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MULTILAYER STRUCTURES OF SECOND-ORDER
LINEAR DIFFERENTIAL EQUATIONS OF EULER TYPE
AND THEIR APPLICATION TO NONLINEAR OSCILLATIONS

BAHATOÍAROVI STRUKTURY LINIJNYX

DYFERENCIAL|NYX RIVNQN| DRUHOHO PORQDKU

TYPU EJLERA TA }X ZASTOSUVANNQ

DO NELINIJNYX KOLYVAN|

The purpose of this paper is to present new oscillation theorems and nonoscillation theorems for the
nonlinear Euler differential equation  t2

 x′′ + g ( x ) = 0 .  Here we assume that  x g ( x ) > 0  if  x ≠ 0,  but we
do not necessarily require that  g ( x )  be monotone increasing.  The obtained results are best possible in a
certain sense.  To establish our results, we use Sturm’s comparison theorem for linear Euler differential
equations and phase plane analysis for a nonlinear system of Liénard type.

Navedeno novi oscylqcijni ta neoscylqcijni teoremy dlq nelinijnoho dyferencial\noho rivnqn-

nq Ejlera  t2 x′′ + g ( x ) = 0 ,  de prypuska[t\sq, wo  x g ( x ) > 0  pry  x ≠ 0,  ale vymoha pro mono-

tonne zrostannq  g ( x )  ne [ obov’qzkovog.  OderΩani rezul\taty [ najkrawymy u pevnomu sensi.

Dlq ]x vstanovlennq vykorystano porivnql\nu teoremu Íturma dlq linijnyx dyferencial\nyx

rivnqn\ Ejlera ta fazovyj plowynnyj analiz dlq nelinijno] systemy typu L\[narda.

1.  Introduction and motivation.  Let  f ( t )  be a continuous function defined on
[ T, ∞  )  for some  T > 0.  The function  f ( t )  is said to be oscillatory if there exists a
sequence  { tn }  tending to  ∞   such that  f ( tn ) = 0.  Otherwise,  f ( t )  said to be
nonoscillatory.

A class of linear differential equations of Euler type has a multilayer structure.  To
explain this fact, we first consider the equation 

′′ + +
( )





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y
t t

y
1 1

42 2
λ

log
  =  0, (1.1)

where  ′ = d / dt  and  λ  is a positive parameter.  Eq. (1.1) is called the Riemann –
Weber version of the Euler differential equation (refer to [1 – 4]).  All nontrivial
solutions of Eq. (1.1) are oscillatory if and only if  λ > 1 / 4,  because Eq. (1.1) has the
general solution 

y ( t )  =  
t K t K t

t t K K t

z z{ }
{ }
( ) + ( ) ≠

+ ( ) =


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−
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1 4
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log log if / ,

log log log if / ,

λ
λ

(1.2)

where  Ki ,  i = 1, 2, 3, 4,  are arbitrary constants and  z  is the root of 

z2 – z + λ  =  0. (1.3)

Hence, for Eq. (1.1) the critical value of  λ  is  1 /  4.  Such a number is generally called
the oscillation constant.

Letting  s = log t  and  u ( s ) = y ( t ) / t ,  we can reduce Eq. (1.1) to the basic Euler
differential equation 

˙̇u
s

u+ λ
2   =  0, (1.4)

where  ⋅ = d / ds.  It is well-known that the condition  λ > 1 /  4  is necessary and
sufficient for all nontrivial solutions of Eq. (1.4) to be oscillatory (for example, see [5 –
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7]).  In other words, the oscillation constant for Eq. (1.4) is also  1 / 4.  Let us add the

perturbation  λ  / ( s log s ) 
2

 u  to the critical case of Eq. (1.4), namely,  ˙̇u  + u / ( 4s2
 ) = 0.

Then we get 

˙̇
log

u
s s

u+ +
( )







1 1
42 2

λ   =  0, (1.5)

which has the same form of Eq. (1.1).  Taking account of this relation between
Eqs. (1.1) and (1.4), we may regard Eqs. (1.1) and (1.4) as the first and the second
stages of linear differential equations of Euler type, respectively.  Then what is the

third stage?  By putting  t = es  and  y  ( t ) = e u ss ( ),  Eq. (1.5) is transformed into the
equation 

′′ + +
( )

+
( ) ( )





( )

y
t t t t

y1 1
4

1
42 2 2 2log log log log

λ   =  0. (1.6)

It is safe to say that Eq. (1.6) is the third stage of Euler’s differential equations.
Repeating the same transformation, we can derive the  n th stage of linear differential
equations of Euler type (for details, see [8 – 10]).  From the reason above, we see that
linear differential equations of Euler type have a multilayer structure.

The authors [9, 10], have compared the solutions of Eq. (1.6) or the  n  th stage of
Euler’s differential equations with those of the nonlinear equation

′′ + ( )x
t

g x
1
2   =  0, (1.7)

where  g ( x )  satisfies a suitable smoothness condition for the uniqueness of solutions of
the initial value problem and the assumption 

x g ( x )  >  0      if      x  ≠  0, (1.8)

and established some oscillation theorems and nonoscillation theorems for Eq. (1.7).
For example, we can state the following results which are complementary to each
other.

Theorem A.  Assume (1.8) and suppose that there exists a  λ > 1 / 4  such that

g x
x x x x
( ) ≥ +

( )
+
( ) ( )( )

1
4

1
4 2 2 2 2 2 2log log log log

λ

for  | x |  sufficiently large.  Then all nontrivial solutions of Eq. (1.7) are oscillatory.
Theorem B.  Assume (1.8) and suppose that 

g x
x x x x
( ) ≤ +

( )
+

( ) ( )( )
1
4

1
4

1
42 2 2 2 2 2log log log log

for  x > 0  or  x < 0,  | x |  sufficiently large.  Then all nontrivial solutions of Eq. (1.7)
are nonoscillatory.

Remark 1.1.  We can prove that all solutions of Eq. (1.7) exist in the future under
the assumption (1.8) (for the proof, see [11]).  Hence, it is worth while to discuss
whether all nontrivial solutions of Eq. (1.7) are oscillatory or nonoscillatory.

As mentioned above, Euler’s differential equations have the multilayer structure
which is built up of stages such as Eqs. (1.4), (1.1) and (1.6).  A natural question now
arises.  Is the multilayer structure unique?  The answer is a “no”.  For some  a1 > 0,  let

t = es
 / a1  and  y ( t ) = e u ss ( ).  Then Eq. (1.4) is transferred to the equation

′′ + +
( )





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y
t a t

y1 1
42

1
2

λ
log

  =  0. (1.9)

Rewrite  t  and  y  in Eq. (1.9) as  s  and  u,  respectively.  Then the transformation  t =
= es

 / a2  with  a2 > 0  yields the equation 
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′′ + +
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2

2
2
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2log log log log

λ   =  0, (1.10)

where  y ( t ) = e u ss ( ).  Using the same process infinitely many times, we can make
another multilayer structure of linear differential equations of Euler type.  For further
details, see the final section.

It is easy to check that Eq. (1.10) has the general solution 

y ( t )  =  
t a t K a a t K a a t

t a t a a t K K a a t

z zlog log log log log if / ,

log log log log log log if / ,
2 1 1 2 2 1 2

1

2 1 2 3 4 1 2

1 4

1 4

{ ( ) ( ) }
{ ( )}

( ) + ( ) ≠
( ) + ( ) =





− λ
λ

where  Ki ,  i = 1, 2, 3, 4,  are arbitrary constants and  z  is the root of Eq. (1.3).  In case

λ > 1 / 4,  Eq. (1.3) has conjugate roots  z = 1 / 2 ± i α,  where  α = λ − 1 4/ .  Hence,
by Euler’s formula, the real solution can be represented as 

y ( t )  =  t a t a a t k a a tlog log log cos log log log2 1 2 1 1 2( ) ( ){ ( ( ))α  +

+ k a a t2 1 2sin log log log( ( ))}( )α

for some  k1 ∈ R  and  k2 ∈ R.  If  (  k1 , k2 ) = ( 0, 0 ),  then  y ( t )  is the trivial solution.

On the other hand, if  ( k1 , k2 ) ≠ ( 0, 0 ),  then 

y ( t )  =  k t a t a a t a a t3 2 1 2 1 2log log log sin log log log( ) ( ) +( ( ) )α β . (1.11)

where  k3 = k k1
2

2
2+ ,  sin β = k1 / k3  and  cos β = k2 / k3 

.
Comparing the solutions of Eq. (1.7) with those of Eq. (1.10), we have the following

pair of an oscillation theorem and a nonoscillation theorem.
Theorem 1.1.  Assume (1.8) and suppose that there exists a  λ > 1 / 4  such that 

g x
x a x a x a a x
( ) ≥ +

( )
+
( ) ( )( )

1
4

1
4 2

2 2
2

2 2
1 2

2 2log log log log
λ

for  |  x |  sufficiently large, where  a1  a n d   a 2   are arbitrary positive numbers.
Then all nontrivial solutions of Eq. (1.7) are oscillatory.

Theorem 1.2.  Assume (1.8) and suppose that 

g x
x a x a x a a x
( ) ≤ +

( )
+

( ) ( )( )
1
4

1
4

1
42

2 2
2

2 2
1 2

2 2log log log log

for   x > 0   or   x  < 0,   | x |   sufficiently large, where   a1   and   a2   are arbitrary
positive numbers.  Then all nontrivial solutions of Eq. (1.7) are nonoscillatory.

Remark 1.2.  Let us take  0 < ai < 1,  i = 1, 2.  Then we find that Theorem 1.2 is
superior to Theorem B.

2.  Oscillation theorem.  In this section, we will prove Theorem 1.1.  To this end,
we need the following results (refer to [10, 12 – 15]).

Lemma 2.1.  Let  f ( t )  be a positive  C 2 -function defined on  [  T, ∞  )  for some
T > 0.   If the second derivative of   f t( )   is negative for   t ≥ T,   then   f t( )   is
nondecreasing on the interval.

Lemma 2.2.  Assume (1.8) and suppose that Eq. (1.7) has an eventually positive
solution.  Then the positive solution tends to infinity as  t → ∞.

Proof of Theorem 1.1.  By way of contradiction, we suppose that Eq. (1.7) has a
nonoscillatory solution  x0 ( t ).  Then the solution is positive or negative eventually.  We
consider only the former, because the latter is carried out in the same way.  By
assumption, we can find a  λ > 1 / 4  and an  M > 0  such that 
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g x
x a x a x a a x
( ) ≥ +
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( ) ( )( )

1
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1
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2

2 2
1 2

2 2log log log log
λ (2.1)

for  x > M.  By virtue of Lemma 2.2, there exists a  T > 0  such that 

x0 ( t )  >  M      for      t  ≥  T.

Changing variable  s = log t,  we can transform Eq. (1.7) into the equation 

˙̇ ˙u u g u− + ( )   =  0, (2.2)

where  u ( s ) = x ( t ).  Let  u0 ( s )  be the solution of Eq. (2.2) corresponding to  x0 ( t ).
Then we have 

u0 ( log T )  =  x0 ( T )  >  M.

We next move  u0 ( s )  along the  s -axis.  Let  σ0  be a number with  0 < σ0 < 2 log M
and put 

u1 ( s )  =  u0 ( s – σ0 + log T )

for  s ≥ σ0 
.  Needless to say,  u1 ( s )  is also a solution of Eq. (2.2) and it is greater than

the number  M  for  s ≥ σ0 
.

We will estimate the growth rate of  u1 ( s )  in details.  For this purpose, we define 

ξ ( s )  =  u1 ( s ) e–
 
s

 
/

 
2.

Then, using (2.1), we obtain 

˙̇ ˙̇ ˙ / /ξ( ) = ( ) − ( ) + ( )

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

− −( )s u s u s u s e g u s u s es s
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for  s ≥ σ0 
.  Hence, it follows from Lemma 2.1 that  ξ ( s )  is nondecreasing for  s  ≥ σ0 

,
and therefore, we have 

ξ ( s )  ≥  ξ ( σ0 )  =  u1 ( σ0 ) e–
 
σ0

 
/

 
2  =  u0 ( log T ) e–

 
σ0

 
/

 
2  >  M e–

 
σ0

 
/

 
2  >  1

for  s ≥ σ0 
.  From this inequality, we get the lower estimation 

u1 ( s )  >  es
 
/

 
2      for      s  ≥  σ0 

. (2.3)

Let us form an upper estimation of  u1 ( s ).  By the assumption (1.8), we have 

˙̇ ˙u s u s1 1( ) − ( )   =  – g ( u1 ( s ) )  <  0

for  s ≥ σ0 
.  This implies that 

˙ ˙u s u es
1 1 0

0( ) ≤ ( ) −σ σ       for      s  ≥  σ0 
.

Integrate both sides of this inequality to obtain 

u1 ( s )  ≤  ˙ ˙u e u us
1 0 1 0 1 0

0( ) − ( ) + ( )−σ σ σσ .

Hence, there exists a  σ1 > σ0  such that 

a u s2 1( )  <  e2s      for      s  ≥  σ1 
. (2.4)

To get a sharper estimation than (2.4), we define a function  η ( s )  by

s η ( s )  =  u1 ( s ) e–
 
s

 
/

 
2.

Differentiating both sides of the equality twice, we have 
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s s s u s u s u s e s˙̇ ˙ ˙̇ ˙ /η η( ) + ( ) = ( ) − ( ) + ( )


−2 1
41 1 1

2.

Hence, together with (2.1), (2.3) and (2.4), we obtain 

d
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for  s ≥ σ1 
.  From this inequality, we get 

s s
s2

1
1
2

1
1

64
˙ log ˙η

σ
σ η σ( ) ≤ − + ( )      for      s  ≥  σ1 

,

and therefore, there exists a  σ2 > σ1  such that  η̇( )s  < 0  for  s ≥ σ2 
.  Hence, we

obtain the upper estimation 

u1 ( s )  ≤  
u

e
ses1 2

2
2

2
2

( )σ
σ σ /

/      for      s  ≥  σ2 
. (2.5)

We now consider the function 

y ( t )  =  t a t a a t a a tlog log log sin / log log log2 1 2 1 21 4( ) − ( )( ( ))λ .

Then, as shown in Section 1, the function is an oscillatory solution of Eq. (1.10)
because  λ > 1 / 4  (we may take  k3 = 1  and  β = 0  in the representation (1.11).  It is
clear that  y ( t )  has infinitely many zeros

em  =  
1 1

1 42 1a a

m
exp exp exp

/

π
−











λ

for  m ∈ N.  Let  sm = log em  
.  Then  sm  tends to infinity as  m →  ∞ .  We can easily

check that 

e

s

s

m

m / 2

1+
  →  ∞      as      m  →  ∞.

Hence, we can choose an  m0 ∈ N  so that 

σ2  <  sm0
     and      

u e
s

s

m

m
1 2

2

2

1

0

0

( ) <
+

σ
σ

/

. (2.6)

For the sake of simplicity, let  σ3 = sm0
  and  σ4 = sm0 + 1 

.  Note that  σ2  < σ3 < σ4  and

points  eσ3  and  eσ4  are two successive zeros of  y ( t ).
We translate the positive solution  u1 ( s )  of Eq. (2.2).  Let 

u2 ( s )  =  u1 ( s – σ3 + σ2 )

for  s ≥ σ3 – σ2 + σ0 
.  From (2.5) and (2.6), we see that 

u2 ( s )  <  
u

e
s e

u
s es s1 2

2
2 3 2

2 1 2

2
3 2

2
2

3 2 3
( ) ( − + ) = ( ) ( − + )( − + ) ( − )σ

σ
σ σ σ

σ
σ σσ

σ σ σ
/

/ /   <

<  
e

s e
s

es s
σ

σ

σ
σ σ σ σ

σ

3
3

2

4
3 2

2 3 2

4

2
/

/ /( − + ) = − +( − )
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for  s ≥ σ3 
.  Hence, we have 

u2 ( s )  <  es
 
/

 
2      for      σ3  ≤  s  ≤  σ4 

. (2.7)

Let  x ( t )  be the solution of Eq. (1.7) corresponding to  u2 ( s ).  Since  x ( t )  is made
by a parallel translation of  x0 ( t ),  it follows that 

x ( t )  >  M      for      t  ≥  eσ3. (2.8)

From (2.7), it also turns out that 

x ( t )  <  t       for      eσ3  ≤  t  ≤  eσ4.

Hence, by (2.1) again, we have 

g x t
x t a x t a x t a a x t

( )
( ) ( ) ( )

( )
( )

≥ +
( )

+
( ) ( ( ))

1
4

1
4 2

2 2
2

2 2
1 2

2 2log log log log
λ   >

>  1
4

1
4 2

2
2

2
1 2

2+
( )

+
( ) ( )( )log log log loga t a t a a t

λ (2.9)

for  eσ3 ≤ t ≤ eσ4.  We may regard  x ( t )  as an eventually positive solution of the linear
differential equation 

′′ + ( )
( )
( )

x
t

g x t
x t

x1
2   =  0.

Remember that  y ( t )  is an oscillatory solution of Eq. (1.10), whose successive zeros

are  eσ3  and  eσ4.  Hence, by (2.9) and Sturm’s comparison theorem,  x ( t )  has at least

one zero between  eσ3  and  eσ4.  This is a contradiction to (2.8).  The proof of Theorem
1.1 is now complete.

3.  Nonoscillation theorem.  As has been mentioned in the proof of Theorem 1.1,
the change of variable  s = log t  transfers Eq. (1.7) to Eq. (2.2), which is equivalent to
the system 

u̇   =  v + u,
(3.1)

v̇  =  – g ( u ).
System (3.1) is of Liénard type.  Phase plane analysis is frequently made for the
purpose of examining the asymptotic behavior of solutions of system (3.1).  We call the
projection of a positive semitrajectory of system (3.1) onto the phase plane a positive
orbit.

Suppose that there exists a nontrivial oscillatory solution  x ( t )  of Eq. (1.7).  Let  t0
be the initial time of  x ( t )  and let  { tn }  be the sequence of zeros of  x ( t ).  Take  s0 =

= log t0  and  σ n = log tn  .  Let  ( u ( s ), v  ( s ) )  be the solution of system (3.1)
corresponding to  x ( t ).  Then, it is clear that  u  ( σn ) = 0.  Taking account of the vector
field of system (3.1), we also see that there exists another sequence  { τn }  with  σn <
< τn < σn + 1  such that  v ( τn ) = 0.  To be precise, the positive orbit of system (3.1)

starting at  ( u ( s0 ), v ( s0 ) )  rotates around the origin  ( 0, 0 )  clockwise.  Since  g ( x )  is
smooth enough to guarantee the uniqueness of solutions to the initial value problem
and system (3.1) is autonomous, any positive orbit of system (3.1) fails to cross itself
and all other positive orbits of system (3.1).  To sum up, we have the following result.

Lemma 3.1.  Under the assumption (1.8), if Eq. (1.7) has a nontrivial oscillatory
solution, then all nontrivial positive orbits of system (3.1) rotate in a clockwise
direction about the origin.

By means of Lemma 3.1 and phase plane analysis for system (3.1), we give the
proof of Theorem 1.2.

ISSN  1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 12



1710 N. YAMAOKA, J. SUGIE

Proof of Theorem 1.2.  We prove only the case that 

g x
x a x a x a a x
( ) ≤ +

( )
+

( ) ( )( )
1
4

1
4

1
42

2 2
2

2 2
1 2

2 2log log log log
(3.2)

for  x > 0  sufficiently large, because the proof of the other case is essentially the same.
The proof is by contradiction.  Suppose that there exists a nontrivial oscillatory solution
of Eq. (1.7).  Then, from Lemma 3.1 we see that all positive orbits go around the origin
in clockwise order except the trivial positive orbit, namely, the origin.

We choose a number  s0  so large that (3.2) holds for  x > e as0
2/   and let 

P  =  e
a s s a s

e
a

s s0 0

2 0 0 1 0 2

1
2

1
2

1
2

,
log

− + +











.

Note that the point  P  belongs to the region  R  =df
 {  ( u, v  ) : – u  / 2 ≤ v < 0 }.  We

consider the solution  ( u ( s ), v ( s ) )  of system (3.1) satisfying the initial condition 

( u ( s0 ), v ( s0 ) )  =  P. (3.3)

Since the positive orbit of system (3.1) corresponding to  ( u ( s ), v  ( s ) )  also rotates
about the origin, it meets the straight line  v = – u / 2  infinitely many times.  Let  s1 > s0

be the first intersecting time of the positive orbit with the line, and let  Q  = ( u ( s1 ),
v ( s1 ) ).  Then, taking the vector field of system (3.1) into consideration, we see that the
arc  P Q  of the positive orbit is in the region  R.  In other words,  – u ( s ) / 2 ≤ v ( s ) < 0
for  s0 ≤ s ≤ s1 

.  Hence, we have 

u̇ s
u s( ) ≥ ( )

2
      for      s0  ≤  s  ≤  s1 

,

and therefore, 

u ( s )  ≥  u s e e
a

s s
s

( ) =( − )
0

2

2

0 /       for      s0  ≤  s  ≤  s1 
. (3.4)

We consider the function 

ξ ( s )  =  
  

v( )
( )
s

u s
.

Then, the function is defined on an open interval containing  [ s0 
, s1 ].  Taking notice of

(3.3), we see that 

ξ ( s0 )  =  − + +1
2

1
2

1
20 0 1 0s s a slog

.

Since the point  Q  is on the line  v = – u / 2,  we also see that 

ξ ( s1 )  =  − 1
2

. (3.5)

Differentiating  ξ ( s )  and using (3.2) and (3.4), we have 

ξ̇ ξ ξ( ) = − ( ) − ( ) − ( )
( )
( )

s s s
g u s

u s
2   ≥

≥  − ( ) +



 −

( )
−

( ) ( ( ))( ) ( ) ( )
ξ s

a u s a u s a a u s
1
2

1
4

1
4

2

2
2 2

2
2 2

1 2
2 2log log log log

  ≥

≥  − ( ) +



 − −

( )
ξ s

s s a s
1
2

1
4

1
4

2

2 2
1

2log
(3.6)
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for  s0 ≤ s ≤ s1 
.  To estimate  ξ ( s ),  we define 

η ( s )  =  − + +1
2

1
2

1
2 1s s a slog

for  s ≥ s0 
.  It is clear that  η ( s0 ) = ξ ( s0 ).  Also, it turns out that  η ( s )  satisfies 

˙
log

η η( ) = − ( ) +



 − −

( )
s s

s s a s
1
2

1
4

1
4

2

2 2
1

2 .

Hence, together with (3.6), we obtain 

ξ ( s )  ≥  η ( s )  >  − 1
2

      for      s0  ≤  s  ≤  s1 
.

This is a contradiction to (3.5) at  s = s1 
.  Thus, all nontrivial solutions of Eq. (1.7) are

nonoscillatory.  We have completed the proof of Theorem 1.2.
4.  Extension to the  n-th stage.  Having given the proofs of Theorems 1.1 and 1.2,

we may now proceed to natural generalizations.  We first make a new multilayer
structure of linear differential equations of Euler type.  Let  { aj }  be any sequence with

aj > 0,  j ∈ N.  For  n ∈ N  fixed,  we define

log0
n w   =  w,      log log logk

n
n k k

nw a w= ( )− −1 ,      k  =  1, 2, … , n – 1.

We should notice that  logk
n w   depends on  n   as well as  k.  Using the terms, we

describe two sequence of functions as follows: 

L wn
1( )   =  1,      L w L w wk

n
k
n

k
n

+ ( ) = ( )1 log ,      k  =  1, 2, … , n – 1,

S1 ( w )  =  0,       Sn ( w )  =  1
2

1

1

( )( )=

−

∑
L wk

n
k

n

,      n  ≥  2.

The sequences are well-defined for  w > 0  sufficiently large.  Note that 

Sn + 1 ( w )  �  S w
L w

n
n
n( ) +
( )( )
1

2

unless  a1 = a2 = …  = an 
.  To be specific, 

L w1
1( )   =  1,      L w a w2

2
1( ) = ( )log ,      L w a w a a w3

3
2 1 2( ) = ( ) ( )( )log log log ,

L w a w a a w a a a w4
4

3 2 3 1 2 3( ) = ( ) ( ) ( ( ))( ) ( )log log log log log log ;

S1 ( w )  =  0,       S2 ( w )  =  1,       S3 ( w )  =  1 1

2
2+

( )( )log a w
,

S4 ( w )  =  1 1 1

3
2

3
2

2 3
2+

( )
+

( ) ( ( ))( ) ( ) ( )log log log loga w a w a a w
,

and so on.
Consider the linear equation 

′′ + ( ) +
( )





( )

y
t

S t
L t

yn
n
n

1 1
42 2

λ   =  0, (4.1)

which coincides with Eqs. (1.9) and (1.10) when  n = 2  and  n = 3,  respectively.  Then
we have the following result.

ISSN  1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 12



1712 N. YAMAOKA, J. SUGIE

Lemma 4.1.  Let  n ≥ 2.  Then Eq. (4.1) has the general solution 

y ( t )  =  
tL t K t K t if

tL t K K t if

n
n

n
n z

n
n z

n
n

n
n

− − −
−

−

( ) ( ) + ( ) ≠

( ) + ( ) =







{ }

{ }

1 1 1 2 1
1

3 4 1

1 4

1 4

log log / ,

log log / ,

λ

λ

where  Ki ,  i = 1, 2, 3, 4,  are arbitrary constants and  z  is the root of Eq. (1.3).
From Lemma 4.1, we see that all nontrivial solutions of Eq. (4.1) are oscillatory if

and only if  λ  > 1 / 4.  In case  λ > 1 / 4,  y  ( t )  given in Lemma 4.1 is a complex
solution.  By using Euler’s formula, the real solution of Eq.  (4.1) can be written in the
form 

y ( t )  =  tL t k t k tn
n

n
n

n
n( ) ( ) + ( ){ ( ) ( )}− −1 1 2 1cos log log sin log logα α , (4.2)

where  ki ,  i = 1, 2,  are arbitrary constants and  α = λ − 1 4/  > 0.
Theorems 4.1 and 4.2 below are proven in the same manner as Theorems 1.1 and

1.2, respectively.  We give a very brief outline of their proofs.
Theorem 4.1.  Let   {  aj }  be any sequence with  aj > 0,  j ∈  N.  Under the

assumption (1.8), if there exists a  λ > 1 / 4  such that

g x
x

S x
L x

n
n
n

( ) ≥ ( ) +
( )( )

1
4

2
2 2
λ

for  | x |  sufficiently large, then all nontrivial solutions of Eq. (1.7) are oscillatory.
Theorem 4.2.  Let   {  aj }  be any sequence with  aj > 0,  j ∈  N.  Under the

assumption (1.8), if

g x
x

S x
L x

n
n
n

( ) ≤ ( ) +
( )( )

1
4

1
4

2
2 2

for  x > 0  or  x < 0,  | x |  sufficiently large, then all nontrivial solutions of Eq. (1.7)
are nonoscillatory.

Outline of the proof of Theorem 4.1.  By contradiction, we suppose that Eq. (1.7)
has an eventually positive solution  x0 ( t ).  Let  M  be a number so large that 

g x
x

S x
L x

n
n
n

( ) ≥ ( ) +
( )( )

1
4

2
2 2
λ (4.3)

for  x > M.  From Lemma 2.2, we can choose a  T > 0  such that 

x0 ( t )  >  M      for      t  ≥  T.

Let  u0 ( s )  be the solution of 

˙̇ ˙u u g u− + ( )   =  0

corresponding to  x0 ( t )  and put 

u1 ( s )  =  u0 ( s – σ0 + log T )

for  s ≥ σ0 
,  where  σ0  is a number with  0 < σ0 < 2 log M.  As in the proof of Theorem

1.1, we can estimate that 

u1 ( s )  ≤  
u

e
ses1 2

2
2

2
2

( )σ
σ σ /

/      for      s  ≥  σ2 
,

where  σ2  is a number with  σ2 > σ0 
.

Since  λ > 1 / 4,  Eq. (4.1) has oscillatory solutions of the form (4.2).  We select 

y ( t )  =  tL t tn
n

n
n( ) − ( )( )−sin / log logλ 1 4 1

from among them.  Let  em  be the zeros of  y ( t ).  Then we see that 
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em  =  exp exp
/n

n m
−

π
−





1 1 4λ

for  m ∈ N,  where  { }−expn
n t1   is a sequence of function as follows: 

exp0
n t   =  t,      exp exp expk

n

k
k
nt

a
t= ( )−

1
1 ,      k  =  1, 2, … , n – 1.

Let  sm = log em.  Then we obtain 

e

s

s

m

m / 2

1+
  →  ∞      as      m  →  ∞.

Hence, there exists an  m0 ∈ N  such that 

σ2  <  sm0
     and      

u e

s

s

m

m
1 2

2

2

1

0

0

( ) <
+

σ
σ

/

.

Put  σ3 = sm0
  and  σ4 = sm0 + 1 

.  We define 

u2 ( s )  =  u1 ( s – σ3 + σ2 )

for  s ≥ σ3 – σ2 + σ0 
.  Then, we get the estimation 

M  <  u2 ( s )  <  es
 
/

 
2      for      σ3  ≤  s  ≤  σ4 

.

Let  x ( t )  be the solution of Eq. (1.7) corresponding to  u2 ( s ).  Then, we can rewrite the
above estimation as 

M  <  x ( t )  <  t       for      eσ3  ≤  t  ≤  eσ4. (4.4)

Hence, by (4.3) we have 

g x t
x t

S t
L t

n
n
n

( )
( )

( )
( )

> ( ) +
( )

1
4 2

λ

for  eσ3 ≤ t ≤ eσ4.  From this inequality and Sturm’s comparison theorem, we see that

x ( t )  has at least one zero between  eσ3  and  eσ4,  which contradicts (4.4).  Thus,
Theorem 4.1 is now proved.

Outline of the proof of Theorem 4.2.  We give only the proof of the case that

g x
x

S x
L x

n
n
n

( ) ≤ ( ) +
( )( )

1
4

1
4

2
2 2 (4.5)

for  x > 0  sufficiently large.  The proof is by contradiction.  Suppose that there exists a
nontrivial oscillatory solution of Eq. (1.7).  Let

P  =  e
a L e a

e
a

s

n k
n s

nk

n s

n

0

0

0

1 12 1

1
2

1
2

1

− −= −
− +

( )












∑,

/
,

where  s0  is a number so large that (4.5) holds for  e as
n

0
1/ − .  Let  ( u ( s ), v  ( s ) )  be

the solution of system (3.1) satisfying the initial condition 

( u ( s0 ), v ( s0 ) )  =  P.

We consider the positive orbit of system (3.1) corresponding to  ( u ( s ), v  ( s ) ).  Then,
from Lemma 3.1 we see that the positive orbit rotates about the origin, and therefore, it
meets the straight line  v = – u / 2  infinitely many times.  Let  s1 > s0  be the first
intersecting time of the positive orbit with the line.  Then we have 
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u ( s )  ≥  u s e e
a

s s
s

n
( ) =( − )

−
0

2

1

0 /       for      s0  ≤  s  ≤  s1 
. (4.6)

As in the proof of Theorem 1.2, we compare the function 

ξ ( s )  =  
  

v( )
( )
s

u s

with a solution 

η ( s )  =  − +
( )−=

∑1
2

1
2

1

12 L e ak
n s

nk

n

/

of the equation 

˙
/

η η( ) = − ( ) +



 −

( )( )−=
∑s s

L e ak
n s

nk

n
1
2

1
4

12

1
2

2

.

It follows from (4.5) and (4.6) that 

˙
/

ξ ξ( ) ≥ − ( ) +



 −

( )( )−=
∑s s

L e ak
n s

nk

n
1
2

1
4

12

1
2

2

for  s0 ≤ s ≤ s1 
.  Since  η ( s0 ) = ξ ( s0 ),  we conclude that

ξ ( s )  ≥  η ( s )  >  − 1
2

      for      s0  ≤  s  ≤  s1 
.

This contradicts the fact that  ξ ( s1 ) = – 1 / 2.  Thus, all nontrivial solutions of Eq. (1.7)
are nonoscillatory, thereby completing the proof of Theorem 4.2.
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