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ON THE ASYMPTOTIC BEHAVIOR 
OF SOLUTIONS OF DIFFERENTIAL SYSTEMS 

PRO ASYMPTOTYÇNU POVEDINKU 

ROZV’QZKIV DYFERENCIAL|NYX SYSTEM

There are many studies on the asymptotic behavior of solutions of differential equations.  In the present
paper, we consider another aspect of this problem, namely, the rate of the asymptotic convergence of
solutions.

Let  ϕ( )t   be a scalar continuous monotonically increasing positive function tending to  ∞   as  t →
→ ∞.  It is established that if all solutions of a differential system saisfy the inequality:
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Asymptotyçnij povedinci rozv’qzkiv dyferencial\nyx rivnqn\ prysvqçeno çymalo doslidΩen\.

U danij roboti problemu rozhlqnuto z inßoho boku, a same, z toçky zoru ßvydkosti asymp-
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1.  Introduction and preliminaries.  Let  I  denote the interval  a ≤ t < ∞ ,  a ≥ 0,  and

R
n   denote Euclidean  n-space.  For  x n∈R ,  let  x   be the Euclidean norm of  x.

We shall denote by  Sα   the set of  x  such that  x ≤ α .
Consider a system of differential equations [1 – 9]

dx
dt

X t x= ( , ),    X t( , )0 0≡ , (1)

where  X t x( , )  is defined on a region in  I n× R   and continuous in  ( , )t x .
Moreover, suppose that  X t x( , )  satisfies uniqueness condition of solution.

Throughout this paper, a solution passing through a point  ( , )t x0 0   in  I n× R   will be
denoted by such form as  x t t x( ; , )0 0 .  We denote by  C x0( )  the family of functions
which satisfy locally Lipschitz condition with respect to  x,  and assume that  ϕ( )t   is a
scalar continuous, monotonically increasing function in  I,  ϕ( )a ≥ 1,  ϕ( )t → +∞   as
t → +∞ .

We have the following definitions:
Definition 1.  The solution  x t( ) ≡ 0  of  (1)  is  ϕ-asymptotically stable if given

any   ε > 0  and any  t I0 ∈ ,  there exist  δ δ ε= >( , )t0 0  such that if  x0 < δ ,

then  x t t x( ; , )0 0  < ε ϕ
ϕ
( )
( )
t

t
0   for all  t t≥ 0 .
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Definition 2.  The solution  x t( ) ≡ 0  of  (1)  is  ϕ-uniform asymptotically stable
if  δ  in Definition 1 is independent of  t0 .

Definition 3.  The solution  x t( ) ≡ 0  of  (1)  is  ϕ-asymptotically stable in the
large  if  for  any   α > 0,   there  exist   K( )α > 0    such  that  if   x S0 ∈ α ,   then

x t t x( ; , )0 0  < K
t

t
x( )

( )
( )

α ϕ
ϕ

0
0   for all  t t≥ 0 .

Let  V t x( , )   be a continuous scalar function defined on an open set  S  and let
V t x( , )  ∈  C x0( ).  This function is called Liapunov function [9].  We also define the
function:  

′ = + +( ) −[ ]
→ +

V t x
h

V t h x hX t x V t x
h

( )( , ) lim , ( , ) ( , )1
0

1 .

Let  x t( )  be a solution of (1) that stays in  S.  Denote by  ′( )V t x t, ( )   the upper right-
hand derivative of  V t x t, ( )( ) ,  i.e.,  

′V t x( )( , )1   =  lim , ( ) ( , )
h h

V t h x t h V t x
→ +

+ +( ) −[ ]
0

1 .

We have [9]

′ = ′V t x V t x( )( , ) ( , )1 .

In the case where  V t x( , )   has continuous partial derivatives of the first order, it is
evident that

′ = ∂
∂

+ ∂
∂

⋅V t x V
t

V
t

X t x( )( , ) ( , )1 ,

where  “.”  denotes the scalar product.

2.  Sufficient conditions.
Theorem 1.  Suppose that there exists a Liapunov function   V t x( , )   defined on  I,

x H< ,  which satisfies the following conditions:
(i)  x V t x≤ ( , )   and  V t( , )0 0≡ ;

(ii)  ′V t x( )( , )1  ≤ −λ( ) ( , )t V t x ,  where  λ  is a scalar continuous positive function

in  I  and  
a

t dt
+∞
∫ = +∞λ( ) .

Then the solution  x t( ) ≡ 0  of (1) is  ϕ-asymptotically stable.

Proof.  For any  ε > 0  (ε < H ),  t I0 ∈ ,  we can choose  δ δ ε= ( , )t0   such that
x0 < δ   implies  V t x( , )0 0 < ε .  Let  x t t x( ; , )0 0   be a solution of (1) such that
x0 < δ .  Applying Theorem 4.1 in [9], by (ii) we have 

V t x t t x V t x d d
t

t

t

t

, ( ; , ) ( , ) exp ( ) exp ( )0 0 0 0

0 0

( ) ≤ −








 < −









∫ ∫λ ξ ξ ε λ ξ ξ .

Denote  ϕ( )t  = exp ( )−( )∫a
t

dλ ξ ξ .  Because of the feature of the function  λ,  we can

see that  ϕ  is continuous monotonically increasing function on  I,  ϕ( )a = 1,  ϕ( )t  →
→ +∞   as  t → +∞   and the above estimate leads to

V t x t t x V t x
t

t

t
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0 0( ) ≤ <ϕ
ϕ
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.
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Thus, by (ii) we obtain

x t t x V t x t t x
t

t
( ; , ) , ( ; , )

( )
( )0 0 0 0

0≤ ( ) < ε ϕ
ϕ

    for all    t t≥ 0     if    x0 < δ .

That is, the solution  x t( ) ≡ 0  of (1) is  ϕ-asymptotically stable.
The theorem is proved.

Theorem 2.  Suppose that there exists a Liapunov function   V t x( , )   defined on  I,
x H< ,  which satisfies the following conditions:

(i)  x V t x b x≤ ≤ ( )( , ) ,  where  b r CIP( ) ∈   [9, 7];

(ii)  ′V t x( )( , )1  ≤ −λ( ) ( , )t V t x ,  where  λ  is the function defined in Theorem 1.

Then the solution  x t( ) ≡ 0  of (1) is  ϕ-uniform asymptotically stable.

Proof.  For a given  ε > 0,  we can choose  δ ε( ) > 0   so that  δ ε ε( ) ( )< −b 1   and the
remainder of the proof can be verified by the same argument as in Theorem 1.

Corollary  1.   If   λ( )t c≡    ( )c > 0 ,   then   x t( ) ≡ 0    of  (1)   is   exponential-

asymptotically stable, that is  x t t x( ; , )0 0  ≤ εe c t t− −( )0   for all  t t≥ 0   (see
Definition 7.8 in [9]).

Theorem 3.  Suppose that there exists a Liapunov function  V t x( , )   defined on

I n× R   satisfying the following conditions:

(i)  x V t x≤ ( , )   and  V t( , )0 0≡ ;

(ii)  ′ ( ) ≤V t t x( ) , ( )1 0ϕ ,    where    ϕ( )t     is  a   scalar   monotonically   increasing,
differentiable function on  I,  ϕ( )a ≥ 1  and  ϕ( )t → +∞   as  t → +∞ .

Then the solution  x t( ) ≡ 0  of (1) is  ϕ-asymptotically stable.

Proof.  For any  ε > 0  and a fixed  t I0 ∈ ,  we can find a number  δ δ ε= ( , )t0
such that  x0 < δ   implies  V t t x0 0 0, ( )ϕ( )  < ε.  Under assumption that  x t t x( ; , )0 0   is
a solution of (1) satisfying  x0 < δ ,  we have  x t t x( ; , )0 0  < ε  for all  t t≥ 0 .
Indeed, if there exists  t t1 0>   such that  x t t x( ; , )1 0 0  ≥ ε,  by (i) and (ii) we obtain
ε ≤ x t t x( ; , )1 0 0  ≤ ϕ( ) ( ; , )t x t t x1 1 0 0  ≤ V t t x t t x1 1 1 0 0, ( ) ( ; , )ϕ( )  ≤ V t t x0 0 0, ( )ϕ( )  < ε.
This is a contradiction.

On the other hand, conditions (i), (ii) imply:

ϕ( ) ( ; , )t x t t x0 0   ≤  V t t x t t x, ( ) ( ; , )ϕ 0 0( )  ≤  V t t x0 0 0, ( )ϕ( )   <  ε.

Thus, we have  x t t x( ; , )0 0  < ε
ϕ( )t

 ≤ ε ϕ
ϕ
( )
( )
t

t
0   for all  t t≥ 0   if  x0 < δ .

This shows that the solution  x t( ) ≡ 0  of (1) is  ϕ-asymptotically stable.
Theorem 4.  Suppose that there exists a Liapunov function  V t x( , )   defined on

I n× R   which satisfies the following conditions:

(i)  V t( , )0 0≡ ;

(ii)  ϕ( )t x  ≤ V t x( , ) ,   where   ϕ( )t    is  a  continuous monotonically increasing
function on  I,  ϕ( )a ≥ 1  and  ϕ( )t → +∞   as  t → +∞ ;

(iii)  ′ ( ) ≤V t x( ) ,1 0 .
Then the solution  x t( ) ≡ 0  of (1) is  ϕ-asymptotically stable.
Proof.  The proof can be given by the same idea as in the proof of Theorem 3.
Theorem 5.  Suppose that there exists a Liapunov function  V t x( , )   defined on

I n× R   which satisfies the following conditions:
(i)  x V t x K x≤ ≤( , ) ( )α   for  x S∈ α ,  K( )α   is a positive number;
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(ii)  ′V t x( )( , )1  ≤ −λ( ) ( , )t V t x ,  where  λ  is the function defined in Theorem 1.
Then the solution  x t( ) ≡ 0  of (1) is  ϕ-asymptotically stable in the large.
The proof can be given by the same idea as in the proof of Theorem 11.6 in [9].

Example.  Consider the equation

′ = −x
t

x1
2

,

(2)

′ = − −y
t

y e
t

x y
t1

2

2
2 ,    t ≥ 1.

Let  V t x y( , , ) = x y2 2
1
2+( ) ,  then  V t x y( , , )  is a Liapunov function defined on

1 2≤ < ∞{ } ×t R ,  which satisfies  condition (i) of Theorem 5;  condition (ii) is also
satisfied because:

′V t x y( )( , , )2   =  1
2

2 2 2 2
1
2xx yy x y′ + ′( ) +( )−   =

=  − − −






+( )−1
2

1
2

12 2
2

2 2 2 2
1
2

t
x

t
y

t
e

t
x y x y

t
  ≤

≤  − +( ) +( )−1
2

2 2 2 2
1
2

t
x y x y   =  − +( )1

2
2 2

1
2

t
x y   =  − 1

2 t
V t x y( , , ).

Then, for a given  α > 0  we have  z t t z( ; , )0 0  ≤ e

e
z

t

t

0

0   for all  t t≥ ≥0 1,

z S0 ∈ α ,  where  z t t z( ; , )0 0  = colon x t t x y t t y( ; , ), ( ; , )0 0 0 0( ) ,  and  z0 = colon x y0 0,( ) .

Thus, the solution  x t( ) ≡ 0  of equation (2) is  e t -asymptotically stable in the
large.

3.  Converse theorems on  ϕϕϕϕ-asymptotic stability.  Let us begin with converse
theorems on  ϕ-asymptotic stability of linear systems.  Consider the system

dx
dt

A t x= ( ) , (3)

where  A t( )  is continuous  n n×   matrix on  I.

Theorem 6.  Suppose that there exists  K ≥ 1  satisfying the following condition:

x t t x K
t

t
x( ; , )

( )
( )0 0

0
0≤ ϕ

ϕ
,  (4)

where   x t t x( ; , )0 0   is a solution of (3),  ϕ( )t   is a function defined as in the

Theorem 3 and  ′ >ϕ ( )t 0  on  I.

Then there exists a function  V t x( , )   defined on  I n× R   which satisfies the
following conditions:

(i)  x V t x K x≤ ≤( , ) ;

(ii)  V t x V t x K x x( , ) ( , )
* *

− ≤ − ;

(iii)  ′ ≤ −V t x t V t x( )( , ) ( ) ( , )3 λ ,  λ ϕ
ϕ

( )
( )
( )

t
t
t

=
′

  for all  t I∈ ;

(iv)  ′ ( ) ≤V t t x( ) , ( )3 0ϕ .
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Proof.  Put  V t x x t t x
t

t
( , ) sup ; ,

( )
( )

= +( ) +
≥τ

τ ϕ τ
ϕ0

.

Due to (4), we can see that condition (i) will be held.  In fact,

x   ≤  sup ; ,
( )

( )τ
τ ϕ τ
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+( ) +

0
x t t x
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( )
( )
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ϕ τ

ϕ τ
ϕ≥ +
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K
t

t
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t
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  =  K x .

Moreover,

V t x V t x( , ) ( , )
*

−   =  sup ( ; , )
( )

( )
sup ( ; , )

( )
( )*

τ τ
τ ϕ τ

ϕ
τ ϕ τ
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+ + − + +

0 0
x t t x

t
t
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( )

( )*
τ

τ τ ϕ τ
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+ − + +
0

x t t x x t t x
t

t
  =  sup ( ; , )

( )
( )*

τ
τ ϕ τ

ϕ≥
+ − +

0
x t t x x

t
t

  ≤

≤  sup
( )

( )
( )

( )*
τ

ϕ
ϕ τ

ϕ τ
ϕ≥ +

− +



0

K
t

t
x x

t
t

  =  K x x− * .

Thus, condition (i) is satisfied.
The proof of the continuity of  V t x( , )   can be performed by the same method used

in the proof of Theorem19.1 in [9].
Now, we shall prove (iii).  Let  x x t h t x* ; ,= +( ),  h > 0.  Then we have

V t h x( , )
*

+   =  sup ( ; , )
( )
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τ

τ ϕ τ
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+ + + + +
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x t h t h x
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which implies

1 1 1
h

V t h x V t x
h

t
t h

V t x( , ) ( , )
( )

( )
( , )*+ −[ ] ≤

+
−





ϕ
ϕ

.

Since the function  ϕ( )t   is differentiable, the above inequality implies

′ ≤ −V t x t V t x( )( , ) ( ) ( , )3 λ ,

where  λ ϕ
ϕ

( )
( )
( )

t
t
t

= ′
,  t I∈ .  Condition (iii ) is proved.

Finally, we shall establish (iv).  Since system (3) is linear, we have the relation
x t t t x; , ( )0 0 0ϕ( ) = ϕ( ) ; ,t x t t x0 0 0( ),  whence we obtain

V t h t h x( , )*+ +( )ϕ   =  sup ( ; , ( ) )
( )

( )*τ
τ ϕ ϕ τ

ϕ≥
+ + + + + +

+0
x t h t h t h x

t h
t h

  =

=  sup ( ; , ( , , )) ( )
( )

( )τ
τ ϕ ϕ τ

ϕ≥
+ + + + + + +

+0
x t h t h x t h t x t h

t h
t h

  =
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=  sup ( ; , ) ( )
τ

τ ϕ τ
≥

+ + + +
0

x t h t x t h   =  sup ( ; , ) ( )
τ

τ ϕ τ
≥

+ +
h

x t t x t   =

=  sup ( ; , ( ) )
( )

( )τ
τ ϕ ϕ τ

ϕ≥
+ +

h
x t t t x

t
t

  ≤

≤  sup ( ; , ( ) )
( )

( )τ
τ ϕ ϕ τ

ϕ≥
+ +

0
x t t t x

t
t

  =  V t t x, ( )ϕ( ) ,

which implies  V t h t h x( , )*+ +( )ϕ  – V t t x, ( )ϕ( )  ≤ 0  and then  ′ ( )V t t x( ) , ( )7 ϕ  ≤ 0.

Theorem 7.  Suppose that there exists  K  ≥ 1  such that  x t t x( ; , )0 0  ≤

≤ K
t

t
x

ϕ
ϕ
( )
( )

0
0 ,  where  x t t x( ; , )0 0   is a solution of (3),  ϕ( )t   is a function defined

as in the Theorem 4.

Then there exists a function  V t x( , )   defined on  I n× R   which satisfies the
following conditions:

V t( , )0 0≡ ,    ϕ( ) ( , )t x V t x≤ ,    V t x V t x K t x x( , ) ( , ) ( )* *− ≤ −ϕ

and

′ ≤V t x( )( , )7 0.

Proof.  By the same idea used in the proof of Theorem 6, this theorem can be
proved by choosing  V t x( , )  = sup ( ; , ) ( )

τ
τ ϕ τ

≥
+ +

0
x t t x t .
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