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ON THE ASYMPTOTIC BEHAVIOR
OF SOLUTIONS OF DIFFERENTIAL SYSTEMS

ITPO ACUMIITOTHYHY ITOBEJIHKY
PO3B’A3KIB JUOEPEHIIAJIbHUX CUCTEM

There are many studies on the asymptotic behavior of solutions of differential equations. In the present
paper, we consider another aspect of this problem, namely, the rate of the asymptotic convergence of
solutions.

Let @(¢) be a scalar continuous monotonically increasing positive function tending to o as t —

— oo, It is established that if all solutions of a differential system saisfy the inequality:

t
| x(t; 15, x) || < MM forall t21,, x,e{x:[xl[<a},
(1)

11
then the solution x(; #,, x,) of this differential system tends to O faster that M M

(1)
ACHMNTOTUYHIN MOBE/IHII Po3B’A3KiB AUGEPEHIiaIbHUX PIBHSHb MPUCBIYECHO YUMAJIO AOCII/IKEHb.
Y paniii po60oTi MpoOJieMy PO3TJISHYTO 3 iHIIOTO OOKY, a caMe, 3 TOYKH 30py LIBHUAKOCTI acHUMII-
TOTHYHOI 3612KHOCTI pO3B’ A3KiB.
Hexaii ¢(f) ckasspHa HenmepepBHa MOHOTOHHO 3pOCTal0y4a [0aTHA PYHKILisl, IO NPsIMYE 10 oo
Tpu ¢ —> co. BcTaHOBJIEHO, 110 SKIIO BCi po3B’s13KM AMGEPEeHIiaIbHOI CHCTEMH 3a/I0BOJIBHSAIOTH He-
PiBHICTh

(ty)

| xt; ty, x) |l < M msBeix 21y, x,€{x:|[x[[<al},

P(ty)

TO po3B 130K x(1; 1y, X,) Lilei mucpepennianbHoi cucTemn npsmye go 0 wBuMAwWe, HIX M ——

OB

1. Introduction and preliminaries. Let / denote the interval a <t<eo, @ 20, and
R" denote Euclidean n-space. For xeR", let ||x| be the Euclidean norm of x.
We shall denote by S, the set of x such that ||x||<o.

Consider a system of differential equations [1 — 9]

& _ X, x), X0 =0, (D)
dt

where X(t, x) is defined on aregionin I X R" and continuous in (¢, x).

Moreover, suppose that X(#, x) satisfies uniqueness condition of solution.
Throughout this paper, a solution passing through a point (¢, x,) in IxR" will be
denoted by such form as x(; ¢y, x). We denote by Cy(x) the family of functions
which satisfy locally Lipschitz condition with respect to x, and assume that @(¢) is a
scalar continuous, monotonically increasing function in I, @(a) =1, @) — +o as
f—> +oo.

We have the following definitions:

Definition 1. The solution x()=0 of (1) is @-asymptotically stable if given
any € >0 and any ty€l, there exist 8=0(ty,€)>0 such that if |x|<3,

(1)
then | x(t;ty, x9)|| < € forall t2>t,.
It 0,500 < €0 :
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Definition 2. The solution x(t)=0 of (1) is @-uniform asymptotically stable
if & in Definition 1 is independent of t,.
Definition 3. The solution x(t)=0 of (1) is @-asymptotically stable in the

large if for any o >0, there exist K(o)>0 such that if xy€S,, then
17
165 to, %0)]| < K((x)(fp((;)))xo Jorall 121y,

Let V(z,x) be a continuous scalar function defined on an open set S and let
V(t, x) € Cy(x). This function is called Liapunov function [9]. We also define the
function:

Vit x) = Tim L[Vt +h x +hX(t 00) = V(T 0.
h—0+ h

Let x(#) be a solution of (1) that stays in S. Denote by V,(t, x(1)) the upper right-
hand derivative of V(t, x(¢)), i.e.,

, o1 B
Vit x) = hli>n(}+ﬁ[v(t+h’ x(t + h)) — V(t, x)].
We have [9]
Vot x) = V'(t, ).

In the case where V(z, x) has continuous partial derivatives of the first order, it is
evident that

V(’l)(;, x) = %—‘t/ + %—Y-X(t, x),

where “.” denotes the scalar product.

2. Sufficient conditions.

Theorem 1. Suppose that there exists a Liapunov function V(t, x) defined on I,
| x||< H, which satisfies the following conditions:

@) || x|V, x) and V(,0)=0;

(i1) V(’l)(t, x) £ =Mo)V(t, x), where A is a scalar continuous positive function
in I and j+°°x(r)dt=+oo.
a
Then the solution x(t)=0 of (1)is @-asymptotically stable.

Proof. Forany € >0 (e <H), tyel, we can choose &=3(fy,€) such that
[xo ]| <8 implies V(t, xy)<e. Let x(t;1y, xy) be a solution of (1) such that
| xo | < 8. Applying Theorem 4.1 in [9], by (ii) we have

t t
V(t, x(t: 1y, xp)) < V(ty, X0) exp(—]k(i;)d&] < ECXP[—JK@)di}

To fo

t .
Denote () = exp(—J k(&)d&). Because of the feature of the function A, we can
a

see that ¢ is continuous monotonically increasing function on I, ¢(a)=1, @) —
— 400 as t— +oo and the above estimate leads to

: 9g) _ o 9lp)
V(t, .x(t, to, XO)) < V(to, XO) (p(t) < € (P(t) .
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Thus, by (ii) we obtain
: . U] -
H.x(t, to, XO)H < V(t, .x(t, to, Xo)) < ST for all tzto if H.XOH<8
o(r

That is, the solution x(r)=0 of (1) is ¢-asymptotically stable.
The theorem is proved.

Theorem 2. Suppose that there exists a Liapunov function V(t, x) defined on I,
| x||< H, which satisfies the following conditions:

@) || x|V, x)<b(||x]]), where b(r)eCIP [9,7];

(ii) V(;)(t, x) < =M V(t, x), where N is the function defined in Theorem 1.

Then the solution x(t)=0 of (1)is @-uniform asymptotically stable.

Proof. For a given € >0, we can choose 0(g)>0 so that &(g) < b_l(s) and the
remainder of the proof can be verified by the same argument as in Theorem 1.

Corollary 1. If Ait)=c (¢>0), then x(t)=0 of (1) is exponential-
asymptotically stable, that is |x(t;19, x0)| < € U™ for all 121, (see
Definition 7.8 in [9]).

Theorem 3. Suppose that there exists a Liapunov function V(t,x) defined on
I XR" satisfying the following conditions:

@) x|V, x) and V(,0)=0;

(i) V(’l)(t, o()x) £0, where () is a scalar monotonically increasing,
differentiable function on I, ©(a)=1 and @(t) = +oo as t— +oo.

Then the solution x(t)=0 of (1)is @-asymptotically stable.

Proof. For any € >0 and a fixed #;€l, we can find a number & =3(z), €)
such that | xq || <d implies V(fy, ®(ty)xy) < €. Under assumption that x(z; 1y, xo) is
a solution of (1) satisfying || xy| <8, we have |x(t;1y,xy)| <€ for all 7>¢,.
Indeed, if there exists #; >17, such that |x(#;%,, xy)| =€, by (i) and (ii) we obtain
€ < || x(ty5 19, xp) || £ @) x(115 19, x0) || £ V(81, 9(1) x(115 19, X)) < V(tg, O(19) Xg) < €.

This is a contradiction.
On the other hand, conditions (i), (ii) imply:

Q)| x(5; 19, x0) || < V{1, (1) x(15 19, X)) < V19, P(19) xy) < €.

_&  9)
o) o)
This shows that the solution x(r)=0 of (1) is @-asymptotically stable.

Theorem 4. Suppose that there exists a Liapunov function V(t, x) defined on

Thus, we have || x(t; 2y, xo)|| < forall t>1, if ||xy||<8.

I xR" which satisfies the following conditions:

1 V(,0)=0;

(i) @) x| £ V(t, x), where ©(t) is a continuous monotonically increasing

functionon I, ¢(a)=1 and @) —> +oo as t—> +oo;

(iii) V{(t x) < 0.

Then the solution x(t)=0 of (1)is @-asymptotically stable.

Proof. The proof can be given by the same idea as in the proof of Theorem 3.

Theorem S. Suppose that there exists a Liapunov function V(t, x) defined on
I X R" which satisfies the following conditions:

@ |lx|| < V(@ x) < K@) x|| for xeS,, K(@) is a positive number;

ISSN 0041-6053. Ykp. mam. xypH., 2005, m. 57, N® 1



140 VU TUAN, PHAM VAN VIET

(ii) V('l)(t, x) £ =M1 V(t, x), where N is the function defined in Theorem 1.
Then the solution x(t)=0 of (1)is @-asymptotically stable in the large.
The proof can be given by the same idea as in the proof of Theorem 11.6 in [9].

Example. Consider the equation

4

1
= ———x,
24t
’ 1 62\/7 2
= —_-— —_ X s
y 25T T

2)
1> 1.

1
Let V(t, x,y) = (x2 + y2)2, then V(z,x,y) is a Liapunov function defined on

{1<t< oo} X R2, which satisfies condition (i) of Theorem 5; condition (ii) is also
satisfied because:

(2xx” + 2yy')(x2 + yz)_% =

N [ —

V(,Z)(t9 X, y) =

O U T SRR B
S\ 24t 201 it
< —L(x2+y2)(x2+y2)_% =

24t

)czyz)(x2 + yz)_E <

1
+y)2 = L vixy.

24t

2

_L(x
24t
. e\/'TO
Then, for a given o >0 we have [z(t515,20)[| S —# [zl for all 727,21,
eV
29 €Sy, Where z(f;ty, 29) = colon(x(t; 1y, xy), ¥(t; £y, ¥y))» and zy = colon(xy, yg)-

Thus, the solution x(f)=0 of equation (2) is e‘/—'-asymptotically stable in the
large.

3. Converse theorems on @-asymptotic stability. Let us begin with converse
theorems on (@-asymptotic stability of linear systems. Consider the system

dx
—~ =A
i ®x, 3

where A(t) is continuous » X n matrix on I.

Theorem 6. Suppose that there exists K=>1 satisfying the following condition:

(1)
x(t; 1, x0) || < K25 x, |, 4)
et 50 < K 203
where x(t;ty, xy) is a solution of (3), ©(t) is a function defined as in the
Theorem 3 and (p,(t)>0 on I.

Then there exists a function V(t,x) defined on IxR" which satisfies the
following conditions:

@ x| < Vv, x) < K||x]|;
() |V, x)=V(t, x,)| < K||x—x,

(iii) V(,3)(t, x) < =MOV(t, x), Mp)= (([:),((;)) forall tel;
(iv) Vi3t 0(1)x) < 0.
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ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF DIFFERENTIAL SYSTEMS 141

Proof. Put V(t,x) = sup||x(t + 1, 1) 27,
>0 o)

Due to (4), we can see that condition (i) will be held. In fact,

| x]]-

QU +1) &m[K. 0) x¢u+-w] _ K|

x|| £ supl||x(t+ Tt x)
51 < supl H I

20 (1)
Moreover,
| ot+1)
o)

= sup||lx(t+ T x—x,)| et+7
120

t
(1)

IN

|V(t, x)=V(t, x,)| = |sup|x(+ T, x)|

120

t+
\%—sgg\\x(t+’c; t,x,)|
T2

IN

< sup|[x(r+ T x) —x(+ T x| QU+
120 (P(t)

< p[K‘P(’)— “’(’”)} - Kx-x].
ol @ +71) o)

Thus, condition (i) is satisfied.

The proof of the continuity of V(¢, x) can be performed by the same method used
in the proof of Theorem19.1 in [9].

Now, we shall prove (iii). Let x, =x(¢t + h;f, x), h>0. Then we have

ot+h+7)
Vit+hx,) = t+h+tt+hx)|—— =
k) = mpl o
= sup||x(t+h+T;t,x)| QUrhtD_o0) _
20 oM @ +h)
= sup||x(t+ T; 1, X) || UrY o) <
>h o) @ +h)
< sup|lx(t+ 0, 0| QEED 0O _ 0Oy,
120 o) @r+h)  @+h)
which implies
1 _ 1 _oe®)
p [Vt +h, x,) - V(t,x)] < p [(p(t s I]V(t, X).

Since the function @(f) is differentiable, the above inequality implies

Vit 1) < ~MOV(, %),

where A(f) = (pT(tt))’ t € I. Condition (iii ) is proved.
¢

Finally, we shall establish (iv). Since system (3) is linear, we have the relation
x(t; 1y, O(1) xo) = ©(1y) x(t; £, ), Whence we obtain

Ve + ot +h)x,) = suplla+h+to+h o+ hyx)| LLED
120 ot +h)
o(t+h+71)
= sup||x(t + h+ Tt + b x(t + b t, )@t + h) B =
=0 ot + h)
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= sup|lx@t+h+Tt, X))o +h+1T) = sup|x(t+1T; x)|eE+1) =

120 T2h
] o+ 1)
= sup|lx(t + T, () )| = <
T2h (p(l‘)
‘M

< sup||x(t+ T t, () x)|

= V N N
v ) . o))

which implies V(z + h, @t + h)x,) — V(t, o(t)x) <0 and then \/(’7)(t, o()x) £0.
Theorem 7. Suppose that there exists K 2 1 such that | x(t; 1y, xo)|| <

, where x(t;ty, xy) is a solution of (3), @(t) is a function defined

as in the Theorem 4.

Then there exists a function V(t,x) defined on IxR" which satisfies the
following conditions:

V(t,0) = 0, o@)|x|| £Vt x), |VEx)—-V x,)| < Ko@)|x— x|

and
Vit x) < 0.

Proof. By the same idea used in the proof of Theorem 6, this theorem can be

proved by choosing V(z, x) = sup||x(¢ + T; ¢, X) | @t + T).
120
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