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REGULARITY OF NONLINEAR FLOWS

ON NONCOMPACT RIEMANNIAN MANIFOLDS:
DIFFERENTIAL GEOMETRY VERSUS
STOCHASTIC GEOMETRY OR WHAT KIND

OF VARIATIONS IS NATURAL?*

PEI'YJISIPHICTH HEJIIHIITHUX IOTOKIB

HA HEKOMIAKTHHUX PIMAHOBUX MHOT'OBH/IAX:
OUO®EPEHIIAJIBLHA TEOMETPISI IIPOTH CTOXACTUYHOL
ABO AKI BAPIAIII € IPUPOTHUMM?

We demonstrate that the geometrically correct study of the regularity of nonlinear differential flows on manifolds
and related parabolic equations requires the introduction of a new type of variations with respect to the initial
data. These variations are defined via a certain generalization of a covariant Riemannian derivative to the case
of diffeomorphisms.

We find how the curvature appears in the structure of higher-order variational equations and determine a
family of a priori nonlinear estimates of any-order regularity. Using the relation between differential equa-
tions on manifolds and semigroups, we investigate C'°°-regular properties of solutions of the Cauchy parabolic
problems with coefficients growing on infinity.

The obtained conditions of regularity generalize the classical coercitivity and dissipativity conditions to the
case of manifold and relate in unified way the behaviour of diffusion and drift coefficients with the geometric
properties of the manifold without the traditional separation of curvature.

INokasaHo, 1110 reOMETPUYHO KOPEKTHE [OCJI/IKEHHs1 PEryJIsAPHOCTI HEeJIiHIHUX AndepeHIliaIbHUX NOTOKIB
Ha 6araToBu/Iax Ta acoLifOBaHUX MapaboJIiYHUX PiBHSHb BUMArae BBe/ICHHsI HOBOTO THUITy Bapialliii 3a movar-
KosuMHu ymoBami. Lli Bapianlii 03HaueHi 32 JOMOMOI0l0 IEBHOIO y3ara/IbHEHH 1 KOBapiaHTHOI MoXifHoi Pimana
Ha BUMa/10K AudeomopdismiB.

BcTaHoBJI€HO, IKUM YUHHOM KPUBHMHA BUHUKAE B BapialliiiHUX PiBHAHHSAX BUCOKOIO MOPAAKY, 1 OfiepKaHO
ciM’10 anpiOpHUX HEJTiHIMHUX OLIHOK Ha PeryJIIpHICTb JOBiILHOTO NOPsAKY. BUKopucToByI0un 3B’ 130K MizK
nudepeHia/IbHIME PIBHSHHAMM Ha 06araToBHAax i HAamiBrpynamu, pocjigkexHo C'°°-rjiagki BJIACTUBOCTI
PO3B’3KiB MapaboJtiyHuX 3aa4 Komri 31 3pocTalounMy Ha HECKiHUEHHOCTI KoedillieHTaMH.

OTpuMaHi yMOBHU PeryJIsIpHOCTI y3arajIbHIOIOTH KJIACHYHI YMOBH KOEPLUTUBHOCTI Ta JHCHIATUBHOCTL
Ha BUMA/IOK GaraToBuay i MOB’s3yI0Th MOBEAIHKY KoedillieHTiB Audy3ii Ta 3cyBy 3 réOMETPUYHUMHU BJIac-
THUBOCTSIMHU 6araToBHAY, 6e3 TpaAULii{HOTrO BiIOKpEMJICHH I KPHBHHH.

1. Introduction. Up-to-date there are formed a lot of qualitively different approaches to
the construction and study of differential equations on manifolds with random terms. In
transfer from the linear space R to manifold the main attention was to make consistent
the geometrical structures of manifold with the purely stochastic effects, influenced by
second order differentials, that arise in It6 formula for coordinate changes.

The already known approaches include, in particular:

purely stochastic, based on the definition of diffusion in a consistent with geometry
way by implementation of Stratonovich integrals [1 —3] or more complicate description
of diffusion via Itd equations in local coordinates [4, 5]; in the second case arise special
Itd6 bundles of nontensorial fields, related with diffusion coefficients; to make the pic-
ture consistent, a special attention should be devoted to the normal charts, generated by
exponential mappings,

more geometric, related, for example,

with the raise of diffusion from manifold M to the orthoframe bundle O(M) over
it; the direct advantage of such approach is related with the globally existing horizontal
vector fields and possibility to write diffusions with Laplacian generator for manifolds
with non-zero Euler number; as it has been becoming clear for years, these geometric
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ideas influenced much the construction of advanced analysis on Wiener space and raise
of profound analytical questions of stochastics in the Malliavin calculus [6, 7],

or with the consideration of manifold as embedded into R of higher dimension, e.g.
[8, 9]; with interpretation of Itd differential and diffusion equations as defined on the
bundle of second-order differential operators [10, 11]; putting forward Itd developments
of equations via parallel transitions of orthoframes [12]; with more stress on properties
of associated transitional probabilities [13], etc.

One can continue this list, by speaking about peculiarities, related with other infinite-
dimensional models [9, 14].

The procedure of correct correspondence between geometry and stochastics was suc-
cessful in all cases. However, further question of consistency with the problematic of
differential geometry, namely

how the geometrically invariant differentials
are constructed from invariant objects, (1.1)

remained in shadow. Of course, one may try to consider the traditional derivatives in
directions of vector fields or more advanced covariant and stochastic derivatives, e.g. [4—
7], but as we will soon see, they all miss an important property of geometric invariance
with respect to the diffusion process.

Other approach to define the derivatives via stochastic parallel transport ¥/ /¥ of cor-
responding derivatives or via Cartan orthoframes, e.g. [6, 7, 12, 13], does not provide
a transparent definition of geometrically invariant derivatives. Such transport essentially
depends on particular path of process y and therefore on the coefficients of equation. But
the correct definition of higher-order derivatives should be quite general and does not
depend on particular equation. Such definition is possible.

Let us turn to the corresponding constructions. Consider the following situation. Sup-
pose that some process y; (of diffusion or any other nature) enters coordinate vicinity
U C M of manifold with coordinate functions ¢ = (¢*)EmM . U — RImM 5o that
one can speak about the coordinates of process yi = (¢*)oy; when it stays in this vicinity.

Now let D be some first order differentiation operation, correctly defined on process
y:. What kind of differentiation it could be is not essential now, the principal moment is
that the first order differentiation must obey chain rule

D(foy) = (f"oy)Dy.
dimM

In particular, because the local coordinate changes y* = ¢ (y;) = (" 0 ™) (y*)dim
represent a special case of locally defined functions, one has rule

’ aym/
Dy™ = 2

m
Therefore, though process ¥, does not determine some coordinate system, like local co-
ordinate mappings ¢, ¢’ do,

the expression Dy becomes a vector field with respect to the “coordinate”
changes (y) — (y’) of "coordinate” variable y.

By classical arguments of differential geometry, related with the standard construction of
covariant derivatives,
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the only way to give a correct definition of the higher-order derivatives (15)131
should use additional terms with connection I'(y; ).

The correct recurrent definition of the invariant higher-order variations will be

Dy" =Dy™,  D[(D)'y™] = DU(D)'y] +T,4(y) [(D)'y"|Dy".
Like in the classical differential geometry, additional terms with I'(y) in definition of
higher-order derivatives D™ guarantee the preservance of vector transformation law with
respect to the (y) — (y’) coordinate transformations:

- ;o oy~
D)y = L D)y vn>1.
(D)"y aym()y n>

In view of problem (1.1), such invariance with respect to the changes of local coor-
dinates (y) — (y’) in vicinity, where comes process y, represents a new and purely geo-
metric requirement of first priority. From another side, the relation between differentials
in time of this change (y) — (y'), given by It6 formula, reflects the behaviour on time
coordinate and is secondarily. It is purely stochastic and related with the nonvoidness of
quadratic variation processes.

Finally, let us remark that the above construction and the way to introduce the new
type derivatives is independent on particular approach we choose to define the diffusion
on manifold, actually

it works for any differential equations (higher-order, etc.) on manifolds,

because, by consideration above, symbol y € M must have values in manifold, but noth-
ing more. This is especially underlined in the article by the use of notation y instead of
traditional Greek letters, like &, 1), (, for stochastic processes.

In this article we discuss more concrete case of general diffusion process y; on non-
compact manifold. We investigate its regular dependence on initial data = and provide the
geometrically correct construction of higher-order variations.

Ay)"
ok
for (y) — (y’) “coordinate” transformations and covector field on index k for (z) — (z')

coordinate changes. From arguments above we can immediately conclude that the defini-
tion of geometrically invariant higher-order variations must include terms with I'(x) and
I'(y) to guarantee the preservance of tensorial character on both “image” (y) — (y’) and
”domain” () — (z') coordinate changes of mapping z — y7.

Definition 1.1. Higher-order variations N2y, v = {ki1,...,kn}, of process yf
are defined by recurrent relations

Consider the first order variation

, that represents a vector field on index m

a(y)™

(1.2)
Vk(v'yy ) = vk(v'yy ) + Fp q(yt )V’yy W
where V. (N2y™) represents a classical covariant derivative
VE(WIy™) = 0F (Wiy™) — ST/ ()W ™
ViSel

and V‘fﬂj:h’ym means substitution of index j by h.
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From the point of view of classical Riemannian geometry such definition of the higher-
order invariant variation of y with terms I'(z) and I'(y) provides generalization of the
classical covariant derivative. Unlike all already existing torsion, polynomial connection
and other generalizations of variation, defined primarily at point z, it depends not only on
initial point of differentiation z, but also on behaviour of process at point y.

Remark 1.1. Due to the invariance of higher-order variations W7, y" with re-
spect to the (y) — (y') and (z) — (') coordinate changes we can introduce the invari-
ant norm of the higher-order variation

J
VYY1 = gmn (i) [T 9"% @)V5, v V5 ™ (1.3)

s=1

After that the regularity problem becomes well-posed geometrically and the regular be-
haviour of process y; with respect to the initial data can be expressed in terms of some
estimates on higher-order variations W7 ; ™.

In this article we also demonstrate how the geometry of manifold and its curvature
is reflected in the structure of equations on new type variations. We also find conditions
on existence and uniqueness of variational processes, which give a natural generalization
of coercitivity and dissipativity conditions to the manifold case and can be used even for
noncompact and infinite-dimensional manifolds. In particular, they relate the behaviour
of geometry and diffusion in a unified way, without traditional separation of curvature.

We also discuss the consequences of regular dependence of diffusion on initial data
for the smooth properties of semigroups. The use of nonlinear symmetries of variational
equations and a set of associated nonlinear estimates permits us to study the regular prop-
erties of semigroup in the case of globally non-Lipschitz behaviour of nonlinear coeffi-
cients on infinity.

The development of advanced constructions of Malliavin calculus to the new type
stochastic derivatives 15, that generalize the classical Malliavin and Bismut derivatives,
and applications to the raise of smoothness properties of diffusion semigroups is a subject
of [15].

2. Invariant representation of semigroup derivatives in terms of new variations.
On noncompact connected oriented smooth Riemannian manifold M without boundary
consider diffusion y§, written in Stratonovich form

t d t
vi=o+ [ A+ > [Aaiows. @1
0 a=1lj

Here Ay, Ao, @ = 1,...,d, are smooth vector fields, globally defined on M, initial data
x € M and W denotes the R%-valued Wiener process.

Equation (2.1) is understood in sense that for any smooth function with compact sup-
port f € CZ(M) the following equation:

t

d t
) = f(z) + / (Aof)(y2)ds + 3 / (Aaf)(y2)oWE 22)
a=1 0

0

holds as usual equation in R!. In particular, one can take functions f(z) = ' to be local
coordinates and find generator of yy

ISSN 1027-3190. Ykp. mam. xypH., 2006, m. 58, N* 8



REGULARITY OF NONLINEAR FLOWS ON NONCOMPACT RIEMANNIAN MANIFOLDS ... 1015

Lf=Aof + % D Aa(4af). (2.3)

Below we are going to study how the properties of nonlinear diffusion A, and drift
Ay coefficients should be related with the geometric properties of manifold to lead to the
regular dependence of process y; on initial data and smooth properties of corresponding
diffusion semigroup

(Pef)(x) = Ef(yf) 2.4)

in some scales of continuously differentiable functions on manifold. To obtain the regular
properties of semigroup one should consider its higher-order derivatives.
Taking formally the first-order derivative of (2.4) we have

K o wOfyE) o(yr)™

ViPif(r) = (2.5)

This representation is invariant with respect to the local coordinates transformations (x) —
Ny )™

oxk

— (2'), because in (2.5) the first-order variation of diffusion with respect to the
initial data is

covector field on index k with respect to coordinate transformations of domain (z) —
- (@);

vector field on index m with respect to the choice of local coordinate vicinity for
diffusion (y) — (/).

To find the higher-order representation of semigroup derivatives let us write the second
order covariant derivative of semigroup

VYR = { g o~ L) o | Pef ) =

o 0 0 .
= E{W@ —Fkhj(fﬂ)w}f(y{) =

f(y) *y™ | f(y) oy™ oy" af(y) oy
=E - — — F 2.
{ Oy™ OxkdxI + OymOy™ dz*k Oyl @) G oy™ Bxh 26

where the covariant derivative of a tensor field is defined in a standard way

T B1,eip 11’ “ip 117 Jplzs_e 11, ip
vlc J1s-30q al'k s .. +ZF s .. z:r 15 7]q|j5=£ 2.7)

j11 j’;l *=‘ means substitution of index i4 by ¢, the summation on repeating indexes is

implemented, and I'(x) are connection coefficients.
Now let us form the covariant derivatives of f in the right-hand side of (2.6). Using
that

VI f(y) = a%f(y)

and
g 0

VIVII W) = 5

—f(y) *Fqﬁn(y)?f(y)
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we can continue (2.6)

8 ma m
VYR = B{ (VAL + T VE ) G et @)
y™ Ay
+Vﬁ@f(y)<m—lj (@ )8 h)}
8 m 8
:E{v,ynvzf( o ayﬁ
( *ym N dy" Ay
0t 0) (g ~ TS +TAW GRS ) @)

Here we redenoted index ¢ in term with I'(y).
Oy 0
The first term VYVY f Y 8_y is obviously invariant under transformations (z) — (z')
and (y) — (y'), but what one should do with the expression in brackets
82ym aym aye ay
— ()= ?
R L A e
There are two ways to collect the terms in brackets.

(2.10)

15t way. One may form the covariant derivative on z variable from first and second
terms
9y ay™ Oy oy" . (O dy" ay"
=V W5 x

-7 h, < — <
oo ki@ TTW g r a5 D2 0ok gzi - &1V

Such representation is obviously invariant with respect to transformations (z) — (z').

The third term with connection I'(y) has transformation of coordinates law, that in-
cludes the second-order derivatives of coordinate change, similar to 1t6 formula. There-
fore the traditional interpretation of (2.11) was that in the stochastic case one should add
terms with I'(y) to the classical covariant derivative to compensate the influence of It6 for-
mula. A concept of stochastic differential geometry as a mixture of classical differential
geometry and Itd formula arose [5, 10, 11, 16].

2°d way. It is not clear, whether representation (2.11) is invariant with respect to
the transformations (y) — (y’) in the image. Let us work with (2.10) in other way, by
collecting first and third terms together

P*ym b\ OY™ oy* oy
oo~ ki@ g AW 5 g5 =

2 (55) -5 +rnw SRS

9% \ 97 azh W) g Ba7 T
- ayé o aym n aym " 8y€ ayn -
—Wa_zﬂ<axj ~ L@ G TEAW G 5, =
B ayé y 8ym N 8ym
= er % —ij(x)w, (212)
ay"
where we used that — = . This representation, in comparison to (2.11), is
dxk — dxk oy’

obviously invariant with respect to the coordinate changes (y) — (y').
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Therefore all terms in (2.10) define a second variation of process y; and represent
vector field on index m with respect to the ”1td” changes of coordinates (y) — (v');

twice covariant field on indexes k,j with respect to the “differential geometric”
changes of coordinates (z) — (z/).

If one knows how to define the second-order covariant derivative, then, by common
procedures of differential geometry, its higher-order analogies could be easily written
(Definition 1.1). The invariance of (1.2) with respect to (x) — (') transformations
is obvious, for transformations in image (y) — (y’) one should argue like in (2.12),
e.g. [17].

Remarks. 2.1. One should note that arguments above also work for the choice A, =
= 0, i.e., in the ordinary differential equations case, when stochastic terms do not appear
and there are no complications, related with Itd formula. Therefore the introduction of
higher-order variation is a pure question of differential geometry.

2.2. The last term with I'(y) in (1.2) depends on solution y¥ and ensures that the
higher-order variation, similar to the first-order variation, remains a vector field with re-
spect to transformations (y) — (y’). It compensates the inevitably arising derivatives on
Oy’ (z, )"
(y(z, )™

2.3. The consideration of classical derivatives along vector fields, covariant deriva-
tives of the first-order variation

variable x of jacobians of coordinate changes (y) — (v/).

v » O™
Vi .V, 8;,31 ;

or similar objects, like in [4, 5], destroys the invariance with respect to transformations
(y) < (y') and leads to the geometrically noninvariant objects. Such approach also hides
the curvature in a set of geometrically noninvariant variational equations.

x

Using variations V7

derivatives:
Theorem 2.1. The covariant derivatives of semigroup action and initial function
are related via new type variations by

y£, we can now write invariant representations of semigroup’s

VIRf(x) = D B(VY i DWh) Vit Vi g (2.13)

§1U...Uds =7

Here VI = Vi ... Vi fory={ki,... . kn}.
Proof. This representation is easily verified recurrently. Indeed, suppose it is true for
all |y| < n. Similar to (2.8), one should consider next order derivative

ViVIP f(x) = OpVEPf(x) = Y T (2)VE _, Pif(x).

ViSel
Then one should substitute expressions (2.13), add and subtract I'(y) to form the higher-
order covariant derivatives of f, redenote summation indices and come to (2.13) for

ViVIP,f.
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3. Tensors on domain () and image (y) coordinates and recurrent form of
the higher-order variational equations. Being equipped with the new definition of
variation with respect to the initial data and corresponding representations of semigroup’s
derivatives, we can turn to the regularity problem.

First we find the recurrent equations on higher-order variations. Differentiating (2.1)
on initial data x we have

5(20) < (Zzo)ow+ (Lo

To proceed further it is necessary to give an invariant sense to the partial derivatives
a—A(yf7 ) in the above equation. To do this we need a certain generalization of Defini-
x

tion 1.1 for tensors on (x) and (y¥ ) coordinates, given by Definition 3.2.
Definition 3.1. Object u(j// 3) forms a mixed tensor with respect to the coordinate
changes () — (2') and (¢) — (¢’ ) iff its coordinates
W) ireip/an
Ui18) = Yjs...ga/Br.-
form T21M tensor on multiindexes (i) = (i1, ... ,ip), (]) = (J1,...,Jq) with respect to
the local coordinates (x*) and form T™* M tensor on multiindexes (o), (3) with respect
to the local coordinates (¢™).
In other words, after the simultaneous change of local coordinate systems (x*) —
— (') and (¢™) — (¢™") one has transformation law

Y518 T 92 920) aglan dpB) '8

S5/ 0z® 9z gpl@) 9B (i,/a,)) 32)
9z oz Oxr 09 9gr Qg
Az 9zt T 9z 9¢) T 9ger T 9

Examples. 3.1. A simple example of mixed tensor provide variations W, ...
..V, y™(x,t). They form vector fields on index m in a coordinate chart y™(z,t) and
covector on ji, . . ., ji in coordinate vicinity (z).

3.2. Another example of mixed tensor is given by product of tensors ug B; (yF)v Ej)) (x)

in vicinities (z) and (y). The change of coordinates at 2 does not influence ug B; (y7) part,

jacobians of coordinate changes arise only near vg;)) (x). However the different choice of

coordinate vicinities for y evoke the tensorial transformation law for uggi multiple.

Now let us suppose that (¢™) coordinates of the mixed tensor depend in effective way
on the coordinates (z¥). An analogue of Definition 1.1 for mixed tensors is given by the
following definition.

Definition 3.2.  V-derivative of a mixed tensor is defined by

S0/ _ O (/) /) B ()
KU(ji/g) = amk UGise) T 2(:) Tn(@uds ™ = D Ti@ulys, _,+ (33)
s€E j

(i/)] s O O
+ D Dls(@@)ug = o = D T b))l o= (34)

pE(a) pE(B)

with jacobians

Line (3.3) corresponds to the covariant derivative on (z*) coordinates, additional line
(3.4) makes the resulting expression to be tensor with respect to the coordinates in im-
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age (¢™). One may also note that the connection symbols above depend on different

0
parameters and the additional jacobians a_gb are required in line (3.4).
x

Remarks. 3.1. The tensorial character of W-derivative is easily checked, like before:
W -derivative defines a tensor of higher valence, i.e., the mixed tensor law holds

o (ia) ozF 9z 9" (@) aqg(ﬁ/) L0/
UG8 T 9ak 92 920) (@) §p(B) WG B):

Viu

The proof of this property is easy by application of the transformation of connection
law [17].
3.2. An important property of W-derivative is the superposition rule: let uggg be a
tensor on manifold M, then
r (o « a¢€
Viug) (@) = (Veul3)) (6(2)) 57
To check (3.5) we use Definition (3.3) (3.4) to obtain

Viuls) (6(x)) = azu58§;;<¢<x>>+

5
P () O/ )s= T ()ulr) ¢
+ X Tfs(@uyz @xk > Ts(O)uo)m), - 5o
pE(a) pE(B)

(3.5)

By chain rule for 9;; and definition of covariant derivative (2.7) one gets the statement.
As we will soon see, property (3.5) simplifies the geometrically correct calculation of
the higher-order variational equations.
After the introduction of mixed tensor and its W-derivative, we can further transform
equation on the first variation (3.1). By adding and subtracting the terms with I'(y) to
single out the W-derivative of vector fields Ag(y), A (y) on image coordinates (y), we

have
ay'fﬂ _
5(axk>‘
— (wzam A2 N gy @ gm Ny
= (VEAT ()~ T w)An 5 ) oW+ (VAR () - 1) AL S ) dr

Noting that the terms near connection contain the differential of process y (2.1) and using
the symmetry of connection I' "y = I' ", we find another representation for the equation
on first variation

5 (2 = rm () 50 W (AT ()W 1 V(AR () d 36
Ak ok k\£20 y)) t. (3.6)
We obtain an additional argument in favor of new type variations and W-derivatives:
up to the parallel transition term with I'(y) the increments of first-order variation are
determined by W-derivatives of coefficients. We take this observation as the recurrence
base for the search of higher-order variational equations.
Theorem 3.1. Suppose that the equation on V-variation WIy™, || > 1, is written
in form

§(W2y™) = —T," (W2yP) 5yt + M 2OW' + N dt. 3.7)
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Then the next order variation VN Jy™ = V7 ay™ fulfills

5(V7U{k}y ) = _Fp q(v'yu{k}yp)(syq + Rp Eq(v'yyp)wdyq_F
+ (WEM)SW' + (VLN dt. (3.8)

The coefficients of variational equations are recurrently related by

m T m m T, p ay[ q
SUky i = ViM% + (VoyP) = AT,

p Lq ox
(3.9
Nm _ Vsz m Va: D 811/ Aq
yu{k} — k4 Yy + plq( 'yy )@ 0
Here R forms curvature (1,3)-tensor with components
2 arp;  ory, Jp2 jp2
Ry = - + sl — Ty, (3.10)

ot ox3

where for simplicity we only point the positions of corresponding indexes.

Remark 3.3. The additional term with I'(y) in the Definition 3.2 of W-derivative
compactificates these noninvariant terms to the compact expressions with curvature. So it
becomes possible to find the influence of curvature and nonlinearities of diffusion equa-
tion on the any order regularity properties.

The approaches to define the variation to be covariant Riemannian, derivative in the
direction of vector field or stochastic derivative did not account the invariance on process
yi [4, 5, 7] and inevitably led to the growing number of noninvariant terms in the varia-
tional equations. Therefore, it was principally hard to trace the influence of curvature in
regular properties.

Proof. For simplification we omit, where possible the dependence of connection I
on variable y, however the dependence on x is always displayed precisely.

Let us substitute the definition of W-derivative under Stratonovich integral

oz
x, m m 8 P x x m
=/5{575W +qu<y>a—;vqu—ZFk”s(x) MnY } (3.11)
sey

For the first term in (3.11) we apply the inductive assumption (3.7) and, after differentia-
tion of integral and application of property of Stratonovich integral

/X(S(/Y&Z) :/XY(SZ (3.12)
obtain

/5{67;\7@’”} = /5 (a,ﬂg/{—r;;(v:yp)ayuMﬁawi+N;ndt}> -

orm ayf N . i ayq
B 7/ 5;; %(V'yyp)ayq - /Fp o (V3yP)é (@) - (3.13)
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- / L (0EV2yP)oy? + / {0F M1 oW" + OF N dt}. (3.14)
The second term in brackets in (3.11) is first rewritten by Stratonovich —Itd formula for
function f(z1, z2,x3) = T1T2x3:

t
fOXthOX0+/DijX5Xj
0

after that the inductive assumption (3.7) and properties of Stratonovich integrals are ap-

plied
m OV
/5 {Fp q(y) Ok Vqu} =

m ayp x m x 8y1) ayp z m
:/ Vg r0(Vy) + / La(V5y")0 <W>+ 9k (V"I (v) =

AP ,
_ / rp@a—;{—rfs(wy‘)éys + MW N3dt}+ (3.15)
p— dyP TN ) S
+ / rpq(vaqw(—axﬁ + [ 5% (VZy?) a;; oy’ (3.16)

For the last term in (3.11) we use again the inductive assumption (3.7)

—/5{Zrkhs(33) ishym} =

sey

--y / D) { =T () (W2 )0y + M, W+ N7 e} 37)

s€y

Further we transform the first expression in (3.14) to the V-derivative

- / T (O yP)oyt = — / P (9 W) 5y =

m T m 3ye T, n
= —/qu(VkVWyp)csyq—i-/Fp qrg’nw(vvy )oy?—

DI EEINIVEBIL ELT 318
sey
Notice now that:
a) the second expression in (3.13) contracts with the first expression in (3.16);
b) the third expression in (3.18) contracts with the first expression in (3.17);

c¢) the second and third terms in (3.14), (3.15) and (3.17) give the ¥W-derivatives of
M and N coefficients.

We write the remaining terms, by redenoting indexes and gathering terms with deriva-
tives OI" and second powers I'(y)I'(y) of connection

TN T, T m ayp T T m
/6 {akv'yy + Fp q(y)ﬁvaq - Z]‘—‘khs(x) 'y|5:hy } =

sey
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— —/P;’}](Vivmp)éyq—k/{VﬁMﬁdWi—FViN]fdt}—k

oyt .
+ [ Sh Ty

(T o)

Dy oyt LW ) - F[Z(y)F;q(y)} : (3.19)

The terms in (3.19) appear correspondingly

first one from the second term in (3.16);

second one from the first term in (3.13);

third from the first term in (3.18);

last term from the first term in (3.15).

But the expression in brackets {. ..} gives the curvature (3.10), so we conclude

J o) = - [{en e + v, o

+VE MW + ViN;"dt}.

The theorem is proved.

4. Symmetries of variational equations and nonlinear estimate on variations.
Now we are going to use the symmetry of variational equations to find a set of nonlinear
estimates on variations.

First remark that by (3.6) the recurrence base for the definition of higher-order varia-
tional systems (3.7) is given by

My = VAT (i), N = VEAG (u1)-

Using recurrent properties (3.9) and (3.5) we can determine the nonlinear symmetries
of variational equations. Because

(V)" H(y7) = > (V) H(yf) - (V) y... (V") )y

we see that

the n*" order variation in the left-hand side of (3.7) is proportional to the n'* power
of first variation in the right-hand side,

or

V(Vo)nyf ~ Vo) (4.1)

Introduce nonlinear expression that reflects this symmetry
ra(y,t) =Y B (0" (i, )| (VY g || 4.2)
j=1

and gives some nonlinear norm on the smoothness of process y; with respect to the initial
data. Here z € M is some fixed point, p(x,y) is geodesic distance between points z, y,
norm of variation is defined in (1.3).
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The following theorem provides necessary conditions for quasicontractive estimate on
r,. Introduce notation

d
— 1
Ao =Ao+5 az::l Va, Ao (4.3)

Theorem 4.1. Suppose that the following conditions hold:
coercitivity: there exists = € M such that for any C € R there exists Ko € R
such that for any x € M

d
(Ao(@), V702 (2.2)) + C Y 1Aa(@)|? < Ko(1+p%(x,2))  (44)

dissipativity: for any C,C’" € R there exists Ko € R such that for any x,y € M

d d
(VAG[R] 1) +C D7 IV AR = €737 (R(Aa, 1) Aa, B) < KellBll% @5)
a=1

a=1

notation V A[h] = h*V A means covariant directional derivative, {-,-) and | - | cor-
responding Riemannian scalar product and norm, and

[R(4,B)C]™ = R/, AV B*C"

ijk

denotes curvature operator,
nonlinear behaviour of coefficients and curvature: for any n there are constants
Ke such that forallj =1,... , nandx € M

|77 Ao@)| < (1 + pa, 20k,
(V) Aa(@)|| < (1 + p(z, 2))Ke, (4.6)

|9V R@)| < (1 + ol )",

Then there is some k = K(Kko, ko, Kg) such that if monotone polynomials p; > 1 in
(4.2) are hierarchied by

k

Virtie=i<n: [pO] @+ )T < Ol O @)
then the nonlinear estimate on variations holds
K, V>0 ra(y,t) < e k'r,(y,0). (4.8)
Remarks. 4.1. For M = R? with the global Euclidean coordinate system (z%)%_;
both connection and curvature vanish. In this case p(z,y) = ||« — y|| and one can choose
point z = 0 to reduce conditions (4.4), (4.5) to the classical conditions of
coercitivity:
(Ao(@),2) + €Y |[Aa(@)[* < Ko (1 + ]2
a=1
dissipativity:
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d
<v%[h],h> +C 3 |VAL||* < Kol

They naturally arise in the proof of nonexplosion and uniqueness estimates on process ¥y
Ellyf[I* < e® (1 + 2l®),  Ellyf —yi* < e o - (4.9)

Indeed, by coercitivity condition and Itd formula

t

d
—~ 1
he = Bl | = 2] + /E{<Ao<y§>,y§> +50 !\Aa<y§>112}d8 <
a=1

0
t
< ||x||2+C/(1—|—hs)ds. (.10)
0

Then Gronwall —Bellman inequality leads to the first estimate in (4.9). In a similar way
dissipativity condition leads to the second estimate in (4.9), ensuring local uniqueness of
solutions.

In this sense the coercitivity and dissipativity conditions are natural for nonlinear dif-
fusion equations. Their generalization for stochastic differential equations in infinite di-
mensional linear spaces was found by Krylov, Pardoux, Rosovskii [18, 19].

4.2. In fact, from coercitivity and dissipativity conditions follows that field ;{6
and, therefore, field Ay should be more than a square of fields A, times curvature.
For example, for C? bounded diffusion coefficients sup ¢y, (||[4a(2)|, [[VAa(2)],
[VVAq4(2)]]) < oo and bounded geometry sup,¢, || R(2)|| < co only the monotonic-
ity of field (—Ap) is necessary for the validity of coercitivity and dissipativity conditions
(C? boundedness arises due to the structure of ;(0).

In the domain of manifold, where the curvature form m(h,h) = Zaﬂ (R(Aq,
h)A, h> is positive, the additonal terms with curvature improve the restrictions on diffu-
sion and drift. However, the manifolds with strictly positive curvature forms are compact
[20], so in this case process y7 actually lives on compact manifold and there are no non-
linear complications.

4.3. Let us turn the attention of reader that the coercitivity and dissipativity assump-
tions naturally arise in the proof of nonexplosion and uniqueness estimates on the process
y¢. To check this fact one should proceed similar to (4.9), (4.10), with application of Itd
formula to expressions Ep?(y¥,0) and Ep?(yf, y7) and further use of estimates (4.31),
(4.32). This is a subject of [21].

In Theorem 4.1 we actually state, that the coercitivity and dissipativity assumptions,
combined with (4.6), are sufficient for any order regularity of process y; with respect
to the initial data. Moreover, as it will be clear from the proof, dissipativity assumption
(4.5) represents the coercitivity condition for variational processes Wy .

4.4. An example of manifold may be given by R? with conformally perturbed Euclidean
metric tensor g;;(z) = €2w(w)5ij (such perturbations preserve angles between vectors).
In this case [22] connection coefficients of metric g are nonvoid and equal to

rh

¥

() = S1OT () + 61 OTY(x) — 658" D P(x).

The covariant derivative of vector field has representation
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ViV (@) = 0;V™(x) + T,V = 0,V" + 6V, 00) + 0 - VI = 9" - V;
and curvature tensor equals to
Ry = 0itbi - 03 i + g8y — 5 0 + (5015 — 00ux) 0917,

where we used notations 9;; = 0;0;9 — ;1 - j1, i = §"I4p;;. with Kronecker deltas
52]7 5hk (;h

In thls case the dissipativity condition (4.5) adopts form, which could be hard to guess
by direct calculations in the global R? coordinate system of manifold (R%, e2¥§;;).

Therefore, the use of geometric invariance arguments of Definition 1.1 actually per-
mits to single out the pointwise conditions on the behaviour of coefficients and curvature,
that guarantee the global regularity estimates on diffusion process even for more compli-
cate manifolds.

Proof. First let us note that Itd formula implies that for geodesic distance

t

d t
pz(yfﬂ):pz(%yHZ/ )(yE, 2)dW e + /(Llpz)(yi,Z)ds (4.11)
j:

0

with notation L' for generator L of diffusion (2.3), acting on first coordinate of metric
function.

Therefore, writing the differential of one terms in nonlinear expression (4.2) we have
by It formula (temporarily 2¢ = m/i, p = p;):

h(t) = Ep(p* (57, 2))|| (W) iy | =

t
0+ 8 [ {ole? ot ) a7 4 (70 a2 2)+
0

el } -

x 2(q1 )
+/E{ (57, 2)) 2all (W) 120D (Wi |2+

+5d[p(? 2, 2)),

(4.12)
+q(2q — 2)\!(V“')iy§!|2(q_2)d[\f(Vw)iyil ?, I(V”“')iyﬂﬂ +

T [[ow= )| ( (P2 2)) o (47 )+

(4.13)
1
38 (P OF P05, 20, 2)] )+
1

57 (PP ) [ (Ve [ Va0 v, 2) ’yi”!ﬂ}- (4.14)

Next step is to find from recurrent relations of Theorem 3.1 the expressions for differ-
. D)
entials of norms H (W )]ny (1.3).
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Recall, that by (3.7), (3.8) the general form of variational equations looks like
§(X;”) = =T X5oy? + M., oW*® + NJ'dt (4.15)

with coefficients MW"(;, N;”, recurrently determined in (3.9).

To simplify further notations, let us introduce an additional process, that formally
corresponds to the index v = &

X5 = T, XBoyt + ATSW + Aftdt.

Then the relations of coefficients M, N for the process X" could be written in the fol-
lowing form:
1) recurrent base:

Mg, = A (i),  Ng' = Ag'(vi); (4.16)

2) recurrent step by (3.6) for v = @ and (3.8) for v # @

ViMg", for v=a,
M'yﬁb{k} a = - .y (417)
Vk:M’y’ﬂ;z + p’n;qu(ka )Agz for Y 7& @7
ViNG for v=ga,
N™ = (4.18)
yu{k} z At m z
VN + R X2(Viyh) Al for ~# 2.

Lemma 4.1. The differential of norm of process X" (4.15) has form

dIx|? = g%){gmmwfa XMW

m n n m m n 1 m n n m
G (X NI XENG A+ MM )b+ g (X PE + X P )dt}. (4.19)

Expressions PJ" are recurrently related by

Pt =Vi(Va, AY) + R, AP AL (ViyY), (4.20)
PZ/rLLJ{k} = Vzp';n +2 p"qu'ypa(sze)Agz—’_

+(Vs R ) XE(Viy' )AL AL + R XD (W AL) AL+
R XD (Viy") (Va, Aa). 4.21)

Proof. The detail and bookkeeping proof of this result will appear in [23]. Let us
briefly present the main idea.
First of all one verifies formula (4.19) and obtains expression for P,’Y"

Pt =d[M.",, W] + T, M.P, Al dt. (4.22)

vy oo vy atta

Then it is necessary to find the recurrent relations for . From (4.17) follows

Pl dt = d[M 500, WO+ T MY, ALdt =

" yU{k}la o
=d[ViM,, W] + T (Vi M}, )ALdt+ (4.23)

v
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i Lj

+d[Rp";qX§(vzyf)Ag, WO‘} m(RE, X (Wiy')AL) AL dt. (4.24)

The last line (4.24) appears only for v # &.
From arguments, analogous to the proof of Theorem 3.1, it follows representation

(4.23) = {V””Pm + R M (Viyf)Ag}dt. (4.25)
To find the reccurence base it is sufficient to apply definitions (4.16), (4.22) and obtain

PR dt = d[AT (y), W] + T /5 AL Al at =

(03

DA™
a a

Therefore from (4.25) and (4.26) it follows (4.20).
In a similar way, direct calculation of line (4.24) gives the remaining terms in (4.21).
The lemma is proved.
Now we use the result of Lemma 4.1 to single out the dissipativity condition (4.5) in
the principal part in the right-hand side of (4.19).
Leti =1 and X} = W;y™, then by (4.20) and (3.5)

+ T, hAh] Aldt = (V,A™) - AL dt = (V 4, A™)dL. (4.26)

P = Wi(Va, A™(y)) + R AL ALV =
= VIV, AL - Viy' — R(As, Viy)A

Therefore, because in (4.21) P
representation

Ok} = = VP +. .., the higher-order coefficient permits

Pt =V,Va, A7 - V' — R(Aa, Viy) Ao+
+ Y Kse.s(Viy....Viy)
B1U...UBs=", s>2

with coefficients Kg, . g,, depending on Ag, A, R and their covariant derivatives.
Moreover, the dependence of K, . 5. (V5 ¥y, ..., Vj y) onlower order variations W5y
also manifests symmetries (4.1).

In a similar way, due to (3.6)

= VA (y) = VAT (y) - Viy',
"= VAR (y) = VIAT (y) - Viy'
and relations (3.9), we have analogous asymptotic
m Yy pm x b T T
M’ya = vaa [V'yy ] Z Kél;-uvﬁs (Vﬁly""’vﬁsy)’

B1U...UBs=7, §>2

4.27)
= nggc [Viyé ] Z Kﬁl: -Bs (Vfgl Yyorns Véé y)

B1U...UBs=", s2>2

with multilinear coefficients K’, K", depending on Ay, A,,, R and their covariant deriva-
tives.
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Therefore from (4.19) the principal part of differential is

d| (V) |* = 2((W)'y, VEAL[(W)'y"] yaw e+

fe (o w1+ 3 [vaier] -

d

- <R(Aa, (V)'y)Aa, (V)"y>}dt+

a=1

+ Y {9y KL (9 (W) y) awe

Ji+...+js=i, s>2
+ K3, ((V)jly,-n,(V)js y)dt}>, (4.28)

i.e., the dissipativity condition arises in the principal part. Like before the coefficients
K', K2 depend on covariant derivatives of Ay, A, R and display symmetry (4.1).
Now we can turn to the estimation of (4.12) —(4.14).

1. Using asymptotic (4.28) we see that terms in (4.12) lead to the dissipativity con-
dition (4.5) in principal part with some constants and additional terms with lower order
variations

no)+ [ E{p<p2<yf,z>><2q||<vgc> PV (v |+
0
+ a2 = 2)[| (V) y ] af [ (v o9y e ]P] <

¢
z 2(g—1 .. .. i x 1,
< KE/p (i, )| (%) v¢ || (a ){dISSIPathlty}qc/((V) yi, (W) 'y} )dt+
0

s Y B [l s

Jite.tis=i, s22
x (W), Kjy 5, (W), (W) Py)) dt (4.29)

with coefficients K like before.

2. Term in (4.13) is transformed by monotonicity and polynomiality of p (EI C:
P (wu < Cp'(u))

1

RN {20000 + 507 620Dl 00, P00} =

0

1

= /EH(V)inQq{p’(pz(y,Z))L1p2(y,z)+

0
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d

+%PH(P2(?J7Z>)P2(%Z> : Z(Aipz(y,z))Q}dté

P*(y, 2)

a=1

t d
< / EH(V)Z‘yH%’(pQ(y,z>>{L1p2<y,z> + pg(j 32 (Aap%y,z)f}dt (4.30)

0

Then we apply results of [21] about upper estimates on second-order operators, acting on
metric function.

Theorem 4.2 [21]. Suppose that the generalized coercitivity and dissipativity con-
ditions (4.4), (4.5) hold. Then there is constant K such that

L'p?*(z,y) < K(1+ p*(2,y)). (4.31)

Moreover, for any C there exists K¢ such that
d
AL p2(z,y))?
L'p*(z,y) +C ) % < Kc(1+ p2(z,y)). (4.32)
a=1 ’

3. Using representation (4.28) and (4.11) we find the principal asymptotic of (4.14).
By (4.27)

P () (9o V[ (9] | =

d
P ()[(W)iy 7Y AL 2<(w% VAL(W)iy]+

+ > K;I,...7js(<v>ﬁy,...,<v>f‘sy)>|g

Jit...+Jjs, 22

d 1 .2Y)2
<y S

a=1

)

+

< |VALW) Y]+ >0 K (W), (W) || (4.33)

Jit s, 822

The first term is added to (4.30), after that (4.32) is applied. The second term is combined
with terms in (4.12), (4.29), leading to the dissipativity condition with modified constants.
4. Applying coercitivity and dissipativity (4.4), (4.5) we finally come to estimate

h(t) = Ep(p*(y, 2)) (V) 'y 7 < h(0) + C/h(t)dH
0

t

. / Ep(p*(y, 2)) | (W)'y|| ™ x

Jibetds, 5227
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<KL, (V)i (W), (W)y)dt,

4315005 Js

where coefficient K’ depends quadratically on lower order variations for the case of (4.33).
It remains to apply estimates (4.6) and symmetry (4.1). By inequality |29~ 1y| <

q
<ﬁ+(q )|y| we have for a = 1,2
q

2)H( HQ((] 1)K7317 7Ja<(V)Zy’ (V)jlyvv(v)jgy) <

<

<Ep(p®)(1+ o), (W)iy ||| (W) ... || (W) ey

’ a

< CEp||(W)'y[*" + C"Ep(p*) (1 + p)* K[| (W) 7y [ .. [|(W) 'y

[

The first term is already of necessary form, to transform the last term we recall that
2q = m/i(4.2), so

g 77 a1 = (ijlnmm)ﬂ” (I, m/jsys/é
Then the nonlinear hierarchies of polynomials (4.7) give
pi(p?)(1+ PQ)km”H(V)jlyHm/i N\ |m/i <
S R (L
—pgl 184 |}m/j1+. _ph 2| (W)ey ™

i.e., the differential of each term in (4.2) is estimated by terms of (4.2)

t

hi(t) = Ep;(p H y||q/i < h;(0) + const/rn(y,s)ds.
0

The theorem is proved.

5. C*° regular dependence of diffusion process y> on initial data. Applica-
tions to the regularity properties of semigroups. Turning to the questions of existence,
uniqueness and differentiability of variational equations with respect to the initial data,
one can show these properties under conditions (4.4) —(4.6).

Theorem 5.1. Under conditions (4.4)—(4.6) process yi is C*° differentiable with
respect to the initial data. Its variations (N )y7 represent strong solutions to variational
systems (3.7), (3.8).

Proof. First of all, by Theorem 3.1 and asymptotics (4.27), variational equation on
process (W*)'y? represents nonautonomous and inhomogeneous equation on variable
(V*)iy#, if all lower order variations (W*)7y?, j < i, are already constructed. The
behaviour of nonautonomous part is controlled by coercitivity and dissipativity condition.
In a similar way the nonlinear symmetries (4.1) and polynomial behaviour of coefficients
(4.6) give a set of optimal estimates on inhomogeneous part, like (4.8). Therefore, like
in [15, 17, 21, 24, 25], variational processes (W*)%y¥, i > 1, are constructed as strong
solutions to systems (3.7), (3.8).

To prove C'* differentiability of process y on initial data, it only remains to show
that the solutions of variational equations (3.7), (3.8) represent higher-order W-derivatives
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of process y7, i.e., its differentiability. Like in [15, 17, 21, 24, 25] this can be obtained
by application of nonlinear symmetries (4.1) in a recurrent on the order of differentiation
way.

Because we consider the finite-dimensional situation, we can also apply the stopping
times techniques, e.g. [26]. They guarantee that derivatives of process with locally C*°
coefficients are represented as solutions of corresponding variational equations before exit
times, i.e., give the required statement.

The theorem is proved.

Now we can turn to the applications of nonlinear estimate (4.8) to the regular prop-
erties of semigroup. We construct the spaces of continuously differentiable functions,
that are preserved under the action of diffusion semigroup (P.f)(z) = Ef(y¥). Because
of globally non-Lipschitz coefficients, such semigroups fail the strong continuity in time
property even in space of continuous bounded functions C,(M ). Therefore the appli-
cation of operator techniques of semigroups theory and corresponding constructions of
functional spaces, does not seem to be adapted to this case.

To solve this problem we use pure stochastic representations (2.13). Because in for-
mula (2.13) the derivatives of semigroup are related with derivatives of function via ker-
nels, represented by higher-order W-derivatives of process y;, the nonlinear estimates
(4.8) help to solve the situation. Moreover, the structure of topologies in these spaces is
influenced by nonlinearity parameters of initial diffusion equation and geometry of man-
ifold, see also [27].

Definition 5.1. Let qo,q1,.-.,qn > 1 be a family of monotone functions of polyno-
mial behaviour, that fulfill

Vi>1 q(0)(1+bK <ga(b) Vb0 5.1)

Function f € C’g(M ) iff it is n-times continuously covariantly differentiable and the
norm is finite
V) (@)
Ifllezan = R T pen s (5.2)

Due to the triangle inequalities for metric and properties of functions g; the choice
of some point z above does not influence on the topology of space C’g(M ), but only the
choice of norm.

Next theorem is an application of nonlinear estimate (4.8) to the smooth properties of
diffusion semigroups.

Theorem 5.2. Suppose conditions (4.4)—(4.6) hold. Then there is parameter k
such that for weights (qo, . .., qn) (5.1) the space C;l(M) is preserved under the action
of semigroup

Vt>0 Pp:CZ(M)— Cz(M)
and the quasicontractive estimate holds: there are constants K, M such that
1Pefllenary < KeMtHchg(M) Vf e Cz(M). (5.3)

Proof. First recall that by Theorem 2.1 the covariant derivatives of semigroup are
related with the covariant derivatives of function via the kernels, given by variational
processes (V7)iy?
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(VO Pf(@) = > BV S, (VY@@ (V)lyl).  (54)
Jit+..Fis=1
To estimate these kernels we use nonlinear estimate (4.8). Let us first note that by
Definition 1.1 (1.2) the initial data for variations are:
ox™

Vi)™ | = Sor = 00

RWO™ | = VRS | = k) T )0 + T w8)076, = 0
and
(V*)iy? =0 Vi>1
t=0

Choose a system of weights
Vi=1,....,n pj(z) = Pa)(1+ z)ke@/i=1/m)
that fulfills hierarchy (4.7). For this choice p,, = P and nonlinear estimate (4.8) has form
EP (o (47, 2) || (W) 97 | < €M pu(y. 0) =
=eMP(p*(z,2)) (1 + p*(x, z))kq(n_l)/n. (5.5)

Now we estimate derivatives (5.4) in topologies C7(M):

(V) P f ()] o0
2i(p*(z, 2))

< 1B < (V9 f (), (V)yf @ .. @ (V)uf >0 |00 <
ai(p*(z, 2))

Jit...+is, s>1
(V)2 () || o
< Z sup 5 i Ty X
Jite4js, s>1 yrEM qs(p (ysﬂz))
B (0 (5 DY)y |- V) gl
qi(p*(, 2)) -
" (Equ(p(y, 2))|| (W° ey |/t )i
- S lfles HH( (p°( 2))II( Yy []7)
g qi(p*(z, 2))

Jit..+is, s21

Here we substituted an intermediate weight ¢,(y) and at last step applied Holder in-
equality.
The last fraction is estimated by (5.5)

S

ey LB P2 DT |y <

S

B S Mg (02(z. 2 2(p ) \Kile=1)/deyie/i
< ey L s w0+ ) )
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we4s (PP (@, 2)) (1 + pP(, 2) KO
4 (p*(z, 2))

where we applied hierarchy (5.1). Above we used that ¢ = ¢, n = j, in notations of (4.2)

and that j; + ... 4+ js = ¢. The last inequality follows from hierarchy (5.1). This gives

statement (5.3).

To obtain the continuous differentiability of semigroup on = it is sufficient, similar to
[15, 17, 21, 24, 25], to use representations (2.13). The C*°-differentiability of process
y¢ implies pathwise weak relation between solution of initial equation and first variation
process

< const eMt,

= const e

T f ; z ayz
Fi) = fy) = / <Vyf Fwi), 8—Zt> dz
Yy
and similar relations for higher-order variations, e.g. [25] (Theorem 3.4). After that one
takes the expectation with respect to the random parameter to obtain

Pif(x) = Pif(y) = Bf(yf) —Ef(y!) =

[/ oy @ . dy
=5 [ (Vi) 50 ) ie= [ (B(v ). 5E)) a:
Y
Y

and similar relations for the higher-order derivatives.
x
Therefore the increments of semigroup are represented as integrals / of aggregates

in the right-hand side of (2.13) and these expressions form the derivativgs of semigroup.
Final conclusion about continuous differentiability of semigroup follows from estimates
on the continuity in mean of variational processes with respect to the initial data. This
fact can be proved in a similar to nonlinear estimate (4.8) way, by application of symme-
tries (4.1), e.g. [15, 17, 21, 24, 25].

The theorem is proved.
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