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SOME EULER SEQUENCE SPACES OF NONABSOLUTE TYPE

NESAKI IPOCTOPU IIOCJIIIOBHOCTEN ENJIEPA
HEABCOJIIOTHOI'O TUILY

In the present paper, the Euler sequence spaces ¢, and e, of nonabsolute type which are the BK-

spaces including the spaces ¢, and c have been introduced and proved that the spaces e(; and e; are
linearly i somorphic to the spaces ¢, and ¢, respectively. Furthemore, some inclusion theorems have
been given. Additionally, the o-, B-, y- and continuous duals of the spaces e(: and eg have been
computed and their basis have been constructed. Finally, the necessary and sufficient conditions on an
infinite matrix belonging to the classes (e:, : ép) and (e:, :c) have been determined and the

characterizations of some other classes of infinite matrices have also been derived by means of a given
basic lemma, where 1 <p <o,

BeeneHo noHsATTs npocTopis nocsiigosHocteit Eitiepa e(; Ta ecr HeabcosoTHOrO TUIy — BK-1ipo-

. . r r ey, . .
CTOpIB, 10 MICTATh MPOCTOPU ¢, Ta c¢. [loBeJieHo, 10 NPOCTOPH e, Ta e, JiHiiiHO i30MOpdHi
Bi/IMOBiZHO /10 MpocTOpiB ¢, Ta c. Hapeneno aeski Teopemu mpo BKJodeHHs. KpiM Toro, o6unc-
. . . r r .
JIeHO -, (-, Y- Ta HenmepepBHi MPOCTOPH, MyasibHi 10 MPOCTOPIB ¢, Ta e,, i MOGyAOBaHO GasucH
1ux npocTopiB. BusnaueHo HeoOXifHI Ta JOCTATHI YMOBU HaJIEKHOCTI HECKIHUEHHOT MAaTpHIli A0 KJa-
. r r . . .
ciB (el,, 4 ) Ta (e(y, :c). OTpHMaHO XapaK TePUCTHKH JIeIKMX 1HIIUX KJIACiB HECKIHUECHHHUX MaTpHIb

P
3 BUKOPUCTAHH M HaBe/IeHOi B pOOOTi OCHOBHOI JIeMH /151 BUNAAKY 1 < p < eo.

1. Preliminaries, background and notation. By w, we shall denote the space of all
real or complex valued sequences. Any vector subspace of w is called a sequence
space. We shall write /,, c and ¢, for the spaces of all bounded, convergent and
null sequences, respectively. Also, by bs, cs, 4 and ¢,, we denote the spaces of all
bounded, convergent, absolutely and p-absolutely convergent series, respectively;
here, 1 <p <oo.

A sequence space A with a linear topology is called a K-space provided each of
the maps p;: A — C defined by p;(x)=2x; is continuous for all ieN; here, C

denotes the complex fieldand N={0,1,2,...}. A K-space A is called an FK-space
provided A is a complete linear metric space. An FK-space whose topology is
normable is called a BK-space (see [1, p. 272, 273]).

Let A, 1 be two sequence spaces and A =(qa,;) be an infinite matrix of real or
complex numbers a,,, where k, neN. Then, we say that A defines a matrix
mapping from A into W, and we denote it by writing A: A —u, if for every
sequence x =(x;) €A, the sequence Ax ={(Ax),}, the A-transform of x, isin p;
here,

(Ax), = Y aux,, neN. (1.1)
k

For simplicity in notation, here and in what follows, the summation without limits runs
from 0 to . By (A:u), we denote the class of all matrices A such that A:
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4 B. ALTAY, F. BASAR

A—W. Thus, Ae(A:w) if and only if the series on the right-hand side of (1.1)
converges foreach neN andevery xe, and we have Ax={(Ax),},  y€en for

all xeA. A sequence x is said to be A-summable to [ if Ax converges to [ which
is called as the A-limit of x.

The matrix domain A, of an infinite matrix A is a sequence space A is defined
by

Ay = {x=(x)ew: Axel} (1.2)

which is a sequence space. The new sequence space A, generated by the limitation
matrix A from the space A either includes the space A or is included by the space A,
in general, i.e., the space A, is the expansion of the contraction of the original
space A.

The approach constructing a new sequence space by means of the matrix domain of
a particular limitation method has been employed by Wang [2], Ng and Lee [3],
Malkowsky [4], and Basar and Altay [5]. They introduced the sequence spaces

(zp)Nq in[2], (f)e, =X.. and (4,) ¢, =Xp in 3], (l) g =i cp=1. and

(co)gr =15 in[4] and (ﬁp) , =bv, in[5]; here, N, C and R' denote the Norlund,
arithmetic and Riesz means, respectively, and A also denotes the band matrix defining

the difference operator and 1 <p <eo. Quite recently, Aydin and Basar have studied
the sequence spaces (cy) - =aj, ¢,, =a. in [6], (fp)A, =ay,, (l),r=al, in[7],
to the

ap(A) = (aS)A, a.(A) = (acr )A in [8] and extended the sequence spaces a;, a,.

paranormed spaces dag(p), a.(p) in [9]; here, A" denotes the matrix A" = (azk)
defined by

k
1+7r
, 0<k<n,
ar};k = n+1
0, k>n,

for all k, neN and any fixed reR. In the present paper, following [2 — 9], we
introduce the Euler sequence spaces ¢, and e, of nonabsolute type and derive some
results related to those sequence spaces. Furthermore, we have constructed the basis
and computed the o-, B-, y-, and continuous duals of the spaces e¢; and e.. Finally,

we have essentially characterized the matrix classes (ecr : fl,), (e(f :c) and also

derived the characterizations of some other classes by means of a given basic lemma,
where 1 < p < c. Besides, we have stated and proved a Steinhaus type theorem

concerning with the disjointness of the classes (e; : c) and (eg : c) .
N

2. The Euler sequence spaces ¢, and e, of nonabsolute type. Altay, Basar

and Mursaleen [10] have recently studied Euler sequence spaces e/ and e

D oo
consisting of the sequences whose E’-transforms are in the spaces 4, and [,

respectively; here, 1 <p <o and E” denotes the Euler means of order r defined by
the matrix E" = (e;k),

(Z)(l — "Rk 0<k<n,

ik =
0, k>n,
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SOME EULER SEQUENCE SPACES OF NONABSOLUTE TYPE 5

forall k, neN. Itis known that the method E" is regular for 0 < r <1 (see [11,

p. 57]), and we assume unless stated otherwise that 0 < r < 1. Mursaleen, Basar and

r
p

and e., and emphasized some geometric properties, for example, Banach — Saks and

Altay have given the characterizations of the matrix classes related to the spaces e

r

weak Banach — Saks properties, etc., of the space ¢,

we introduce the Euler sequence spaces

ey = {xz(xk)ew: lim zn:(l;)(l—r)"_krkxkzo}

® k=0

in [12]. Continuing on this way,

and

el = {x =(x)ew: lim 2 (Z)(l — )k rkxk exists }

7 k=0
With the notation of (1.2), we may redefine the spaces e; and e, as follows:

ey = (co)pr and e, = c (2.1)

E"
It is trivial that ey ce.. If A is any normed sequence space, then we call the matrix
domain A - as the Euler sequence space. Define the sequence y = {y("}, which

will be frequently used, as the E’-transform of a sequence x =(x;), i.e.,

k k o
(=Y ( .)(l—r)k_]rjxj, keN. (2.2)
j=0\J

We now may begin with the following theorem which is essential in the text:

Theorem 2.1. The sets e, and e. are the linear spaces with the coordinatewise
addition and scalar multiplication which are the BK-spaces with the norm | x|| o =
=llxll; = [£7x],_-

Proof. The first part of the theorem is a routine verification and so we omit it.
Furthermore, since (2.1) holds and ¢, ¢ are the BK-spaces with respect to their

natural norm (see [13, p.217, 218]), and the matrix E" =(e,§k) is normal, i.e.,

e, 20, e, =0, k>n, forall k, neN, Theorem 4.3.2 of Wilansky [14, p. 61]

gives the fact that the spaces ¢, e, are the BK-spaces.
The theorem is proved.
Therefore, one can easily check that the absolute property does not hold on the

for at least one

spaces ¢, and e/, since HxHeg;tH\x\ and ||x|,r #||x]
c

€y e

sequence in the spaces ¢, and e;, where |x|=(|x;|). This says that e; and e,
are the sequence spaces of nonabsolute type.

Theorem 2.2. The Euler sequence spaces ey, and e, of nonabsolute type are
linearly isomorphic to the spaces ¢, and c, respectively, i.e., ey=c, and
el =c.

Proof. To prove this, we should show the existence of a linear bijection between
the spaces e, and c,. Consider the transformation 7 defined, with the notation of

(2.2), from 66 to ¢y by x+>y=Tx. The linearity of T is clear. Further, it is
trivial that x =6 whenever 7x =0 and hence T is injective, where 6 = (0, 0, 0, ...).
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6 B. ALTAY, F. BASAR

Let yec, and define the sequence x ={x,(r)} by
- (K k=j —k
X (r) = 2(.)(7—1) 'y, keN.
j=0\J
Then, we have
n

. r T n -k _k L (k _k—=j —k _ 1 _
lim (E'x) = nlgnm|:2(k)(l n'"r J;)(j)(r D™ty | = limy, = 0

k=0

which says us that x € ¢;. Additionally, we observe that

S kk (K k—j —k
3 (FJa-rrtt 3 (o,
i=o\k j=0\J

= sup|y,[ = [yl < e
neN

Ixlg = sup
ne

Consequently, we see from here that T is surjective and is norm preserving. Hence, T

is a linear bijection which therefore says us that the spaces ¢, and ¢, are linearly
isomorphic, as was desired.

It is clear here that if the spaces ¢, and ¢, are respectively replaced by the spaces

e, and c, then we obtain the fact that e, = c. This completes the proof.
We now may give our two theorems on the inclusion relations concerning with the

spaces ¢; and e,.

Theorem 2.3. Although the inclusions ¢y C ey and ¢ Ce, strictly hold, neither
of the spaces e and (., includes the other one.

Proof. Let us take any s e cy. Then, bearing in mind the regularity of the Euler
means of order r, we immediately observe that E’s € ¢, which means that s € ¢.
Hence, the inclusion ¢y c ey holds. Furthermore, let us consider the sequence
u={u(r)} defined by w,()=(-r)* for all keN. Then, since E'u =
= {(—r)k} € ¢y, u isin ¢y butnotin c,. By the similar discussion, one can see that
the inclusion ¢ ce,. also holds.

To establish the second part of theorem, consider that sequence u = {u(r)}
defined above, and x=¢= (1,1, 1,...). Then, u isin e6 butnotin £, and x isin

{, butnotin ej. Hence, the sequence spaces ¢, and /., overlap but neither

contains the other. This completes the proof.
Theorem 2.4. If 0<t<r<1, then e} Cely and el cCe..

Proof. Letustake x=(x;)€ep. Then, forall k€N, we observe that
k k i ko
_ t _ t r _ thr
e = zekixi = zeki zeij Yil = Zekj Vi
i=0 i=0  \j=0 Jj=0

Since 0 < % <1, the method E"" is regular which implies that z2=(z) € ¢

whenever y=(y,)ec, and we thus see that x=(x;)€e). This means that the

inclusion e < ey holds.
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SOME EULER SEQUENCE SPACES OF NONABSOLUTE TYPE 7

Now, one can show in the similar way that the inclusion e/ e’ also holds and so
we leave the detail to the reader.

3. The basis for the spaces ¢, and e,. In the present section, we give two
sequences of the points of the spaces e and e, which form the basis for the spaces
e, and e,.

Firstly, we define the Schauder basis of a normed space. If a normed sequence

space A contains a sequence (b,) with the property that, for every x e\, there is a

unique sequence of scalars (ot,) such that

lim HX—((Xobo +(X1b1+...+(xnbn)H = 0,
n— oo

then (b,) is called a Schauder basis (or briefly basis) for A. The series Y o,b;
which has the sum x is then called the expansion of x with respect to (b,), and
written as  x = zakbk .

Theorem 3.1. Define the sequence b(k)(r) = {b,(lk)(r)} N of the elements of the

ne
space e by

0, 0<n<k,

b = (n

{

o 3.1)
)(r—l)" ", n>k,

for every fixed keN. Then:
(1) The sequence {b(k)(r)}keN is a basis for the space e and any x€ey has a

unique representation of the form

x = Y L bP). (3.2)
k

(i1) The set {e, b(k)(r)} is a basis for the space e, and any x€e. has a unique

representation of the form

x = le+ Y [A () - 11600, (3.3)
k

where A (r)= (Erx)k forall keN and

[ = lim (Erx)k. (3.4)

k—>o0

Proof. (i) It is clear that {b(k)(r)} C e, since

EbP () = e(k)eco, k=0,1,2,..., (3.5)

where ¢

keN.
Let xee|, be given. For every nonnegative integer m, we put

is the sequence whose only nonzero term is a 1 in k-th place for each

xm = ikk(r)b(k)(r). (3.6)
k=0
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8 B. ALTAY, F. BASAR

Then, by applying E” to (3.6) with (3.5), we obtain that

E'xm = ikk(r)Erb(k)(r) = i (Erx)ke(k)
k=0 k=0
and
0, 0<i<m,
E"(x — x™)1 = i, meN.
EC = o
Given € >0, then there is an integer m such that
‘(Erx)m‘ < %
for all m=m,. Hence,
€
=) = supl(E7), | = s ()| < € < ¢

forall m>m, which proves that x € ¢; is represented as in (3.2).
Let us show the uniqueness of the representation for xee); given by (3.2).
Suppose, on the contrary, that there exists a representation x = z WM k(r)b(k)(r). Since

the linear transformation T, from e; to c¢;, used in the proof of Theorem 2.2 is
continuous, at this stage we have

(E"x) = Zuk(r){E’b(k)(r)}n = Y el = w,r, neN,
k k

which contradicts the fact that (Erx)n =A,(r) for all neN. Hence, the

representation (3.2) of x € e, is unique. Thus, the proof of the first part of theorem is
completed.

(ii) Since {p(r)} cej and eec, theinclusion {e, 5™ (r)} e/ trivially holds.
Let us take xee.. Then, there uniquely exists an [ satisfying (3.4). We thus have

the fact that u € ¢; whenever we set u = x —le. Therefore, we deduce by the part (i)
of the present theorem that the representation of # is unique. This leads us to the fact
that the representation of x given by (3.3) is unique and this step concludes the proof.

4. The a-, B-, - and continuous duals of the spaces ¢, and e.. In this
section, we state and prove the theorems determining the -, B-, Y- and continuous

duals of the sequence spaces ¢; and e, of nonabsolute type.
For the sequence spaces A and [, define the set S(A, ) by

S n) = {z=(zx)ew: xz=(x,zr)epn forall xel}. 4.1

With the notation of (4.1), the o-, B- and y-duals of a sequence space A, which are
respectively denoted by A%, AP and LAY, are defined by

A% = S(h4), W= S0cs), and A = S, bs).

It is well known that
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SOME EULER SEQUENCE SPACES OF NONABSOLUTE TYPE 9

(6)P =4, and ()P = 4, 4.2)

where 1 <p <o and p_1 + q_l =1 (see [15, p. 68, 69]). We shall throughout denote
the collection of all finite subsets of N by #.

The continuous dual of a normed space X is defined as the space of all bounded

linear functionals on X and is denoted by X .

We shall begin with quoting the lemmas, due to Stieglitz and Tietz [16], which are
needed in proving Theorems 4.1 —4.3.

Lemmad.l. Ae(cy:4)=(c:4) ifandonlyif

sup 2 2 Ay | < oo.
KeF n 'kek
Lemma4.2. A€(cy:c) ifand only if
lima,, = oy, keN, 4.3)
n—>oo
sup Y |a, | < e. (4.4)
neN p

Lemmad.3. Ac(c:/,) ifand only if (4.4) holds.
Theorem 4.1. The o-dual of the spaces e and e, is

D (Z)(r -1,

keK

<w}.

Proof. Let a=(a,)ew and define the matrix B" whose rows are the product

b, = {az(ak)ew: sup Y

KeF ,

of the rows of the matrix E"" and the sequence a=(a,). Bearing in mind the
relation (2.2), we immediately derive that

C n n— . r
a,x, = kgo(k)(r—l) “r"a,y = (B'y),, neN. 4.5)

We therefore observe by (4.5) that ax =(a,x,)€ ¢, whenever xee; or e, if and

only if B"ye{ whenever yec, of c¢. Then we derive by Lemma 4.1 that

S (Z)(r -1 ",

< oo

which yields the consequence that {e{)}a = {ecr }u =b,.
Theorem 4.2. Define the sets dy, dy, and d3 by

i (i)(r — 1)j_kr_jaj

j=k

<w},

d5 = {a:(ak)EWZ Z(i)(r—l)j_kr_jaj exists for each kEN},

j=k

di = {az(ak)ew: sup Y

neN =g

and
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10 B. ALTAY, F. BASAR

dy = {a (ap) ew: hm 2 z(k)(r—l)j_kr_jaj exists}

* k=0 j=k

Then {ef} =dj N} and {ef) =d] Nd5 N5,
Proof. Because of the proof may also be obtained for the space e, in the similar

way, we omit it and give the proof only for the space e;. Consider the equation

n n k (k .
S ax =Y IVZ(‘)(r—l)k—Jr—kyj:lak =
k=0

k=01],j=0

= 2 [2 (i)(r—l)j_kr_jaj}yk = (T’y)n, (4.6)
k=0 j

where T" =(r;;) is defined by

o

. 2(1)@—1)/"%‘1%, 0<k<n,

i =1 = k neN. 4.7)
0, k> n,

Thus, we deduce from Lemma 4.2 with (4.6) that ax=(a,x;)€cs whenever x =

= (x;)€e¢y ifand only if T'yec whenever y=(y;)€cy. Therefore, we derive
from (4.3) and (4.4) that

n
lim £, exists for each keN and sup ) ‘t,’lk‘ < oo (4.8)
n— e neN =0
: AP r
which shows that {eo} =d| Nd5.
Theorem 4.3. The Y-dual of the spaces e, and e, is d;.

Proof. 1t is of course that the present theorem may be proved by the technique
used in the proof of Theorems 4.1 and 4.2, above. But we prefer here following the

classical way and give the proof for the space ej.

Let a=(a;)ed] and x=(x;)€ ¢y. Consider the following equality:

n n n n
Eakxk z |:2( ) r_l)k ]r_ky/} = < Z‘t;k“yk‘
k=0 J k= k=0

j=0
which gives us by taking supremum over neN that

n
Y x| < sup(zlnkyk] < yco{sup ZtnkJ

k=0 neN\ k=0 Nj=0

-
nk Yk

sup
neN

This means that a = (a;) € {eé}y. Hence,
) c e}’ (4.9)

Conversely, let a=(a;) e{eé}y and xee;. Then, one can easily see that

{zz Ot;kyk} €/l,, whenever (a;x;)€bs. This shows that the triangle matrix
= neN

T" =(ty;). defined by (4.7), is in the class (cy : £.) . Hence, the condition
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SOME EULER SEQUENCE SPACES OF NONABSOLUTE TYPE 11

sup i‘tﬁk‘ < oo
neN =g

is satisfied which yields that a =(a;) € d|. That is to say that

leg} < df. (4.10)

Therefore by combining the inclusions (4.9) and (4.10), we deduce that the y-dual of
the space e, is d| and this completes the proof.

Theorem 4.4. {ecr} and {66} are isometrically isomorphic to ;.

Proof. We only give the proof for the space e.. Suppose that f e {ecr } . Since
by the part (ii) of Theorem 3.1, {e, bk(r)} is a basis for the space e, and any element

x € e, can be expressed as in the form of (3.3). By the linearity and the continuity of
f, we get from (3.3) that

f&) = Ife) + > () = N F{pP ()}

k
forall xee/. Define the sequence x ={x;(r)} €e. suchthat |x|,- =1 by

k
2 (]f)(" — 1" K sgn f(b(j)(r)), 0<k<n,

J=0

> (]f)(r - sen (B9 (). k>
j=o™

xk(r) =

Therefore, we have

f@ = Y | (EP@)| < 111 (4.11)
k=0

It follows from the inequality (4.11) that

S (ER@)] = sup 3 |A(ER®)| < 151
k

neN =g

Write f(x) = al+ Y, ah(r), where a = f(e)=, f(bX), a = f(b©),
the series Zk f(b(k)(r)) being absolutely convergent. Since ‘limk HM(Erx)k‘ <
<|lxl,-, wehave

[f)] < xe;(a+zak )
k

whence

LA < lal + Y lag ] 4.12)
k
Also, for | x||,- =1, we have
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12 B. ALTAY, F. BASAR

| fOl < I1fI.
so we define for any n >0,

ko (k .
Z(.)(r—l)k_’r_ksgnaj, 0<k<n,

rn=1""

X (r) =

¢ - (K k—j —k o (k k=j —k
Z =D r sgna; + Z =DV rFsgna, k>n.
j=0N jon+1

Then xee, with [[x|,- =1, limk_m(Erx)k=sgna and so

n o
la|+ z\akH z aj sgna

k=0 k=n+1

[f()] = < 1A (4.13)

Since (a;)€ 4 we have zm_

i1 = 0 as n— o, and thus we obtain by letting
n— oo in (4.13) that

lal+ Y | < IIfI (4.14)
k

Combining the results (4.12) and (4.14) we see that
IFIl = lal + Y |a]
k

which is the norm on 4.

Now, let T: {e:}* — { bedefined by f > (a,ay,qa,...). Then, we have
ITHI = lal + [ag| + |a| +... = [f].

IT(f)|l beingthe ¢-norm. Thus, T is norm preserving. T is obviously surjective
and linear, and hence is an isomorphism from {e; }Y to /. This completes the proof.
5. Some matrix mappings related to the Euler sequence spaces. In this section,

we characterize the matrix mappings from e, into some of the known sequence
spaces and into the Euler, difference, Riesz, Cesaro sequence spaces. We directly
prove the theorems characterizing the classes (ecr : Ep) , (e(f : c) and derive the other
characterizations from them by means of a given basic lemma, where 1 < p <o,
Furthermore, we give a Steinhaus-type theorem which asserts that the classes (e:c : c)
and (e/ :c)s are disjoint.

We shall write throughout for brevity that

n n 7
aln, k) = Zajk and a, = 2(2)(r—1)]_kr_]ani
Jj=0

j=k

forall k&, ne N. We will also use the similar notations with other letters and use the
convention that any term with negative subscript is equal to naught. We shall begin
with two lemmas which are needed in the proof of our theorems.

Lemma 5.1 [14, p.57]. The matrix mappings between the BK-spaces are
continuous.
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SOME EULER SEQUENCE SPACES OF NONABSOLUTE TYPE 13

Lemma 5.2 [14,p. 128]. Ae(c:(,) ifand only if

P
sup D | Y ay| < e, 1Sp<os (5.1)
FeF n lkerF
Theorem 5.1. A€ (e/:(,) ifand only if
(1) for 1<p<oo,
P
sup DI D | < oo, (5.2)
FeF n lker
a,, existsforall k,neN, (5.3)
z&nk converges forall neN, 54
k
sup 2 Z(J)(’"—l)j_kr_janj < o, neNlN; (5.5)
meN =0 | j=k k
(ii) for p=-oo, (5.3) and (5.5) hold, and
sup Y |Gy | < eo. (5.6)

neN g

Proof. Suppose conditions (5.2) —(5.5) hold and take any xee.. Then,

c*

{@utyen € {eZ}B for all neN and this implies that Ax exists. Let us define the

matrix B=(b,;) with b, =a,, forall k, neN. Then, since (5.1) is satisfied for
that matrix B, we have Be (c : Zp) . Let us now consider the following equality

obtained from the m-th partial sum of the series 2 & Ak X

Zankxk = z z (i)(r—l)j_kr_janjyk, m, neN. (5.7)
k=0

k=0 j=k

Therefore, we derive from (5.7) as m — o that
N auxe = Yauy. neN, (5.8)
k k

which yields by taking £,-norm that

lAxl, = I1Byll, < .

This means that A € (e} : fl,) .

r. : r
Conversely, suppose that A € (ec : fp) . Then, since e, and /¢, are the BK-spaces,
we have from Lemma 5.1 that there exists some real constant K >0 such that

lAxl, = Kixl, (5.9

for all xee.. Since inequality (5.9) also holds for the sequence x = (x;) =
= zke Fb(k)(r) belonging to the space e, where b(k)(r) = {b,(lk)(r)} is defined by
(3.1), we thus have for any FeF that
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14 B. ALTAY, F. BASAR

p 1/p
Y < Klxll, = K

keF

n

| Axll, = (2

which shows the necessity of (5.2).

Since A is applicable to the space e, by the hypothesis, the necessity of
conditions (5.3)—(5.5) is trivial. This completes the proof of the part (i) of theorem.

Since the part (ii) may also be proved in the similar way that of the part (i), we
leave the detailed proof to the reader.

Theorem 5.2. Ae(e/ :c) ifand only if (5.3), (5.5), and (5.6) hold,
lim a,, = o foreach keN (5.10)

n—»co

and

n—soco

lim Y a, = o. (5.11)
k

Proof. Suppose that A satisfies conditions (5.3), (5.5), (5.6), (5.10), and (5.11).
Let us take any x=(x;) in e, suchthat x, —/ as k— . Then Ax exists and it
is trivial that the sequence y=(y,) connected with the sequence x=(x;) by

relation (2.2) is in ¢ such that y, =1 as k— . At this stage, we observe from
(5.10) and (5.6) that

k
> fo] < sup ¥[a, | <
j=0 neN j

holds for every k € N. This leads us to the consequence that (o) € 4. Considering
(5.8), let us write

Yoapx, = D ay(—0)+1Y ay, neN. (5.12)
k k k

In this situation, by letting n— o in (5.12), we observe that the first term on the
right-hand side tends to 2 kock(yk —1) by (5.6) and (5.10), and the second term tends

to oo by (5.11). Now, under the light of these facts, we obtain from (5.12) as n — oo
that

(Ax), = Yoy -1+ lo (5.13)
k

and this shows that A e (e:, : c).

Conversely, suppose that A € (ecr :c). Then, since the inclusion ¢ c /., holds, the
necessities of (5.3), (5.5) and (5.6) are immediately obtained from the part (ii) of
Theorem 5.1. To prove the necessity of (5.10), consider the sequence x = b(k)(r) =
= {b,(lk)(r)}nGN in e/, defined by (3.1), for every fixed keN. Since Ax exists and

isin ¢ for every xee!, one can easily see that AL (r)= {au}, oy €c for each
k € N which shows the necessity of (5.10).

Similarly, by putting x =e in (5.8), we also obtain that Ax = {2 k&nk }n o which
belongs to the space ¢ and this shows the necessity of (5.11). This step concludes the
proof.
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SOME EULER SEQUENCE SPACES OF NONABSOLUTE TYPE 15

Let us define the concept of s-multiplicativity of a limitation matrix. When there is
some notion of limit or sum in the sequence spaces A and [, we shall say that the
method A e(A:p) is multiplicative s if every x €A is A-summableto s times of
lim x, for any fixed real number s and denote the class of all s-multiplicative

matrices by (A:p),. It is of course that the class (ef :c)s of s-multiplicative

matrices reduces to the classes (e/ : ¢,) and (e[. :c) inthecases s =0 and s=1,
reg
respectively; here, (e[. :c)reg denotes the class of all matrix mappings A from e, to

¢ such that A-limx=1limx for all xee.. Now, we may give the corollary to
Theorem 5.2 without proof.

Corollary 5.1. Ae(ecr :C)g if and only if (5.3), (5.5), (5.6) hold, (5.10) and
(5.11) also hold with o =0 for each keN and o =s, respectively.

The Steinhaus-type theorems were formulated by Maddox [17] as follows: Consider
the class (A:p), of 1-multiplicative matrices and v be a sequence space such that
vDOA. Then the result of the form (A:u), N(v:pn)=@ is called a theorem of

Steinhaus type, where & denotes the empty set. Now, we may give a Steinhaus-type
theorem whose proof requires the following lemma:

Lemma 5.3 ([12], Corollary 2.5 (iii)). Ae(e; :c) if and only if (5.6), (5.10)
hold, and

li a = lim a, |, 5.14
nE};%‘ank‘ %ng{;ank ( )
m J . .
lim ) z(k)(r—l)/"‘r—/anj = Ylaul, neN. (5.15)
M=k |j=k k

Theorem 5.3. There is no matrix belonging to the classes both (ecr :c)Y and
(e; :c).
Proof. Suppose that the classes (e[, :c)s and (e; :c) are not disjoint. Then

there is at least matrix A satisfying the conditions of both Lemma 5.3 and
Corollary 5.1. Combining condition (5.10) with (5.14), one can easily see that

nlgl:o % ‘ Api ‘ 0
which contradicts condition (5.11). This completes the proof.

We now may present our basis lemma which is useful for obtaining the
characterization of some new matrix classes from Theorems 5.1, 5.2 and Corollary 5.1.

Lemma 5.4 ([12], Lemma 2.6). Let A, L be any two sequence spaces, A be an
infinite matrix and B a triangle matrix. Then Ae(A:Wug) if and only if
BAe(h:p).

It is trivial that Lemma 5.4 has several consequences, some of them give the
necessary and sufficient conditions of matrix mappings between the Euler sequence
spaces. Indeed, combining Lemma 5.4 with Theorems 5.1, 5.2 and Corollary 5.1, one
can easily derive the following results:

Corollary 5.2. Let A=(a,) be an infinite matrix and define the matrix

C= (cnk) by

n n L
Cop = Z(.)(l—t)"_/t-’ajk, O<t<l and k neN.
J=0
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16 B. ALTAY, F. BASAR

Then the necessary and sufficient conditions in order for A belongs to anyone of the
classes (el :eL.), (el :e;), (el :el) and (e} :eé)s are obtained from the respective
ones in Theorems 5.1, 5.2 and Corollary 5.1 by replacing the entries of the matrix A
by those of the matrix C.

Corollary 5.3. Let A= (a,;) be an infinite matrix and t=(t;,) be a sequence of

positive numbers and define the matrix C =(c,;) by

] n
Cok = = thajk, k, neN,
T, =

where T, = Zzzotk for all neN. Then the necessary and sufficient conditions

r..t r. .t
(o). o)

and (ef,:rct)s are obtained from the respective ones in Theorems 5.1, 5.2

in order for A belongs to anyone of the classes (e:, : roi,),

and Corollary 5.1 by replacing the entries of the matrix A by those of the mat-

rix C; here, r;, is defined in [18] as the space of all sequences whose R'-

. . . t .
transforms are in the space (, and is derived from the paranormed spaces r (p) in

the case p,=p forall keN, and r., r' are obtained in the case p=e from

the paranormed spaces 1. (p), rct (p) and are studied by Malkowsky [4].

Since the spaces . and r[i reduce in the case ¢ = e to the Cesaro sequence

spaces X., and X, of nonabsolute type, respectively, Corollary 5.3 also includes the

characterizations of the classes (¢} : X..) and (e : Xp).

Corollary 5.4. Let A=(a,) be an infinite matrix and define the matrices
C=(cn) and D=(dy) by cp=ay — 1 and dy = ay — a,_y; for all
k,neN. Then the necessary and sufficient conditions in order for A belongs to
anyone of the classes (eg: L, (A)), (eZ:c(A)), (eCr:C(A))s and (ecr:bvp) are
obtained from the respective ones in Theorem 5.2, Corollary 5.1 and Theorem 5.1
by replacing the entries of the matrix A by those of the matrices C and D; here,
l(A), c(A) denote the difference spaces of all bounded, convergent sequences and
introduced by Kizmaz [19].

Corollary 5.5. Let A=(a,) be an infinite matrix and define the matrix
C= (an) by

n

1+4¢
Cok = 2 ajk, 0<t<1,
0 1+n

for all k,neN. Then the necessary and sufficient conditions in order for A
belongs to anyone of the classes (eg :a;), (ecr : a;,), (eg : aé) and (eg : aé)s are
obtained from the respective ones in Theorems 5.1, 5.2 and Corollary 5.1 by

replacing the entries of the matrix A by those of the matrix C.

Corollary 5.6. Let A=(a,) be an infinite matrix and define the matrix
C=(cx) by cy=almk) forall k,neN. Then the necessary and sufficient

conditions in order for A belongs to anyone on the classes (ecr : bs), (ecr : cs) and
(ecr :cs)Y are obtained from the respective ones in Theorems 5.1, 5.2 and Corol-

lary 5.1 by replacing the entries of the matrix A by those of the matrix C.
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