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MULTILAYER STRUCTURES OF SECOND-ORDER
LINEAR DIFFERENTIAL EQUATIONS OF EULER TYPE
AND THEIR APPLICATION TO NONLINEAR OSCILLATIONS

BATATOIIAPOBI CTPYKTYPH JITHIMHUX
AUOEPEHIIAJIBHUX PIBHAHD APYI'OI'O IIOPAIKY
THUILY EMWJIEPA TA IX 3ACTOCYBAHHS

10 HEJIIHIMHUX KOJIMBAHDb

The purpose of this paper is to present new oscillation theorems and nonoscillation theorems for the
nonlinear Euler differential equation r*x” + g(x)=0. Here we assume that xg(x) >0 ifx#0, but we
do not necessarily require that g(x) be monotone increasing. The obtained results are best possible in a
certain sense. To establish our results, we use Sturm’s comparison theorem for linear Euler differential

equations and phase plane analysis for a nonlinear system of Liénard type.

HaseneHo HOBI OCUMJISLIAHI Ta HEOCHMJIALINAHI TEOPEMH /1J1s1 HEJIiHIHOr0 AndepeHIia/IbHOrO PiBHIH-
us Bitnepa #x”+ g(x) =0, ae npunyckaeThes, mo xg(x) >0 mpn x #0, aje BEMOra mpo MOHO-
TOHHE 3pocTaHHst g(x) He € 060B’s13k0BOI0. OneprkaHi pe3yJibTaTH € HAUKPALIUMHU Y IEBHOMY CEHCI.
[17151 IX BCTAHOBJIEHHSI BUKOPHCTAHO MOPiBHAIBHY TeopeMy LLTypMa fuist TiHIMHUX OTUdepeHiabHIX
piBHsiHb Eitniepa Ta pazoBuil MUIOIIMHHMI aHAUTI3 151 HeJliHiiHOI cucTemu Tuny JIbeHapaa.

1. Introduction and motivation. Let f(¢#) be a continuous function defined on
[T, ) for some T > 0. The function f(¢) is said to be oscillatory if there exists a
sequence {f,} tending to o such that f(z,) = 0. Otherwise, f(¢#) said to be
nonoscillatory.

A class of linear differential equations of Euler type has a multilayer structure. To
explain this fact, we first consider the equation

1(1 A
"+ 5|-+——= 1|y =0, L1
Y t* (4 (logt)z)y (-1

where " =d/dt and A is a positive parameter. Eq. (1.1) is called the Riemann —
Weber version of the Euler differential equation (refer to [1 — 4]). All nontrivial
solutions of Eq. (1.1) are oscillatory if and only if A > 1/4, because Eq. (1.1) has the
general solution

’

Vi{K,(logt)* + K>(logn)' ™%} if A = 1/4,
(1) = (1.2)
Jtlogt{K; + K4log(logt)} if A=1/4,
where K;, i=1,2,3,4, are arbitrary constants and z is the root of
P—z+A = 0. (1.3)

Hence, for Eq. (1.1) the critical value of A is 1/4. Such a number is generally called
the oscillation constant.

Letting s =1logt and u(s) = y(z)/ Jt, we can reduce Eq. (1.1) to the basic Euler
differential equation

u+ &2 u =0, (1.4)
s
where * = d/ds. It is well-known that the condition A > 1/4 is necessary and

sufficient for all nontrivial solutions of Eq. (1.4) to be oscillatory (for example, see [5 —
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7]). In other words, the oscillation constant for Eq. (1.4) is also 1/4. Let us add the

perturbation A/(slog s)2u to the critical case of Eq. (1.4), namely, u + u/(4s%) = 0.
Then we get

i+ Ll 2 <o, (1.5)
s“\4  (logs)
which has the same form of Eq.(1.1). Taking account of this relation between
Egs. (1.1) and (1.4), we may regard Eqs. (1.1) and (1.4) as the first and the second
stages of linear differential equations of Euler type, respectively. Then what is the
third stage? By putting ¢ = ¢® and y(¢) = JeTu(s), Eq. (1.5) is transformed into the
equation

» o 11 1 A
e (4 " 40z aogr)z(log(logr))z)y -0 e

It is safe to say that Eq. (1.6) is the third stage of Euler’s differential equations.
Repeating the same transformation, we can derive the nth stage of linear differential
equations of Euler type (for details, see [§ — 10]). From the reason above, we see that
linear differential equations of Euler type have a multilayer structure.

The authors [9, 10], have compared the solutions of Eq. (1.6) or the nth stage of
Euler’s differential equations with those of the nonlinear equation

” 1
x” + t—zg(x) =0, (1.7)

where g(x) satisfies a suitable smoothness condition for the uniqueness of solutions of
the initial value problem and the assumption
xg(x)>0 if x=#0, (1.8)

and established some oscillation theorems and nonoscillation theorems for Eq. (1.7).
For example, we can state the following results which are complementary to each
other.

Theorem A. Assume (1.8) and suppose that there exists a A > 1/4 such that
g(x) s 1 1 A
S22 > S+ +
X 4 4logx®)*  (logx?)*(log(logx?))*

for |x| sufficiently large. Then all nontrivial solutions of Eq. (1.7) are oscillatory.
Theorem B. Assume (1.8) and suppose that
gx) 1 1 1
- +
x 4 4logx?)®  4(logx?)*(log(logx?))?

for x>0 or x <0, |x| sufficiently large. Then all nontrivial solutions of Eq. (1.7)
are nonoscillatory.

Remark 1.1. We can prove that all solutions of Eq. (1.7) exist in the future under
the assumption (1.8) (for the proof, see [11]). Hence, it is worth while to discuss
whether all nontrivial solutions of Eq. (1.7) are oscillatory or nonoscillatory.

As mentioned above, Euler’s differential equations have the multilayer structure
which is built up of stages such as Eqgs. (1.4), (1.1) and (1.6). A natural question now
arises. Is the multilayer structure unique? The answer is a “no”. For some a; > 0, let

t=¢'/a; and y(t)= \/:S u(s). Then Eq. (1.4) is transferred to the equation

” 1 (1 A
+ =4+ —— = 0. 1.9
S (4 (logaltf) 4 (19

Rewrite ¢ and y in Eq.(1.9)as s and u, respectively. Then the transformation ¢ =
=¢'/a, with a, >0 yields the equation
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1706 N. YAMAOKA, J. SUGIE

N {1, 1 N A
4 4logayt)*  (logayr)*(log(a logayt))*

Jy =0, (1.10)

where y(t) = \/eT u(s). Using the same process infinitely many times, we can make
another multilayer structure of linear differential equations of Euler type. For further
details, see the final section.

It is easy to check that Eq. (1.10) has the general solution

) = Jtloga,t{ K (log(a, logast))* + K,(log(ayloga,t))' ™%} if A = 1/4,
Jtloga,tlog(a;logayt){K; + K, log(log(a, loga,t)) } if A=1/4,

where K;, i=1,2,3,4, are arbitrary constants and z is the root of Eq. (1.3). In case

A >1/4, Eq.(1.3) has conjugate roots z = 1/2 + io, where o = 4/A —1/4. Hence,
by Euler’s formula, the real solution can be represented as

y(t) = Jtlogaytlog(a,loga,t){k cos(alog(log(a,loga,t))) +
+ ky sin(olog(log (g logayt))) }

for some k; € R and kye R. If (k;, ky) =(0,0), then y(z) is the trivial solution.
On the other hand, if (k;, k) # (0, 0), then

y(t) = ks Jtlogaytlog(a, logayt) sin(olog(log(a, logayt)) + B). (1.11)

where k3= Ak + k3 , sinP =k, /k; and cos P =k,/ks.
Comparing the solutions of Eq. (1.7) with those of Eq. (1.10), we have the following
pair of an oscillation theorem and a nonoscillation theorem.

Theorem 1.1. Assume (1.8) and suppose that there exists a A > 1/4 such that

{CO P UM S A
x 4 4loga,x?)?  (loga,x*)*(log(ay loga,x?))?

for |x| sufficiently large, where a; and a, are arbitrary positive numbers.
Then all nontrivial solutions of Eq. (1.7) are oscillatory.
Theorem 1.2. Assume (1.8) and suppose that

g o1, Ly !
X 4 4logayx®)?  4(logayx)*(log(a, logarx*))>

for x>0 or x<0, |x| sufficiently large, where a; and a, are arbitrary
positive numbers. Then all nontrivial solutions of Eq. (1.7) are nonoscillatory.

Remark 1.2. Letus take 0 <a; <1, i=1,2. Then we find that Theorem 1.2 is
superior to Theorem B.

2. Oscillation theorem. In this section, we will prove Theorem 1.1. To this end,
we need the following results (refer to [10, 12 — 15]).

Lemma 2.1. Let f(t) be a positive Cz—function defined on [T, ) for some
T > 0. If the second derivative of f(t) is negative for t =T, then f(t) is
nondecreasing on the interval.

Lemma 2.2. Assume (1.8) and suppose that Eq. (1.7) has an eventually positive
solution. Then the positive solution tends to infinity as t — oo.

Proof of Theorem 1.1. By way of contradiction, we suppose that Eq. (1.7) has a
nonoscillatory solution x,(z). Then the solution is positive or negative eventually. We
consider only the former, because the latter is carried out in the same way. By
assumption, we can finda A >1/4 and an M >0 such that
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g 1, 1 A 2.1
x 4 4(oga,x®)’  (logayx?)*(log(a loga,x*))> @

for x > M. By virtue of Lemma 2.2, there exists a 7> 0 such that
xp(t) >M for t2=T.
Changing variable s =1log?, we can transform Eq. (1.7) into the equation
u—u+ gu =0, 2.2)

where u(s) = x(¢). Let uy(s) be the solution of Eq. (2.2) corresponding to x((?).
Then we have

We next move u;(s) along the s-axis. Let G, be a number with 0 < 6, < 2logM
and put

uy(s) = ug(s—og+logT)

for s =2 0. Needless to say, u;(s) is also a solution of Eq. (2.2) and it is greater than
the number M for s = 0.
We will estimate the growth rate of u; (s) in details. For this purpose, we define

E(s) = uy(s)e*'2

Then, using (2.1), we obtain

&(s) = {ﬁl(s)_ﬂ1(5)+iu1(s)}e_S/2 - {_g(ul(s))‘*'im(s)}e_“z <

1 A —s/2
e B 0
< { 4(logay ()’ (logay(s))*(log(a; logayid (s)))? } uy(s)e <

for s = 0,. Hence, it follows from Lemma 2.1 that £(s) is nondecreasing for s > g,
and therefore, we have

&(s) > &(60) = u (60)6*00/2 — uo(log T)efco/z > M€760/2 > 1
for s> 6. From this inequality, we get the lower estimation

/2

up(s) > ¢ for s 2 o. (2.3)

Let us form an upper estimation of u; (s). By the assumption (1.8), we have
iy (s) = (s) = —g(uy(s)) <0
for s =2 6y. This implies that

i (s) < y(cg)e’ %  for s> o,.

Integrate both sides of this inequality to obtain

up(s) < i(0p)e’ 0 — iy(y) + u(0p).
Hence, there exists a 6| > 0 such that
Jayu(s) < e for s > o). 2.4)

To get a sharper estimation than (2.4), we define a function n(s) by

sN(s) = uy(s)e™'?

Differentiating both sides of the equality twice, we have
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1708 N. YAMAOKA, J. SUGIE

sM(s) + 21(s) = {iil(s) — () + i “1(5)} o512

Hence, together with (2.1), (2.3) and (2.4), we obtain

di (s*N(s)) = {121(8) —uy(s) + 1 ul(s)} se™S? = {_g(ul(s)) L1 ul(s)} sed? <
s 4 4

< {_ 1 B A }ul(s)se—s/z <
4(logaui (s))*  (logayui(s))*(log(a logayui ()))*

L ——F—§5 < ——
4(loge™**)? 64s

for s = ;. From this inequality, we get

2 1 S 2.
sNnis) £ ——1log— + on(c for s = o4,
n(s) o o8 o, in(y) 1
and therefore, there exists a 6, > 6, such that n(s) <0 for s > 6,. Hence, we
obtain the upper estimation
for s 2 0. 2.5

We now consider the function

y(t) = JJtlogaytlog(a,logayt)sin(y/A — 1/4log(log(a; loga,t))).
Then, as shown in Section 1, the function is an oscillatory solution of Eq. (1.10)
because A >1/4 (wemay take k3=1 and B =0 in the representation (1.11). It is
clear that y(z) has infinitely many zeros

e, = iex iex (ex ﬂ:m)

(R P G ey
for me N. Let s,, =loge,,. Then s, tends to infinity as m — o. We can easily
check that

esm /2

—> oo as m — oo,
Sm+1

Hence, we can choose an m, € N so that

Sy 12
w(0y) _ e™

. (2.6)
O3 Sy +1

Gy < Sy, and

For the sake of simplicity, let 63 = Sm, and O, = Smg+1- Note that 6, < 03 < 0, and

points € and e® are two successive zeros of y(z).
We translate the positive solution u; (s) of Eq.(2.2). Let

M2(S) = u1(5—03 +62)
for s 2 03 -0, + 6. From (2.5) and (2.6), we see that

u(0,)

(s-03+6,)/2 _ u;(0,)
(52602/2

(s—03)/2

uy(s) < (s—053+0j)e (s—03+0j)e <

1)
663/2

< (s=03)/2 _ $-03+0) o5/2

(S - 63 + 62 )e
(54 G4
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for s = 05. Hence, we have

/2

u(s) < e for o3 < s < 0y 2.7

Let x(t) be the solution of Eq. (1.7) corresponding to u, (s). Since x(t) is made
by a parallel translation of x(#), it follows that

x(t) > M for ¢
From (2.7), it also turns out that

[\

€%s. (2.8)

x(t) < vt for €% <1< %
Hence, by (2.1) again, we have
gx(®) S 1, 1 . A S
= 22 22 202
x(t) 4 4(logax“ (1))~ (logayx~(1))“(log(a; loga,x~(1)))
1 1 A
-t 7t 3 3
4 4(logayt)”  (logayt)~(log(alogayt))

2.9)

for e®3<r<e%. We may regard x(¢) as an eventually positive solution of the linear
differential equation

Remember that y(¢) is an oscillatory solution of Eq. (1.10), whose successive zeros
are ¢ and ¢%4. Hence, by (2.9) and Sturm’s comparison theorem, x(¢) has at least

one zero between ¢® and ¢4 This is a contradiction to (2.8). The proof of Theorem
1.1 is now complete.

3. Nonoscillation theorem. As has been mentioned in the proof of Theorem 1.1,
the change of variable s =log¢ transfers Eq.(1.7) to Eq. (2.2), which is equivalent to
the system

U =v+u,

. 3.1

v = —g(u).
System (3.1) is of Liénard type. Phase plane analysis is frequently made for the
purpose of examining the asymptotic behavior of solutions of system (3.1). We call the
projection of a positive semitrajectory of system (3.1) onto the phase plane a positive
orbit.

Suppose that there exists a nontrivial oscillatory solution x(#) of Eq.(1.7). Let ¢,
be the initial time of x(¢) and let {z,} be the sequence of zeros of x(z). Take s, =
=logt, and o, =logr,. Let (u(s),v(s)) be the solution of system (3.1)
corresponding to x(¢). Then, itis clear that u(c,) = 0. Taking account of the vector
field of system (3.1), we also see that there exists another sequence {7,} with ©,<
<1,<0,,1 suchthat v(t,) = 0. To be precise, the positive orbit of system (3.1)

starting at (u(sg), v(sy)) rotates around the origin (0, 0) clockwise. Since g(x) is
smooth enough to guarantee the uniqueness of solutions to the initial value problem
and system (3.1) is autonomous, any positive orbit of system (3.1) fails to cross itself
and all other positive orbits of system (3.1). To sum up, we have the following result.

Lemma 3.1. Under the assumption (1.8), if Eq. (1.7) has a nontrivial oscillatory
solution, then all nontrivial positive orbits of system (3.1) rotate in a clockwise
direction about the origin.

By means of Lemma 3.1 and phase plane analysis for system (3.1), we give the
proof of Theorem 1.2.
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1710 N. YAMAOKA, J. SUGIE

Proof of Theorem 1.2. We prove only the case that
gx) 1 1 1
&=L < —+ + 32
X 4 4logayx®)?  4(logayx?)*(log(a; logarx*))> S
for x>0 sufficiently large, because the proof of the other case is essentially the same.
The proof is by contradiction. Suppose that there exists a nontrivial oscillatory solution

of Eq. (1.7). Then, from Lemma 3.1 we see that all positive orbits go around the origin
in clockwise order except the trivial positive orbit, namely, the origin.

We choose a number s, so large that (3.2) holds for x> \/e" /a, and let

P = ;““é _1+L+; /Q
V as ’ 2 ZSO ZSO ]Ogalso \‘ ay '

Note that the point P belongs to the region R £ {(u,v):—u/2<v <0} We

consider the solution (u(s), v(s)) of system (3.1) satisfying the initial condition
(u(s),v(sg)) = P. (3.3)

Since the positive orbit of system (3.1) corresponding to (u(s), v(s)) also rotates
about the origin, it meets the straight line v =—u/2 infinitely many times. Let s; > s,

be the first intersecting time of the positive orbit with the line, and let Q = (u(s;),
v(s)). Then, taking the vector field of system (3.1) into consideration, we see that the
arc PQ of the positive orbit is in the region R. In other words, —u(s)/2<v(s)<0
for s <s<s;. Hence, we have

- u(s
u(s) = 7) for 59 <5 < 5,

and therefore,

f
s

u(s) = u(so)e(s_s())/2 = e— for s9 <5 < 5. 3.4
Va,
We consider the function
u(s)
s) = —=,
E(s) 25)

Then, the function is defined on an open interval containing [sy, s;]. Taking notice of
(3.3), we see that

1 1 1
Sp) = — =+ — + ——.
g( 0) 2 250 230 IOgCIISO
Since the point Q is on the line v =—u/2, we also see that
1

E(s) = ~5 (3.5)

Differentiating &(s) and using (3.2) and (3.4), we have

E(s) = —E2(s) — E(s) — 8lu(s)) o

u(s)
1) 1 1
= (é(s) " 5)  4(loga®(5))>  4(loga,u®(s))*(log(a; logayu*(s)))? =
1V 1 1
= (a(s) i E) T 452 452 (logars) 3.6)
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for so<s<s,. Toestimate &(s), we define
1 1 1

)= ——+ — + ——

ns) 2 2s  2slogas

for s> sy. Itis clear that M (sy)=E(sy). Also, it turns out that 1 (s) satisfies

i = (w1 -
2 4s 4s”(logays)
Hence, together with (3.6), we obtain
E(s) =2 n(s) > —% for 55 < s <5y,

This is a contradiction to (3.5) at s = s;. Thus, all nontrivial solutions of Eq. (1.7) are
nonoscillatory. We have completed the proof of Theorem 1.2.

4. Extension to the n-th stage. Having given the proofs of Theorems 1.1 and 1.2,
we may now proceed to natural generalizations. We first make a new multilayer
structure of linear differential equations of Euler type. Let {q;} be any sequence with

a;>0, je N. For ne N fixed, we define
logow = w, logiw = log(a,_;logi_jw), k=12,..,n-1

We should notice that logy w depends on n as well as k. Using the terms, we
describe two sequence of functions as follows:

Lw) =1, Li,w = Liw)loggw, k=1,2,...,n-1,

Sy(w) =0, S,(w) g L”( Ty
The sequences are well-defined for w >0 sufficiently large. Note that

S, #* S,
e 1(W) (w) +( ( ))2

unless a; =a, =... =a,. To be specific,
Lw) =1,  Lw) = loglaw), Liw) = log(aw)log(alog(aw)),

Li(w) = log(asw)log(a, log(azw))log(as log(a, log(azw))):

1
Siw)y =0, S,(w)y=1  Sw)=1+ (log(azw))z’
Sa(w) = 1+ ! 5+ 5 I 3
(log(azw))”  (log(azw))~(log(a, log(azw)))
and so on.
Consider the linear equation

1 )

which coincides with Egs. (1.9) and (1.10) when n =2 and n =3, respectively. Then
we have the following result.

ISSN' 1027-3190. Yxp. mam. sxyp., 2006, m. 58, N° 12



1712 N. YAMAOKA, J. SUGIE

Lemma 4.1. Let n>2. Then Eq. (4.1) has the general solution

" VL (O){K (Gogl_ 1 + Ky(logh 0!} if L% 1/4,
y(1) =

VL (0 {K; + Ky log(logl_ 1)} if A=1/4,

where K;, i=1,2,3,4, are arbitrary constants and z is the root of Eq. (1.3).
From Lemma 4.1, we see that all nontrivial solutions of Eq. (4.1) are oscillatory if

and only if A > 1/4. Incase A > 1/4, y(¢) given in Lemma 4.1 is a complex
solution. By using Euler’s formula, the real solution of Eq. (4.1) can be written in the
form

¥(t) = 0k cos(alog(log]_ ) + kysin(alog(ogi )}, (42)

where k;, i=1,2, are arbitrary constants and o.= yA —1/4 >0.

Theorems 4.1 and 4.2 below are proven in the same manner as Theorems 1.1 and
1.2, respectively. We give a very brief outline of their proofs.

Theorem 4.1. Ler {a;} be any sequence with a; > 0, je€ N. Under the
assumption (1.8), if there exists a A > 1/4 such that
89 5 Loy + 2

(L)
for |x| sufficiently large, then all nontrivial solutions of Eq. (1.7) are oscillatory.
Theorem 4.2. Let {a;} be any sequence with a; > 0, j€ N. Under the

X 4

assumption (1.8), if
8() o 1g 2 1
T )y
for x>0 or x <0, |x| sufficiently large, then all nontrivial solutions of Eq. (1.7)
are nonoscillatory.

Outline of the proof of Theorem 4.1. By contradiction, we suppose that Eq. (1.7)
has an eventually positive solution x,(¢). Let M be a number so large that

g 5 1o 2 A
> {56+ Gl 4.3)

for x> M. From Lemma 2.2, we can choose a 7 > 0 such that
xp(t) >M for t=T.
Let uy(s) be the solution of
u—u+gu =0
corresponding to x((#) and put
uy(s) = ug(s—og+logT)

for s =2 0y, where o is a number with 0 < 6y <2logM. As in the proof of Theorem
1.1, we can estimate that

u (O
uy (s) < MMS/Z

AL for s 2 0,,

where G, is a number with 6, > 6.
Since A > 1/4, Eq. (4.1) has oscillatory solutions of the form (4.2). We select

y(t) = i (0)sin(JA — 1/41og(log”_, 1))

from among them. Let ¢,, be the zeros of y(¢). Then we see that
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n m
em = expn_l (exp M)

for m e N, where {exp,_,t} is a sequence of function as follows:

expgl = t, exppt = aiexp(expz_lt), k=1,2,...,n—1.
k

Let s,, =loge,,. Then we obtain

e’ /2

—> oo as m — oo,
Sm+1

Hence, there exists an my € N such that

Sy 12
u1(05) < e

62 S

Gy < Sy, and
mg +1
We define

Put O3 = S, and Oy = Sppya1-

Uy (s) = u;(s—03+0y)
for s 2 63 -0, + 0(. Then, we get the estimation

/2

M < uy(s) < ¢é for o3 < s < 0y

Let x(t) be the solution of Eq. (1.7) corresponding to u, (s). Then, we can rewrite the
above estimation as

M < x(1) < Nt for €% <t <% (4.4)
Hence, by (4.3) we have
gx@®) _ 1g, A
w a0 @y

for €% <t < ¢%. From this inequality and Sturm’s comparison theorem, we see that

x(¢) has at least one zero between ¢° and e®4, which contradicts (4.4). Thus,
Theorem 4.1 is now proved.
Outline of the proof of Theorem 4.2. We give only the proof of the case that

{EI 1
x S )+ 4L (x%))? “>

for x>0 sufficiently large. The proof is by contradiction. Suppose that there exists a
nontrivial oscillatory solution of Eq. (1.7). Let

| %0 1 1w e’
P = \/ ’ (_2 E 2 fo ] ’
ap—1 k=2 Lk(e /an 1) \

where s, is a number so large that (4.5) holds for \feso la,_,. Let (u(s),v(s)) be
the solution of system (3.1) satisfying the initial condition

(u(sg),v(sg)) = P.

We consider the positive orbit of system (3.1) corresponding to (u(s), v(s)). Then,
from Lemma 3.1 we see that the positive orbit rotates about the origin, and therefore, it
meets the straight line v = —u/2 infinitely many times. Let s; > s, be the first
intersecting time of the positive orbit with the line. Then we have
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(s—s0)/2 _ |_€
\“an—l

As in the proof of Theorem 1.2, we compare the function

(C))
&(s) = u5)

u(s) = u(spe for 55 < s < 5. 4.6)

with a solution

1 1~ 1
n(s)=—§+§2ﬁ

of the equation

1

S IV 11
n(s) = (n(s)+2) 45‘2@2(2/%_1))2'

It follows from (4.5) and (4.6) that

. I 14 1
> - YY) T A A e )
&) (&(s) 2) 4 k=2(LZ(eb/an—l))2

for so<s<s,. Since N(sy)=E(sy), we conclude that

E(s) 2 n(s) > —% for 55 < s <5y,

This contradicts the fact that £(s;)=—1/2. Thus, all nontrivial solutions of Eq. (1.7)
are nonoscillatory, thereby completing the proof of Theorem 4.2.
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