H [a], H [f], H: [f, ©] and H [c] are satisfied
then for every @€ CI’L[s] there exists a solution v: E: — R to problem (1), (2).
Moreover ve Cé)’,lg[d] and 0,ve Cg:f[p].

If o€ CLL[S] and ve C%ﬁ[d] is a solution of equation (1) with initial boun-
dary condition z(t,x) = @(t,x) on EyUOJyE thenthereis A, € R, such that

HU_BH[ + Haxv_axﬁH(t) < AC[H(P—@\, + Hax(P_axﬁHz]’ 0<r<c (42

Proof. 1t follows from Lemmas 5 and 6 that there is v e C(lp’L.[d] such that

,C

v(t,x) = lim 2@ x), ow(tx) = lim u™( x)

m—oo M —s oo
uniformly on E.. Thus we get

v(t,x) = F[v,d,v](t x),

v (t,x) = Glv,d, (1, x),

and

t

g, 0,05 ,x) = x + [, F(Plv,d,v1(§, 1, x))d&.

T

Moreover, the initial boundary conditions
vV =@, 0w =209 on (EyUJIyE)x ([—hy c]xR")

are satisfied. It follows from the above relations that v is a generalized solution of

problem (1), (2) on E; . The proof of the above property of v is similar to the proof
of an edequate properties for initial or initial boundary-value problems considered in
[9] and [10] (Chapter IV). Details are omitted.

Now we prove relation (42). The functions (v,d,v) satisfies integral functional
equations (20), (21) and initial boundary conditions (22) with ¢ instead of ¢. It
follows easily that there are A, A; € R, such that the integral inequality
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HU_EHI + Haxv_axﬁH(t) <
t
< Aollo-ol, +19,0-3,0[,] + A [[lv-Fl +[9,0-3,3])dr, 0<t<e
0

is satisfied. Using the Gronwall inequality we obtain (42) with A, = Agexp(Ac).
This proves the theorem.

Suppose that Bg: [0,a] — R, B': E — R" are given functions and that conditi-
ons (8) are satisfied. We consider the operator f defined by (6). In this case (1) is
equivalent to the differential equation with deviated variables (7). Now we formulate
our existence result for problem (7), (2).

Assumption H [F]. Suppose that the function F: EXR x R" — R of the vari-
ables (t, x, p, q) satisfies the conditions

1) F(-,x,p,q): [0,a] = R is measurable foreach (x,p,q)e [-b,b]X R x R"
and there is By € © such that

[F(.xp.q)l < Bylp)) on ExRxR"
2) the partial derivatives
(0, F(Q).....0, F(Q) = 9, F(Q), Q= (t,x.p.q),
(0, F(Q).....9,, F(Q) = 9,F(0),
(04, F(Q)..... 3, F(Q)) = 0,F(Q)

exist for (x,p,q)e [-b,b] X RX R" and for almost all t e [0, al;
3) the functions

d,F(-,x,p,q): [0,a] > R", apF(-,x,p,q): [0,a] — R,
9, F(C, x, p.q): [0,a] — R"
are measurable and there is B € R, such that
19, Ft, x, p,q)| < B, HapF(t,x,p,q)H < B, HaqF(Z,x,p,q)H <B

for (x,p,q)e [-b,b]x RxR" and for almost all 7€ [0, a];
4) thereis C € R, such that the functions 9, F, d,F, 9d,F satisfies the Lip-
schitz condition with respect to (x, p, g)€ [-b, b] X R X R" for almost all 7 e [0, a].

Assumption H [B]. Suppose that the functions Bg: [0,a] — R, B': E — R" are
such that

1) 0 < Bo(z) £ ¢ for te [0,a] and B'(t, x)e[-c,c] for (t,x)e E and for each
i, 1 £i<n, and te[0,a] we have

Bi(t,x) > b; for xeAl and B;(t,x) < b; for xeAj;
2) thereis #y € R, such that
[Bo(t) = Bo(®)] < Rlt =] on [0,al;
3) B’ isofclass C' and [9,p'(,x)| <7 on E;

4) thereis 7 € R, such that
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19,8t x) = 9,8’ G D) < Allt—7|+|x—%[] on E.
Theorem 2. Suppose that Assumptions H [o], H [F], H [B] are satisfied and
@ e C"E[s] andthereis y: dgE— R", W = (. ..., V,), such that

9,0, x) = F(t,x, 9B, x)), W(t, x)) (43)

for x € A and for almost all t e [0, a].

Then there is ¢ € (0,a] and v: E: — R such that v is a solution of (7), (2)
and ve Cgkldl, 9,ve Cylpl.

If o€ CE[s] and condition (43) is satisfied with @ instead of ¢ and
— _ALL ; . . P .. _
vE C@C[d] is a solution of equation (7) with initial boundary condition z (t,x) =
= @(t,x) on EgyUOJyE then there is A, € R, such that estimate (42) is satis-
fied.

Proof. Write

Bo) = Bo®) — 00, Bt = Py - (t,x), (nx)EE
and Bt x) = ([So(t, x), B’(t, x)). Then the operator f is defined by
Fxwq) = Ftx,wB@0)q), (Lxwq)eQ,

and

0, f(t.x,w,q) = 3. F(t, x,w(B(t, ), q) +
+ 3, F (1,2 w(B(t, ). @) 9, w(B(t, 1)) 9, B (7, x),
3y f(t.x,w.q) = 3, F(t, x, w(B(tr, x)). q),
0 f(t.x, w. W = F(t,x,w(B(t, x)).9) w(B(z. ),

where (t,x,q)e [0,a]x [—b,b]an and weCO’l(D, R), we(C(D,R). Itis clear
that

[0, f @t x,w, )] < B[l + (15 + 1) wly].

|o,ft.x.w. )| < B, |9, ftxw.ql, < B.
We conclude from Assumptions H [ f]and H [at], H [B] that
10, f(t, %, w+Ww,q) — 0, f(t,x,w,q)| <

— _ 2 = _ ) —
< [Cli+@+mlwh ] + Bli+7+Go+77Iwl x5 +

+ Cli+@+m)lwl ]lg—gl + [e+ @ +7)(B+Clwly )] Iwl;
and

|9, f@t. 5 w+w.9) -9, f(t.xw.q)| < C[A+Gy+R)lwl Ix=%]+]|g=7[+[wl],

[0, £t 5w +5.2) 3y, ft.xwq) |, < C[(1+ o+ idlwly Dl x—% ]+ g =g +]wl, -
It follows that all the assumptions of Theorem 1 are satisfied and the assertion follows.

Remark 5. 1t is important in our considerations that we have assumed the local
with respect to the functional variable Lipschitz condition for the derivatives d, f,

ISSN 1027-3190. Ykp. mam. xypH., 2006, m. 58, N° 6



828 W. CZERNOUS

o, f Bq f on some special function spaces. Let us consider the simplest assumption.
Suppose that there is L e R, such that

0. f(t.x,w.q) = 0 ft. X w. | < Ll|x=X[+[w=wl,+[q-7l] (44

and that suitable estimates for the derivatives d,,f and d,f are satisfied. It is easy
to see that our results are true under the above assumptions. Now we show that our
formulation of the Lipschitz condition is important.

It is easy to see that the operator f defined by (6) does not satisfy condition of the
form (44). Then there is a class of nonlinear equations satisfying Assumption H [ f]
and do not satisfying conditions of type (44).

Remark 6. In the case when (1) is reduced to the integral functional equation (10),
one can formulate adequate assumptions and prove the particular version of the
existence theorem, as easily as it was done above for the problem (7), (2).
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