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SOME EULER SEQUENCE SPACES OF NONABSOLUTE TYPE 

DEQKI PROSTORY POSLIDOVNOSTEJ EJLERA

NEABSOLGTNOHO TYPU

In the present paper, the Euler sequence spaces  er
0   and  ec

r   of nonabsolute type which are the  BK-

spaces including the spaces  c0   and  c  have been introduced and proved that the spaces  er
0   and  ec

r   are

linearly i somorphic to the spaces  c0   and  c,  respectively.  Furthemore, some inclusion theorems have

been given.  Additionally, the  α-,  β-,  γ- and continuous duals of the spaces  er
0   and  ec

r   have been

computed and their basis have been constructed.  Finally, the necessary and sufficient conditions on an

infinite matrix belonging to the classes   ec
r

p: �( )   and  e cc
r :( )  have been determined and the

characterizations of some other classes of infinite matrices have also been derived by means of a given
basic lemma, where  1 ≤ p ≤ ∞.

Vvedeno ponqttq prostoriv poslidovnostej Ejlera  er
0   ta  ec

r
  neabsolgtnoho typu — VK-pro-

storiv, wo mistqt\ prostory  c0   ta  c.  Dovedeno, wo prostory  er
0   ta  ec

r
  linijno izomorfni

vidpovidno do prostoriv  c0   ta  c.  Navedeno deqki teoremy pro vklgçennq.  Krim toho, obçys-

leno  α-,  β-,  γ- ta neperervni prostory, dual\ni do prostoriv  er
0   ta  ec

r
,  i pobudovano bazysy

cyx prostoriv.  Vyznaçeno neobxidni ta dostatni umovy naleΩnosti neskinçenno] matryci do kla-

siv  ec
r

p: �( )   ta  e cc
r :( ).  Otrymano xarakterystyky deqkyx inßyx klasiv neskinçennyx matryc\

z vykorystannqm navedeno] v roboti osnovno] lemy dlq vypadku  1 ≤ p ≤ ∞.

1.  Preliminaries, background and notation.  By  w,  we shall denote the space of all
real or complex valued sequences.  Any vector subspace of  w   is called a sequence
space.  We shall write  �∞ , c  and  c0   for the spaces of all bounded, convergent and
null sequences, respectively.  Also, by  bs, cs,   �1  and   �p ,  we denote the spaces of all
bounded, convergent, absolutely and  p-absolutely convergent series, respectively;
here,  1 < p < ∞.

A sequence space  λ   with a linear topology is called a  K-space provided each of
the maps  pi : λ → C   defined by  p x xi i( ) =   is continuous for all  i ∈N ;  here,  C

denotes the complex field and  N = …{ , , , }0 1 2 .  A  K-space  λ  is called an  FK-space
provided  λ  is a complete linear metric space.  An  FK-space whose topology is
normable is called a  BK-space (see [1, p. 272, 273]).

Let  λ , µ  be two sequence spaces and  A ank= ( )  be an infinite matrix of real or
complex numbers  ank ,  where  k n, ∈N .  Then, we say that  A  defines a matrix
mapping from  λ  into  µ,  and we denote it by writing  A: λ µ→ ,  if for every
sequence  x xk= ∈( ) λ ,  the sequence  Ax Ax n= { }( ) ,  the  A-transform of  x,  is in  µ;
here,

( )Ax a xn
k

nk k= ∑ ,    n ∈N . (1.1)

For simplicity in notation, here and in what follows, the summation without limits runs
from  0  to  ∞.  By  ( : )λ µ ,  we denote the class of all matrices  A   such that  A : 
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λ µ→ .  Thus,  A ∈( : )λ µ   if and only if the series on the right-hand side of (1.1)
converges for each  n ∈N   and every  x ∈λ ,  and we have  Ax Ax n n= { } ∈∈( )

N
µ  for

all  x ∈λ .  A sequence  x  is said to be  A-summable to  l  if  Ax  converges to  l  which
is called as the  A-limit of  x.

The matrix domain  λA  of an infinite matrix  A  is a sequence space  λ  is defined
by

λ λA kx x w Ax= = ∈ ∈{ }( ) : (1.2)

which is a sequence space.  The new sequence space  λA  generated by the limitation
matrix  A  from the space  λ  either includes the space  λ  or is included by the space  λ,
in general, i.e., the space  λA  is the expansion of the contraction of the original
space  λ.

The approach constructing a new sequence space by means of the matrix domain of
a particular limitation method has been employed by Wang [2], Ng and Lee [3],
Malkowsky [4], and Bas,ar  and Altay [5].  They introduced the sequence spaces

  
�p Nq
( )   in [2],  �∞ ∞( ) =C X

1
  and  

  
�p C pX( ) =

1
  in [3],   �∞ ∞( ) =R

t
t r ,  c r

R c
t

t =   and

c rR
t

t0 0( ) =   in [4] and      �p pb( ) =
∆

v   in [5]; here,  Nq ,  C1  and  Rt   denote the Nörlund,

arithmetic and Riesz means, respectively, and  ∆  also denotes the band matrix defining
the difference operator and  1 ≤ p < ∞.  Quite recently, Aydın and Bas,ar  have studied

the sequence spaces  c aA
r

r0 0( ) = ,  c a
A c

r
r =   in [6],    �p A p

r
r a( ) = ,    �∞ ∞( ) =A

r
r a   in [7],

a ar r
0 0( )∆

∆
= ( ) ,  a ac

r
c
r( )∆

∆
= ( )   in [8] and extended the sequence spaces  ar

0,  ac
r   to the

paranormed spaces  a pr
0( ),  a pc

r( )  in [9]; here,  Ar   denotes the matrix  A ar
nk
r= ( )

defined by  

a

r
n

k n

k n

nk
r

k

=
+
+

≤ ≤

>









1
1

0

0

, ,

, ,

for all  k n, ∈N   and any fixed  r ∈R .  In the present paper, following [2 – 9], we

introduce the Euler sequence spaces  er
0  and  ec

r   of nonabsolute type and derive some
results related to those sequence spaces.  Furthermore, we have constructed the basis

and computed the  α-, β-, γ-,   and continuous duals of the spaces  er
0  and  ec

r .  Finally,

we have essentially characterized the matrix classes   ec
r

p: �( ) ,  e cc
r :( )   and also

derived the characterizations of some other classes by means of a given basic lemma,
where  1 ≤ p  ≤ ∞.  Besides, we have stated and proved a Steinhaus type theorem

concerning with the disjointness of the classes  e cr
∞( ):   and  e cc

r
s

:( ) .

2.  The Euler sequence spaces  er
0   and  ec

r   of nonabsolute type.  Altay, Bas,ar

and Mursaleen [10] have recently studied Euler sequence spaces  ep
r   and  er

∞

consisting of the sequences whose  Er -transforms are in the spaces    �p   and    �∞ ,

respectively; here,  1 ≤ p < ∞  and  Er   denotes the Euler means of order  r   defined by

the matrix  E er
nk
r= ( ),

enk
r   =  

n

k
r r k n

k n

n k k


 − ≤ ≤

>







−( ) , ,

, ,

1 0

0
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SOME EULER SEQUENCE SPACES OF NONABSOLUTE TYPE 5

for all  k n, ∈N .  It is known that the method  Er   is regular for  0 < r < 1  (see [11,
p. 57]), and we assume unless stated otherwise that  0 < r < 1.  Mursaleen, Bas,ar  and

Altay have given the characterizations of the matrix classes related to the spaces  ep
r

and  er
∞ ,  and emphasized some geometric properties, for example, Banach – Saks and

weak Banach – Saks properties, etc., of the space  ep
r   in [12].  Continuing on this way,

we introduce the Euler sequence spaces

e x x w
n

k
r r xr

k
n k

n
n k k

k0
0

1 0= = ( ) ∈ 


 − =











→∞ =

−∑: lim ( )

and

e x x w
n

k
r r xc

r
k

n k

n
n k k

k= = ( ) ∈ 


 −











→∞ =

−∑: lim ( )
0

1 exists .

With the notation of (1.2), we may redefine the spaces  er
0  and  ec

r   as follows:

e cr
Er0 0= ( )     and    e cc

r
Er= . (2.1)

It is trivial that  e er
c
r

0 ⊂ .  If  λ  is any normed sequence space, then we call the matrix
domain  λ

Er   as the Euler sequence space.  Define the sequence  y y rk= { }( ) ,  which

will be frequently used, as the  Er -transform of a sequence  x xk= ( ),  i.e.,

y r
k

j
r r xk

j

k
k j j

j( ) ( )= 


 −

=

−∑
0

1 ,    k ∈N . (2.2)

We now may begin with the following theorem which is essential in the text:

Theorem 2.1.  The sets  er
0  and  ec

r   are the linear spaces with the coordinatewise
addition and scalar multiplication which are the BK-spaces with the norm  x er

0
 =

= x ec
r  = E xr

�∞
.

Proof.  The first part of the theorem is a routine verification and so we omit it.
Furthermore, since (2.1) holds and  c0 , c  are the BK-spaces with respect to their

natural norm (see [13, p. 217, 218]), and the matrix  E er
nk
r= ( )  is normal, i.e.,

enn
r ≠ 0 ,  enk

r = 0,  k > n,  for all  k n, ∈N ,  Theorem 4.3.2 of Wilansky [14, p. 61]

gives the fact that the spaces  er
0,  ec

r   are the BK-spaces.
The theorem is proved.
Therefore, one can easily check that the absolute property does not hold on the

spaces  er
0  and  ec

r ,  since  x xe e
r r
0 0
≠   and  x xe ec

r
c
r≠   for at least one

sequence in the spaces  er
0  and  ec

r ,  where  x xk= ( ) .  This says that  er
0  and  ec

r

are the sequence spaces of nonabsolute type.

Theorem 2.2.  The Euler sequence spaces  er
0  and  ec

r   of nonabsolute type are

linearly  isomorphic  to  the  spaces   c0    and   c,   respectively,  i.e.,   e cr
0 0≅    and

e cc
r ≅ .

Proof.  To prove this, we should show the existence of a linear bijection between

the spaces  er
0  and  c0 .  Consider the transformation  T  defined, with the notation of

(2.2), from  er
0  to  c0   by    x y Tx� = .  The linearity of  T  is clear.  Further, it is

trivial that  x = θ  whenever  Tx = θ  and hence  T  is injective, where  θ = (0, 0, 0, … ).
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Let  y c∈ 0  and define the sequence  x x rk= { }( )   by

x r
k

j
r r yk

j

k
k j k

j( ) ( )= 


 −

=

− −∑
0

1 ,    k ∈N .

Then, we have

lim lim ( ) ( ) lim
n

r
n n k

n
n k k

j

k
k j k

j n nE x
n

k
r r

k

j
r r y y

→∞ →∞ =

−

=

− −
→ ∞( ) = 



 − 



 −









 = =∑ ∑

0 0
1 1 0

which says us that  x er∈ 0 .  Additionally, we observe that

x er
0

  =  sup ( ) ( )
n k

n
n k k

j

k
k j k

j
n

k
r r

k

j
r r y

∈ =

−

=

− −∑ ∑


 − 



 −

N 0 0
1 1   =

=  sup
n

n cy y
∈

= < ∞
N

0
.

Consequently, we see from here that  T  is surjective and is norm preserving.  Hence,  T

is a linear bijection which therefore says us that the spaces  er
0  and  c0   are linearly

isomorphic, as was desired.

It is clear here that if the spaces  er
0  and  c0   are respectively replaced by the spaces

ec
r   and  c,  then we obtain the fact that  e cc

r ≅ .  This completes the proof.
We now may give our two theorems on the inclusion relations concerning with the

spaces  er
0  and  ec

r .

Theorem 2.3.  Although the inclusions  c er
0 0⊂   and  c ec

r⊂    strictly hold, neither

of the spaces  er
0  and  �∞   includes the other one.

Proof.  Let us take any  s c∈ 0.  Then, bearing in mind the regularity of the Euler

means of order  r ,  we immediately observe that  E s cr ∈ 0   which means that  s er∈ 0 .

Hence, the inclusion  c er
0 0⊂   holds.  Furthermore, let us consider the sequence

u u rk= { }( )   defined by  u r rk
k( ) = −( )−   for all  k ∈N .  Then, since  E ur  =

= ( )−{ }r k  ∈ c0 ,  u  is in  er
0  but not in  c0 .  By the similar discussion, one can see that

the inclusion  c ec
r⊂   also holds.

To establish the second part of theorem, consider that sequence  u u rk= { }( )

defined above, and  x = e = (1, 1, 1, … ).  Then,  u  is in  er
0  but not in   �∞   and  x  is in

  �∞   but not in  er
0.  Hence, the sequence spaces  er

0  and   �∞   overlap but neither
contains the other.  This completes the proof.

Theorem 2.4.  If  0 < t < r < 1,  then  e er t
0 0⊂   and  e ec

r
c
t⊂ .

Proof.  Let us take  x x ek
r= ( ) ∈ 0.  Then, for all  k ∈N ,  we observe that

z e x e e y e yk
i

k

ki
t

i
i

k

ki
t

j

i

ij
r

j
j

k

kj
t r

j= =








 =

= = = =
∑ ∑ ∑ ∑

0 0 0

1

0

/ / .

Since  0 < t
r

 < 1,  the method  Et r/   is regular which implies that  z z ck= ( ) ∈ 0

whenever  y y ck= ( ) ∈ 0   and we thus see that  x x ek
t= ( ) ∈ 0.  This means that the

inclusion  e er t
0 0⊂   holds.
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SOME EULER SEQUENCE SPACES OF NONABSOLUTE TYPE 7

Now, one can show in the similar way that the inclusion  e ec
r

c
t⊂   also holds and so

we leave the detail to the reader.

3.  The basis for the spaces  er
0   and  ec

r .  In the present section, we give two

sequences of the points of the spaces  er
0  and  ec

r   which form the basis for the spaces

er
0  and  ec

r .
 Firstly, we define the Schauder basis of a normed space.  If a normed sequence

space  λ  contains a sequence  bn( )  with the property that, for every  x ∈λ ,  there is a
unique sequence of scalars  αn( )   such that

lim
n

n nx b b b
→∞

− + +…+( ) =α α α0 0 1 1 0 ,

then  bn( )  is called a Schauder basis (or briefly basis) for  λ.  The series  αk kb∑
which has the sum  x  is then called the expansion of  x  with respect to  bn( ),  and

written as  x bk k= ∑α .

Theorem 3.1.  Define the sequence  b r b rk
n
k

n
( ) ( )( ) ( )= { } ∈N

  of the elements of the

space  er
0  by

b r

n k

n

k
r r n k

n
k

n k n
( )( )

, ,

( ) , ,
=

≤ <




 − ≥






− −

0 0

1
(3.1)

for every fixed  k ∈N .  Then:

(i)  The sequence  b rk
k

( )( ){ } ∈N
  is a basis for the space  er

0  and any  x er∈ 0   has a

unique representation of the form 

x r b r
k

k
k= ∑λ ( ) ( )( ) . (3.2)

(ii)  The set  e b rk, ( )( ){ }   is a basis for the space  ec
r   and any  x ec

r∈   has a unique

representation of the form 

x le r l b r
k

k
k= + −[ ]∑ λ ( ) ( )( ) , (3.3)

where  λk
r

k
r E x( ) = ( )   for all  k ∈N   and

l E x
k

r
k

= ( )
→∞
lim . (3.4)

Proof.  (i) It is clear that  b r ek r( )( ){ } ⊂ 0 ,  since

E b r e cr k k( ) ( )( ) = ∈ 0 ,    k = 0, 1, 2, … , (3.5)

where  e k( )   is the sequence whose only nonzero term is a  1  in  k-th place for each
k ∈N .

Let  x er∈ .0  be given.  For every nonnegative integer  m,  we put

x r b rm

k

m

k
k[ ] ( )( ) ( )=

=
∑

0

λ . (3.6)
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Then, by applying  Er   to (3.6) with (3.5), we obtain that

E x r E b r E x er m

k

m

k
r k

k

m
r

k
k[ ] ( ) ( )( ) ( )= = ( )

= =
∑ ∑

0 0

λ

and

E x x

i m

E x i m

r m
i r

i

−( ){ } =
≤ ≤

( ) >






[ ]

, ,

, ,

0 0

    i m, ∈N .

Given  ε > 0,  then there is an integer  m0  such that

E xr
m( ) < ε

2

for all  m m≥ 0.  Hence,

x x E x E xm
e n m

r
n n m

r
nr− = ( ) ≤ ( ) ≤ <

≥ ≥

[ ] sup sup
0

0
2
ε ε

for all  m m≥ 0  which proves that  x er∈ 0   is represented as in (3.2).

Let us show the uniqueness of the representation for  x er∈ 0   given by (3.2).

Suppose, on the contrary, that there exists a representation  x r b r
k k

k= ∑ µ ( ) ( )( ) .  Since

the linear transformation  T,  from  er
0  to  c0 ,  used in the proof of Theorem 2.2 is

continuous, at this stage we have

E x r E b r r e rr
n

k
k

r k
n

k
k n

k
n( ) = { } = =∑ ∑µ µ µ( ) ( ) ( ) ( )( ) ( ) ,    n ∈N ,

which contradicts the fact that  E x rr
n n( ) = λ ( )   for all  n ∈N .  Hence, the

representation (3.2) of  x er∈ 0   is unique.  Thus, the proof of the first part of theorem is
completed.

(ii)  Since  b r ek r( )( ){ } ⊂ 0   and  e c∈ ,  the inclusion  e b r ek
c
r, ( )( ){ } ⊂   trivially holds.

Let us take  x ec
r∈ .  Then, there uniquely exists an  l  satisfying (3.4).  We thus have

the fact that  u er∈ 0   whenever we set  u = x – le.  Therefore, we deduce by the part (i)
of the present theorem that the representation of  u  is unique.  This leads us to the fact
that the representation of  x  given by (3.3) is unique and this step concludes the proof.

4.  The  αααα -, ββββ-, γγγγ-  and continuous duals of the spaces  er
0   and  ec

r .  In this
section, we state and prove the theorems determining the  α-, β-, γ -  and continuous

duals of the sequence spaces  er
0  and  ec

r   of nonabsolute type.
For the sequence spaces  λ  and  µ,  define the set  S λ µ,( )   by

S z z w xz x z xk k kλ µ µ λ, :( ) = = ( ) ∈ = ( ) ∈ ∈{ }for all . (4.1)

With the notation of (4.1), the  α -, β- and  γ-duals of a sequence space  λ,  which are

respectively denoted by  λα ,  λβ  and  λγ ,  are defined by

λ λα = ( )S , �1 ,    λ λβ = ( )S cs, ,    and    λ λγ = ( )S bs, .

It is well known that

ISSN  0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 1



SOME EULER SEQUENCE SPACES OF NONABSOLUTE TYPE 9

 � �p q( ) =β
    and      � �∞( ) =β

1, (4.2)

where  1 ≤ p < ∞  and  p q− −+ =1 1 1  (see [15, p. 68, 69]).  We shall throughout denote
the collection of all finite subsets of  N  by  F.

The continuous dual of a normed space  X  is defined as the space of all bounded

linear functionals on  X  and is denoted by  X*.
We shall begin with quoting the lemmas, due to Stieglitz and Tietz [16], which are

needed in proving Theorems 4.1 – 4.3.
Lemma 4.1.    A c c∈( ) = ( )0 1 1: :� �   if and only if

sup
K n k K

nka
∈ ∈
∑ ∑ < ∞

F
.

Lemma 4.2.  A c c∈( )0 :   if and only if

lim
n

nk ka
→∞

= α ,    k ∈N , (4.3)

sup
n k

nka
∈
∑ < ∞

N

. (4.4)

Lemma 4.3.    A c∈( )∞0 : �   if and only if (4.4) holds.

Theorem 4.1.  The  α-dual of the spaces  er
0  and  ec

r   is

b a a w
n

k
r r ar k

K n k K

n k n
n= = ( ) ∈ 



 − < ∞











∈ ∈

− −∑ ∑: sup ( )
F

1 .

Proof.  Let  a a wn= ( ) ∈   and define the matrix  Br   whose rows are the product

of the rows of the matrix  E r1/   and the sequence  a an= ( ) .  Bearing in mind the
relation (2.2), we immediately derive that

a x
n

k
r r a y B yn n

k

n
n k n

n k
r

n
= 



 − = ( )

=

− −∑
0

1( ) ,    n ∈N . (4.5)

We therefore observe by (4.5) that  ax a xn n= ( ) ∈�1  whenever  x er∈ 0   or  ec
r   if and

only if    B yr ∈�1  whenever  y c∈ 0  of  c.  Then we derive by Lemma 4.1 that

  
sup ( )

K n k K

n k n
n

n

k
r r a

∈ ∈

− −∑ ∑ 


 − < ∞

F
1

which yields the consequence that  e e br
c
r

r0{ } = { } =
α α

.

Theorem 4.2.  Define the sets  dr
1 , dr

2 ,  and  dr
3  by

d a a w
j

k
r r ar

k
n k

n

j k

n
j k j

j1
0

1= = ( ) ∈ 


 − < ∞











∈ = =

− −∑ ∑: sup ( )
N

,

d a a w
j

k
r r a kr

k
j k

j k j
j2 1= = ( ) ∈ 



 − ∈











=

∞
− −∑: ( ) exists for each N ,

and
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10 B. ALTAY, F. BAS, AR

d a a w
j

k
r r ar

k
n k

n

j k

n
j k j

j3
0

1= = ( ) ∈ 


 −











→∞ = =

− −∑ ∑: lim ( ) exists .

Then  e d dr r r
0 1 2{ } =

β
∩   and  e d d dc

r r r r{ } =
β

1 2 3∩ ∩ .

Proof.  Because of the proof may also be obtained for the space  ec
r   in the similar

way, we omit it and give the proof only for the space  er
0.  Consider the equation

k

n

k ka x
=
∑

0

  =  
k

n

j

k
k j k

j k
k

j
r r y a

= =

− −∑ ∑ 


 −











0 0

1( )   =

=  
k

n

j k

n
j k j

j k

j

k
r r a y

= =

− −∑ ∑ 


 −











0

1( )   =  T yr
n( ) , (4.6)

where  T tr
nk
r= ( )  is defined by

t

j

k
r r a k n

k n

nk
r

j k

n
j k j

j=



 − ≤ ≤

>









=

− −∑ ( ) , ,

, ,

1 0

0

    k n, ∈N . (4.7)

Thus, we deduce from Lemma 4.2 with (4.6) that  ax a x csx k= ( ) ∈   whenever  x =

= x ek
r( ) ∈ 0  if and only if  T y cr ∈   whenever  y y ck= ∈( ) 0 .  Therefore, we derive

from (4.3) and (4.4) that

lim
n

nk
rt

→∞
    exists  for  each    k ∈N     and    sup

n k

n

nk
rt

∈ =
∑ < ∞

N 0

(4.8)

which shows that    e d dr r r
0 1 2{ } =

β
∩ .

Theorem 4.3.  The  γ-dual of the spaces  er
0  and  ec

r   is  dr
1 .

Proof.  It is of course that the present theorem may be proved by the technique
used in the proof of Theorems 4.1 and 4.2, above.  But we prefer here following the

classical way and give the proof for the space  er
0.

Let  a a dk
r= ( ) ∈ 1  and  x x ek

r= ( ) ∈ 0.  Consider the following equality:

k

n

k k
k

n

k
j

k
k j k

j
k

n

nk
r

k
k

n

nk
r

ka x a
k

j
r r y t y t y

= = =

− −

= =
∑ ∑ ∑ ∑ ∑= 



 −













= ≤
0 0 0 0 0

1( )

which gives us by taking supremum over  n ∈N   that

sup sup sup
n k

n

k k
n k

n

nk
r

k c
n k

n

nk
ra x t y y t

∈ = ∈ = ∈ =
∑ ∑ ∑≤







≤







≤ ∞

N N N0 0 0
0

.

This means that  a a ek
r= ( ) ∈{ }0

γ
.  Hence,

d er r
1 0⊂ { }γ . (4.9)

Conversely, let  a a ek
r= ( ) ∈{ }0

γ
  and  x er∈ 0 .  Then, one can easily see that

  k

n
nk
r

k
n

t y= ∈ ∞∑{ } ∈
0 N

�   whenever  a x bsk k( ) ∈ .  This shows that the triangle matrix

T tr
nk
r= ( ),  defined by (4.7), is in the class    c0 : �∞( ) .  Hence, the condition
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sup
n k

n

nk
rt

∈ =
∑ < ∞

N 0

is satisfied which yields that  a a dk
r= ( ) ∈ 1.  That is to say that

e dr r
0 1{ } ⊂

γ
. (4.10)

Therefore by combining the inclusions (4.9) and (4.10), we deduce that the  γ-dual of

the space  er
0  is  dr

1   and this completes the proof.

Theorem 4.4.  ec
r{ }*

  and  er
0{ }*

  are isometrically isomorphic to   �1.

Proof.  We only give the proof for the space  ec
r .  Suppose that  f ec

r∈{ }*
.  Since

by the part (ii) of Theorem 3.1,  e b rk, ( ){ }   is a basis for the space  ec
r   and any element

x ec
r∈   can be expressed as in the form of (3.3).  By the linearity and the continuity of

f,  we get from (3.3) that

f x lf e r l f b r
k

k
k( ) ( ) ( ) ( )( )= + −[ ] { }∑ λ

for all  x ec
r∈ .  Define the sequence  x x r ek c

r= { } ∈( )   such that  x ec
r = 1  by

x r

k

j
r r f b r k n

k

j
r r f b r k n

k
j

k
k j k j

j

n
k j k j

( )

( ) sgn ( ) , ,

( ) sgn ( ) , .

( )

( )

=




 − ( ) ≤ ≤




 − ( ) >













=

− −

=

− −

∑

∑

0

0

1 0

1

Therefore, we have

f x f b r f
k

n
k( ) ( )( )= ( ) ≤

=
∑

0

. (4.11)

It follows from the inequality (4.11) that

k

k

n k

n
kf b r f b r f∑ ∑( ) = ( ) ≤

∈ =

( ) ( )( ) sup ( )
N 0

.

Write  f x al a r
k k k( ) ( )= + ∑ λ ,  where  a f e f b r

k
k= − ( )∑( ) ( )( ) ,  a f b rk

k= ( )( )( ) ,

the series  
k

kf b r∑ ( )( )( )   being absolutely convergent.  Since  limk
r

k
E x→∞( )  ≤

≤ x ec
r ,  we have

f x x a ae
k

kc
r( ) ≤ +




∑ ,

whence

f a a
k

k≤ + ∑ . (4.12)

Also, for  x ec
r = 1,  we have
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12 B. ALTAY, F. BAS, AR

f x f( ) ≤ ,

so we define for any  n ≥ 0,

x r

k

j
r r a k n

k

j
r r a

k

j
r r a k n

k
j

k
k j k

j

j

n
k j k

j
j n

k
k j k

( )

( ) sgn , ,

( ) sgn ( ) sgn , .

=




 − ≤ ≤




 − + 



 − >













=

− −

=

− −

= +

− −

∑

∑ ∑

0

0 1

1 0

1 1

Then  x ec
r∈   with  x ec

r = 1,  lim sgnk
r

k
E x a→∞( ) =   and so

f x a a a a f
k

n

k
k n

k( ) sgn= + + ≤
= = +

∞

∑ ∑
0 1

. (4.13)

Since  ( )ak ∈�1  we have  
k n ka= +
∞∑ →

1
0  as  n →∞ ,  and thus we obtain by letting

n →∞   in (4.13) that

a a f
k

k+ ≤∑ . (4.14)

Combining the results (4.12) and (4.14) we see that

f a a
k

k= + ∑

which is the norm on    �1.

Now, let  T ec
r:

*{ } → �1  be defined by  f a a a� , , ,0 1 …( ) .  Then, we have

T f a a a f( ) = + + +… =0 1 .

T f( )   being the   �1-norm.  Thus,  T  is norm preserving.  T  is obviously surjective

and linear, and hence is an isomorphism from  ec
r{ }γ   to  �1.  This completes the proof.

5.  Some matrix mappings related to the Euler sequence spaces.  In this section,

we characterize the matrix mappings from  ec
r   into some of the known sequence

spaces and into the Euler, difference, Riesz, Cesàro sequence spaces.  We directly

prove the theorems characterizing the classes    ec
r

p: �( ) ,  e cc
r :( )   and derive the other

characterizations from them by means of a given basic lemma, where  1 ≤ p ≤ ∞ .

Furthermore, we give a Steinhaus-type theorem which asserts that the classes  e cr
∞( ):

and  e cc
r

s
:( )   are disjoint.

We shall write throughout for brevity that

a n k a
j

n

jk( , ) =
=
∑

0

    and    ˜ ( )a
j

k
r r ank

j k

n
j k j

nj= 


 −

=

− −∑ 1

for all  k, n ∈N .  We will also use the similar notations with other letters and use the
convention that any term with negative subscript is equal to naught.  We shall begin
with two lemmas which are needed in the proof of our theorems.

Lemma 5.1 [14, p. 57].  The matrix mappings between the BK-spaces are
continuous.
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Lemma 5.2 [14, p. 128].    A c p∈( ): �   if and only if

  
sup

F n k F
nk

p

a
∈ ∈
∑ ∑ < ∞

F
,    1 ≤ p < ∞. (5.1)

Theorem 5.1.    A ec
r

p∈( ): �   if and only if

(i)  for  1 ≤ p < ∞,

 
sup ˜

F n k F
nk

p

a
∈ ∈
∑ ∑ < ∞

F
, (5.2)

ãnk     exists for all    k n, ∈N , (5.3)

k
nka∑ ˜     converges for all    n ∈N , (5.4)

sup ( )
m k

m

j k

m
j k j

nj
j

k
r r a

∈ = =

− −∑ ∑ 


 − < ∞

N 0

1 ,    n ∈N; (5.5)

(ii)  for  p = ∞,  (5.3) and (5.5) hold, and

sup ˜
n k

nka
∈
∑ < ∞

N

. (5.6)

Proof.  Suppose conditions (5.2) – (5.5) hold and take any  x ec
r∈ .  Then,

a enk k c
r{ } ∈{ }∈N

β
  for all  n ∈N   and this implies that  Ax  exists.  Let us define the

matrix  B bnk= ( )  with  b ank nk= ˜   for all  k n, ∈N .  Then, since (5.1) is satisfied for

that matrix  B ,  we have  B c p∈( ): � .  Let us now consider the following equality

obtained from the  m-th partial sum of the series  
k nk ka x∑ :

k

m

nk k
k

m

j k

m
j k j

nj ka x
j

k
r r a y

= = =

− −∑ ∑ ∑= 


 −

0 0

1( ) ,    m n, ∈N. (5.7)

Therefore, we derive from (5.7) as  m → ∞  that

k
nk k

k
nk ka x a y∑ ∑= ˜ ,    n ∈N , (5.8)

which yields by taking   �p -norm that

Ax By
p p� �= < ∞ .

This means that  A ec
r

p∈( ): � .

Conversely, suppose that   A ec
r

p∈( ): � .  Then, since  ec
r   and   �p   are the BK-spaces,

we have from Lemma 5.1 that there exists some real constant  K > 0  such that

Ax K x
p c

re� ≤ (5.9)

for all  x ec
r∈ .  Since inequality (5.9) also holds for the sequence  x  = xk( )  =

= 
k F

kb r∈∑ ( )( )   belonging to the space  ec
r ,  where  b r b rk

n
k( ) ( )( ) ( )= { }   is defined by

(3.1), we thus have for any    F ∈F   that
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14 B. ALTAY, F. BAS, AR

  

Ax a K x K
p c

r

n k F
nk

p p

e� =








 ≤ =∑ ∑

∈

˜

/1

which shows the necessity of (5.2).

Since  A   is applicable to the space  ec
r   by the hypothesis, the necessity of

conditions (5.3) – (5.5) is trivial.  This completes the proof of the part (i) of theorem.
Since the part (ii) may also be proved in the similar way that of the part (i), we

leave the detailed proof to the reader.

Theorem 5.2.  A e cc
r∈( ):   if and only if (5.3), (5.5), and (5.6) hold,

lim ˜
n

nk ka
→∞

= α     for each    k ∈N (5.10)

and

lim ˜
n k

nka
→∞

∑ = α . (5.11)

Proof.  Suppose that  A  satisfies conditions (5.3), (5.5), (5.6), (5.10), and (5.11).

Let us take any  x xk= ( )  in  ec
r   such that  x lk →   as  k →∞ .  Then  Ax  exists and it

is trivial that the sequence  y yk= ( )  connected with the sequence  x xk= ( )  by
relation (2.2) is in  c  such that  y lk →   as  k →∞ .  At this stage, we observe from
(5.10) and (5.6) that

j

k

j
n j

nja
= ∈
∑ ∑≤ < ∞

0

α sup ˜
N

holds for every  k ∈N .  This leads us to the consequence that  αk( ) ∈�1.  Considering
(5.8), let us write

k
nk k

k
nk k

k
nka x a y l l a∑ ∑ ∑= −( ) +˜ ˜ ,    n ∈N . (5.12)

In this situation, by letting  n →∞   in (5.12), we observe that the first term on the

right-hand side tends to  
k k ky l∑ −( )α   by (5.6) and (5.10), and the second term tends

to  l α  by (5.11).  Now, under the light of these facts, we obtain from (5.12) as  n →∞
that

Ax y l ln
k

k k( ) → −( ) +∑α α (5.13)

and this shows that  A e cc
r∈( ): .

Conversely, suppose that  A e cc
r∈( ): .  Then, since the inclusion   c ⊂ ∞�   holds, the

necessities of (5.3), (5.5) and (5.6) are immediately obtained from the part (ii) of

Theorem 5.1.  To prove the necessity of (5.10), consider the sequence  x = b rk( )( )  =

= b rn
k

n
( )( ){ } ∈N

  in  ec
r ,  defined by (3.1), for every fixed  k ∈N .  Since  Ax  exists and

is in  c  for every  x ec
r∈ ,  one can easily see that  Ab r a ck

nk n
( )( ) ˜= { } ∈∈N

  for each

k ∈N   which shows the necessity of (5.10).

Similarly, by putting  x = e  in (5.8),  we also obtain that  Ax a
k nk n

= { }∑ ∈
˜

N
  which

belongs to the space  c  and this shows the necessity of (5.11).  This step concludes the
proof.
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SOME EULER SEQUENCE SPACES OF NONABSOLUTE TYPE 15

Let us define the concept of  s-multiplicativity of a limitation matrix.  When there is
some notion of limit or sum in the sequence spaces  λ  and  µ,  we shall say that the
method  A ∈( )λ µ:   is multiplicative  s  if every  x ∈λ   is  A-summable to  s  times of
lim x,  for any fixed real number  s  and denote the class of all  s-multiplicative

matrices by  λ µ:( )s .  It is of course that the class  e cc
r

s
:( )   of  s-multiplicative

matrices reduces to the classes  e cc
r : 0( )  and  e cc

r
reg

:( )   in the cases  s  = 0  and  s = 1,

respectively; here,  e cc
r

reg
:( )   denotes the class of all matrix mappings  A  from  ec

r   to

c  such that  A x x− =lim lim   for all  x ec
r∈ .  Now, we may give the corollary to

Theorem 5.2 without proof.

Corollary 5.1.  A e cc
r

s
∈( ):   if and only if (5.3), (5.5), (5.6) hold, (5.10) and

(5.11) also hold with  αk = 0   for each  k ∈N   and  α = s,  respectively.
The Steinhaus-type theorems were formulated by Maddox [17] as follows: Consider

the class  λ µ:( )1  of 1-multiplicative matrices and  ν  be a sequence space such that
ν λ⊃ .  Then the result of the form  λ µ ν µ: :( ) ( ) = ∅1 ∩   is called a theorem of
Steinhaus type, where  ∅  denotes the empty set.  Now, we may give a Steinhaus-type
theorem whose proof requires the following lemma:

Lemma 5.3 ([12], Corollary 2.5 (iii)).  A e cr∈( )∞ :   i f and only if (5.6), (5.10)

hold, and

lim ˜ lim ˜
n k

nk
k n

nka a
→∞ →∞

∑ ∑= , (5.14)

lim ( ) ˜
m k j k

m
j k j

nj
k

nk

j

k
r r a a

→∞ =

− −∑ ∑ ∑


 − =1 ,    n ∈N . (5.15)

Theorem 5.3.  There is no matrix belonging to the classes both  e cc
r

s
:( )   and

e cr
∞( ): .

Proof.  Suppose that the classes  e cc
r

s
:( )   and  e cr

∞( ):   are not disjoint.  Then

there is at least matrix  A   satisfying the conditions of both Lemma 5.3 and
Corollary 5.1.  Combining condition (5.10) with (5.14), one can easily see that

lim ˜
n k

nka
→∞

∑ = 0

which contradicts condition (5.11).  This completes the proof.
We now may present our basis lemma which is useful for obtaining the

characterization of some new matrix classes from Theorems 5.1, 5.2 and Corollary 5.1.
Lemma 5.4 ([12], Lemma 2.6).  Let  λ, µ  be any two sequence spaces,  A  be an

infinite matrix and  B   a triangle matrix.  Then  A B∈( )λ µ:   if and only if
BA ∈( )λ µ: .

It is trivial that Lemma 5.4 has several consequences, some of them give the
necessary and sufficient conditions of matrix mappings between the Euler sequence
spaces.  Indeed, combining Lemma 5.4 with Theorems 5.1, 5.2 and Corollary 5.1, one
can easily derive the following results:

Corollary 5.2.  Let  A ank= ( )   be an infinite matrix and define the matrix
C cnk= ( )  by

c
n

j
t t ank

j

n
n j j

jk= 


 −

=

−∑
0

1( ) ,    0 < t < 1    and    k n, ∈N .
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Then the necessary and sufficient conditions in order for  A  belongs to anyone of the
classes  e ec

r t: ∞( ) ,  e ec
r

p
t:( ) ,  e ec

r
c
t:( )  and  e ec

r
c
t

s
:( )   are obtained from the respective

ones in Theorems 5.1, 5.2 and Corollary 5.1 by replacing the entries of the matrix  A
by those of the matrix  C.

Corollary 5.3.  Let  A ank= ( )   be an infinite matrix and  t tk= ( )  be a sequence of
positive numbers and define the matrix  C cnk= ( )  by

c
T

t ank
n j

n

j jk=
=
∑1

0

,    k n, ∈N ,

where  T tn k

n
k= =∑ 0
  for all  n ∈N .  Then the necessary and sufficient conditions

in order for  A  belongs to anyone of the classes  e rc
r t: ∞( ),  e rc

r
p
t:( ),  e rc

r
c
t:( )

and  e rc
r

c
t

s
:( )   are obtained from the respective ones in Theorems 5.1, 5.2

and Corollary 5.1  by replacing the entries of the matrix   A  by those  of  the  mat-

rix C ;  here,  rp
t   is defined in [18] as the space of all sequences whose  Rt -

transforms are in the space  �p   and is derived from the paranormed spaces  r pt ( )   in

the case  p pk =   for all  k ∈N ,  and  rt
∞ ,  rc

t   are obtained in the case  p = e  from

the paranormed spaces  r pt
∞( ),  r pc

t ( )   and are studied by Malkowsky [4].

Since the spaces  rt
∞   and  rp

t   reduce in the case  t  = e  to the Cesàro sequence
spaces  X∞   and  Xp  of nonabsolute type, respectively, Corollary 5.3 also includes the

characterizations of the classes  e Xc
r : ∞( )  and  e Xc

r
p:( ).

Corollary 5.4.  Let  A ank= ( )   be an infinite matrix and define the matrices
C cnk= ( )  and  D dnk= ( )  by  c a ank nk n k= − +1,   and  dnk  = ank  – an k−1,   for all
k n, ∈N .  Then the necessary and sufficient conditions in order for  A  belongs to

anyone of the classes  ec
r : ( )�∞( )∆ ,  e cc

r : ( )∆( ),  e cc
r

s
: ( )∆( )   and  e bc

r
p: v( )  are

obtained from the respective ones in Theorem 5.2, Corollary 5.1 and Theorem 5.1
by replacing the entries of the matrix  A  by those of the matrices  C  and  D ;  here,
�∞( )∆ ,  c( )∆   denote the difference spaces of all bounded, convergent sequences and
introduced by Kızmaz [19].

Corollary  5.5.  Let  A ank= ( )   be an infinite matrix and define the matrix
C cnk= ( )  by

c
t
n

ank
j

n j

jk= +
+=

∑
0

1
1

,    0 < t < 1,

for all  k n, ∈N .  Then the necessary and sufficient conditions in order for  A

belongs to anyone of the classes  e ac
r t: ∞( ) ,  e ac

r
p
t:( ) ,  e ac

r
c
t:( )  and  e ac

r
c
t

s
:( )   are

obtained from the respective ones in Theorems 5.1, 5.2 and  Corollary  5.1 b y
replacing the entries of the matrix  A  by those of the matrix  C.

Corollary  5.6.  Let  A ank= ( )   be an infinite matrix and define the matrix
C cnk= ( )  by  c a n knk = ( ),   for all  k n, ∈N .  Then the necessary and sufficient

conditions in order for  A  belongs to anyone on the classes  e bsc
r :( ),  e csc

r :( )  and

e csc
r

s
:( )   are obtained from the respective ones in Theorems 5.1, 5.2 and Corol-

lary 5.1 by replacing the entries of the matrix  A  by those of the matrix  C.
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