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RANDOM ATTRACTORS FOR STOCHASTIC 2D HYDRODYNAMICAL TYPE
SYSTEMS *

BUITAJJKOBI ATPAKTOPH JJIS1 CTOXACTUYHUX IBOBUMIPHUX CUCTEM
I'ITAPOAMHAMIYHOI'O THUITY

We study the asymptotic behavior of solutions to a class of abstract nonlinear stochastic evolution equations with additive
noise that covers numerous 2D hydrodynamical models, such as the 2D Navier — Stokes equations, 2D Boussinesq equations,
2D MHD equations, etc., and also some 3D models, like the 3D Leray a-model. We prove the existence of random
attractors for the associated continuous random dynamical systems. Then we establish the upper semicontinuity of the
random attractors as the parameter tends to zero.

BuBUa€THCS aCUMIITOTHYHA IOBEIIHKA PO3B’A3KIB OHOTO KJ1acy abCTPaKTHUX HENIHIHHUX CTOXaCTUYHUX PiBHSIHb CBOJIOLI]
3 aIUTUBHUM IIIYMOM, III0 BKJIFOYAE PI3HOMaHITHI ABOBHMIiPHI TiAPOANHAMIYHI MOJCITI, TaKi K JBOBUMIpHI piBHsAHHS HaB’e —
Croxca, TBOBUMIpHI piBHSAHHS Byccinecka, TBOBUMIpHI piBHSHHS MarHiTOTiIPOANHAMIKH TOIIO, a TAKOX AESKi TPUBUMIpPHI
MOZETI TUIy TPUBUMIpHOI cx-mozeni Jlepes. JloBeneHO iCHYBaHHS BUIIAIKOBHUX aTPAaKTOPIB MUl BiAMOBIIHUX HETIEPEPBHUX
BUITaIKOBHX AMHAMIUYHMX cucTeM. KpiM TOro, BCTaHOBIIEHO HAIliBHETIEPEPBHICTh 3BEPXY BUIIAIKOBUX aTPAKTOPIB y BUITAJIKY,
KOJIM [IApaMeTp IPSAMYE JI0 HyJIs.

1. Introduction. The study of the asymptotic behavior of dynamical systems is one of the most
important problems of modern mathematical physics. In the deterministic case, the notion of global
attractors, a compact invariant and attracting set, plays a central role (see, for example, [11, 22]).
The concept of random attractors was introduced in [14, 15] as an extension to stochastic systems
of the concept of global attractors for deterministic systems. The theory of random attractors has
been shown to be very useful for the study of the long-time behavior of infinite-dimensional random
dynamical systems, see the recent survey [16] and references therein. Up to now, the existence of
random attractors has been proved for many classes of stochastic partial differential equations, see,
e.g.,[2,4,6-8,17-20, 24-28].

In this paper, we study the long-time behavior of solutions to the following abstract nonlinear
stochastic 2D hydrodynamical type system:

du + (Au + B(u,u) + Ru)dt = fdt + chdw. (1.1)

As pointed out in [11, 12], with suitable choices of A, B and R, this abstract model covers many 2D
hydrodynamical models such as 2D Navier — Stokes equations, 2D Boussinesq equations, 2D MHD
equations, 2D magnetic Bénard equations, and also some 3D models such as 3D Leray-a model,
the shell models of turbulence. In the paper [12], the authors proved the existence and uniqueness
of weak solutions, and more importantly, the Wentzell - Freidlin type large deviation principle for
small multiplicative noise to this equation. The support of distribution of solutions to this abstract
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model was described later in [13]. The stability and stabilization of solutions to the abstract model
(1.1) was investigated recently in [3]. It is also noticed that the existence and long-time behavior of
solutions in terms of existence of global attractors to the corresponding deterministic version of this
model (i.e., equation (1.1) without the stochastic term) was given in the monograph [11].

In this paper we consider the abstract equation (1.1) with additive noise. We first prove the exis-
tence of a random attractor for the continuous random dynamical system generated by the equation.
Then we establish the upper semicontinuity of the random attractor at ¢ = 0, that is, we compare
the random attractor of the stochastic equation (1.1) and the global attractor of the limit determi-
nistic equation, which is formally obtained when € = 0. Under the assumptions in the paper (see
Subsection 2.2 for details), the associated random dynamical system is not necessary compact, and
therefore the pullback asymptotic compactness of the dynamical system cannot be obtained directly
by constructing random absorbing sets in a more regular space and using some compact embeddings.
In order to overcome this essential difficulty, we exploit the energy equations method to prove the
pullback asymptotic compactness. This method was first introduced by Ball in [5] for the deter-
ministic wave equation, and then extensively used by many authors for weakly dissipative equations
or equations in unbounded domains, both in deterministic and stochastic cases (see, for instance,
[6, 10, 21, 24] and references therein). It is worthy noticing that, as a direct consequence of the
abstract results obtained in this paper, we get the existence and upper semicontinuity of random
attractors for many 2D models in fluid mechanics, in both bounded domains and unbounded domains
satisfying the Poincaré inequality (see Remark 4.1 below).

The outline of this paper is as follows. In Section 2, we recall the theory of random attractors
and give a description of the problem. The existence of a random attractor for the associated random
dynamical system is proved in Section 3, while its upper semicontinuity is investigated in Section 4.

2. Preliminaries. 2.1. Random attractors. In this subsection, we recall some concepts and
results on theories of random dynamical systems and random attractors in [1, 9, 14, 18, 23].

Let (X, || - ||x) be a separable Banach space with Borel o-algebra 5(.X), and let (2, F, P) be a
complete probability space.

Definition 2.1. (Q, F, P, (6;)1er) is called a metric dynamical system if 6: R x Q — Q is
(B(R) x F, F)-measurable, 0y is the identity on 0, 051+ = 0:05 for all s,t € R, and 6,(P) = P
forallt € R.

Definition 2.2. A continuous random dynamical system (RDS) on X over a metric dynamical
system (0, F, P, (0¢)icr) is a mapping

PR xQx X = X, (t,w,z) — D(t,w, ),

which is (B(RT) x F x B(X), B(X))-measurable and satisfies, for P-a.e. w € Q, the following
conditions:

(1) 2(0,w,-) is the identity of X,

(i) D(t+ s,w,x) = D(t, 05w, P(s,w,x)) forall t, s e RY, z € X;

(i) D(t,w,-): X — X is continuous for all t € R™.

Definition 2.3. 4 random bounded set {B(w)}weq of X is called tempered with respect to
(0¢)ier if for P-a.e. w € Q,

tlim e PYB(O_w)|| =0 Sor all B8 >0,
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where || B||x = sup,ep |7/ x-

Hereafter, we always assume that & is a continuous RDS over (2, F, P, (6;):cr) and denote by
D a collection of random subsets { B(w)},,cq of X.

Definition 2.4. A4 random set {K(w)},cq € D is said to be a random absorbing set for ® in
D if for every {B(w)},,cq € D and P-a.e. w € Q, there exists Tg(w) > 0 such that

b (t,0_yw,B(0_4w)) C K(w)  forall t > Tp(w).

Definition 2.5. A random dynamical system @ is called D-pullback asymptotically compact in
X if for P-ae. w € Q{P(tn,0_4,w,xpn)},~, has a convergent subsequence in X whenever
tn — 00, and x, € B(0_t,w), where {B(w)},,cq € D.

Definition 2.6. A4 random set {A(w)}, cq of X is called a D-random attractor for & if the
following conditions are satisfied, for P-a.e. w € () :

(i) A(w) is compact, and w — d(x, A(w)) is measurable for every x € X;

(i) {A(w)} eq is invariant, that is, Y (t,w, A(w)) = A(biw)  forall t>0;

(iii) {A(w)},cq attracts every set in D, that is, for every {B(w)} cq € D,

lim dist (2 (¢,0_4w, B(_w)), A(w)) =0,

t—+o00

where dist is the Hausdorff semidistance

dist(A, B) = sup inf ||z —y||lx  forall A BCX.
z€AYEB

The following existence result for the random attractor for a continuous RDS can be found
in [7, 18, 23].

Theorem 2.1. Let D be an inclusion-closed collection of random subsets of X and assume
that ® is a continuous RDS which has a random absorbing set {K(w)}, cq - If @ is D-pullback
asymptotically compact in X, then it has a unique D-random attractor { A(w)} cq which is given

by

Aw) = U P 0-w, K(6-w)).

T>0t>T1

Let @y be an autonomous dynamical system defined on the Banach space X. Given ¢ € (0, 1],
suppose P, is a random dynamical system over (2, F, P, (6;)cr) which has a random absorbing set
K. = {K.(w)},cq and a random attractor A. = {A-(w)},,c, - We suppose that the autonomous
dynamical system &y : RT x X — X has a global attractor Ay, which means that 4, is compact,
invariant and attracts every bounded subset of X uniformly (see, e.g., [11] for the theory of global
attractors).

Definition 2.7. The family of random attractors {Ag}se(&l] is said to be upper semicontinuous
ate =01if

lim dist (A:(w), Ag) =0 for P-ae. weq.

e—0

Theorem 2.2 [23]. Suppose that the following conditions hold for P-a.e. w € () :
(i) ., (t,w,xn) = @)z forall t>0, provided e, —0 and z, —z inX;
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(ii) limsngKE(w)HX < M, where | K (w)||x = sup |z x;
E—>

re€K,(w)

(i) U Ac(w)is precompact in X.
0<e<1
Then the family of random attractors {Ae}se(o,l] is upper semicontinuous at € = 0.

2.2. Model description. Let H be a separable Hilbert space with the the norm | - | and the
inner product (-,-), let A be an (unbounded) self-adjoint positive linear operator on H. Set V =
= Dom(A'Y?). For v € V set |[v|| = |A'/2v|. Let V' denote the dual of V (with respect to the inner
product (.,.) of H). Then we have the triple V. C H C V’. Let (u,v) denote the duality between
u €V and v € V' such that (u,v) = (u,v) foru eV, v e H.

We assume B: V xV — V' and R: H — H are continuous mappings satisfying the following
conditions:

Main assumptions:

B:V xV — V' is a bilinear continuous mapping.
For all u,v,w €V,

(B(u,v),w) = —(B(u,w),v). (2.1)

There exists a Banach (interpolation) space H possessing the properties:
(i) VcHCH,;
(ii) there exists a constant ag > 0 such that

v]13, < aolvl|||v]| for any veV; (2.2)
(ii1) there exists a constant C' > 0 such that
[(B(u, v), w)| < Cllullyllvflllwllz  Vu,0,w e V. (2.3)
R: H — H is a bounded linear operator such that
[ Rlfop < A, (2.4)
where A > 0 is the best constant in the inequality
ul> > Mu>  VYueV. (2.5)

From (2.1)-(2.3), one can see that
for every n > 0 there exists C;, > 0 such that

[(B(u,v),w)| < nllw|? + CyllulFlloll}, — for  w,v,weV; (2.6)
there exist a positive constant Cyy such that

[(B(u,v),w)| < Collulllollfw]]  Yu,v,w €V,
Q.7
| B(u, u)|lv < Collul? Yu e V.
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Let f € H and h € D(A). We consider a small random perturbation of the 2D hydrodynamical
type systems given by

du + (Au + B(u,u) + Ru)dt = fdt + ehdw, (2.8)

where w(t) is a two-sided real-valued Wiener process on a complete probability space (€2, F, P),
where P is the Wiener distribution, 2 is a subset of

{we C[R,R): w(0) = 0}

with P(Q) = 1, F is a o-algebra. In addition, the space (2, F, P) is invariant under the Wiener
shift

Orw(-) = w(-+1t) —w(t), w e Q, teR.

This means that (2, F, P, (0;)ter) is a metric dynamical system.
Let o be a fixed positive constant such that

2)\02a(2)
hli2 2.9
O Rl I @9)

where ag,C' and A are the constants in (2.2), (2.3) and (2.5), respectively. Consider the one-
dimensional Ornstein— Uhlenbeck equation

o>

dy + oydt = dw(t).

One can check that a solution of this equation is given by

0
y(Ow) = —o / e?*(Qw)(s)ds.

Note that the random variable |y(w)| is tempered and y(f,w) is P-a.e. continuous. Therefore, it
follows from [1] (Proposition 4.3.3) that there exists a tempered function r(w) > 0 such that

@)+ lyw)|* <rw)  VweQ, (2.10)

where r(w) satisfies, for P-a.e. w € Q, r(fw) < ezllr(w), t € R.

Now, we need to transfer the stochastic equation (2.8) into a deterministic one with random
parameters. Let z(Ow) = hy(fw) and v(t,w) = u(t,w) — ez(Ow), then v is a solution of the
equation

d
d%t) + Av+ B(v,v) + Ru+eB(v,2) + €B(z,v) = f —eAz —eRz — ’B(z,2) + eoz  (2.11)
with vg(w) = ug(w) — ez(w).

Let w €  and vp € H. A mapping v(-,w,vp): [0,+00) — H is called a solution of problem
(2.11) if, for every T' > 0,

v(-,w,vg) € C([0,T); H) N L*0,T;V),
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and v satisfies
t t t t
(v(t),8) + [ (Av,&)ds + [ (B(v),€)ds + [ (Rv,&)ds = [ (F,€)ds, (2.12)
oo [ido e [ |

where B(v) = eB(v,z) +eB(z,v) and F = f —cAz —eRz —e2B(z, z) + coz for every ¢t > 0 and
& € V. Since (2.11) is a deterministic equation, it follows from [11] (Section 4.4) that for every w € ()
and vg € H given, problem (2.11) has a unique solution v in the sense of (2.12) which continuously
depends on vy with the respect to the norm of H. Moreover, the solution v is (F, B(H))-measurable
in w € €. This enables us to define a mapping @: R* x Q x H — H by

D(t,w,up(w)) = u(t,w,ug(w)) = v(t,w,vp(w)) + ez(frw), (2.13)

then we see that @ is a continuous RDS associated with the stochastic equation (2.8).
Given a bounded nonempty subset B of H, we write |B| = supycp [#|n. We denote by D the
collection of random sets {B(w} .o of H, which satisfy for P-a.e. w € €,

lim e 2!|B(0_w)|g =0,

t—4o00

where v := X — || R||op > 0.

3. Existence of a random attractor.  3.1. Uniform estimates of solutions and existence
of a random absorbing set in H. In this subsection, we first establish the uniform estimates on
the solutions to problem (2.11), then we will show that the RDS @ associated with the stochastic
equation (2.8) has a random absorbing set in H.

Lemma 3.1. Let0<e <1, fe H, he€ D(A), and (2.9) hold. Then for any {B(w)},cq € D
and for P-a.e. w, there exists T = T(B,w) > 0 independent of € such that for all t > T and
vo(0_tw) € B(0_iw), the solution v of (2.11) satisfies

0 0
lu(t, G,tw,vU(H,tw))ﬁ{ <l+c / exp VT—|—,6’/|y(9Tw)|2dr g(0rw)dr, 3.1

where

v =X~ || Rllop > 0,

AC2a?
B= "= ),
(3.2)
_2(3+0?%) 2RI (IRIZ + 1Al
e= = mas {CRIRIY (RN, + DIk |

9(0-w) = [y(0:w)[* + [y (brw)[* + 1.
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Proof. 1t follows from (2.11) that, for each w € Q and v € V
Ld o 2 2
3/ Ilvl” < —e{B(v, 2),v) + || Rllop|v]” + e(Rz, v) + (Fyv) <

12l
< —e(B(v,2),v) + — Zllol® + | Rllop|2llv] + () v),

where F = f — Az — e2B(z, ) + e02. Therefore,

d
%IUP +261[v]|* < —26(B(v, 2),v) + 2| Rlop|2llv] + 2(F, v), 3.3)

A = [1Rllop

where 1 = y

> (. The right-hand side of (3.3) is bounded by

20e(B(v, 2),v)| + 2| Rllopl=lllo]] + 2(F,v) <

02‘1(2) 2012, 2 2 .12 2 2
< WI!ZH 01" + — (IBllGp =" + [E17) + Bullv]”. (3.4)

From (3.3) and (3.4), we obtain
d AC%ad 2
P+ (v = 2B o < 20RIE P + 1P,

where v = A1 = A — ||R|lop. On the other hand, using Schwarz’s inequality and noting that
0 <e <1, we have

|F|> = |f —eAz — *B(2,2) + eoz|* <

< B+0%) [CEllz)* + [Az* + |17 + |21 -
Therefore,
|F(0:wf* < (3+ o) [CFIRI[*|y(Bso)|* + | AR |y (0:0)[* + | F1 + [P [y(6) ).

)\CQCLg

Hence, let 8 = |h||?, we get
v
d
o7+ @ = Bly @)l < e (ly(0)* + ly(Ow)|* + 1),
where
_2(3+U2) C2h4 R2 1 h2
o= = max { RN (IRIZ, + DIkl )

t
Multiplying (3.3) by exp (l/t —-p / |y(9rw|2dr) and integrating the resulting inequality on [0, s],
0

we obtain
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(s, vl < exp ( ~vs+ 8 [ ly6rolar | )P+

S

tc [ exp | vt —s) =8 [ [y(O.w|?dr | g(0;w)dr, (3.5)
[ /

where g(6:w) = ly(0,w)[* + [y(6:w)]? + 1.
We now estimate the last term on the right-hand side of (3.5). To do this, in (3.5), we replace s
and w by t and 0_,w, respectively,

|0(t, 04w, vo(0—) |3 < exp | —vt + ﬂ/ |y (6 —w[*dr | [vo(0—ww) |7+
t T
—i—c/exp v(t —1t) ﬂ/|y(9r_tw]2dr g(0r—w)dr =
0 t

= exp —I/t+ﬁ/|y(9rw]2dr ]vo(ﬁ_tw)|2+

0

0
+c/exp VT+B/|y(9rw\2dr g(0rw)dr. (3.6)

—t

Thanks to the Ergodic theorem, for any w € €,

lim /y rw| dr = E(ly(w )|)

t—>-00

On the other hand,

3
E(ly()?) = Ff?ﬁ) -

where I'(+) is the Gamma function. Thus, there exists a number 77 = 77 (B,w) > 0 such that, for
all ¢ > Tl,

0
t
6/ ly(Orw *dr < gt < % (3.7)
—t
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where we have used the condition (2.9). By (3.6) and (3.7), we have

v(t, 0w, vo(0—sw)| < e 2 vo(0_w)| 3+

0 0
—i—c/exp I/T+ﬂ/|y(97~w\2dr g(Orw)dr. (3.8)

—t
Note that |y(0,w| is tempered, by using (2.10) and a few simple calculations, we can find that the

integrand of the second term on the right-hand side of (3.8) converges to zero exponentially when
t — 4-o00. Thus, the integral

0 0
Rozc/exp V7+ﬁ/|y(9rw\2dr g(0-w)dr

is convergent. Moreover, since vo(6_tw) € B(6_iw), for the first term on the right-hand side of
(3.8), we get

e 2Hug(O_w)|% < e 2| B(0_jw)|3 — 0 ast — +oo.
This shows that there exists 75 = T5(B,w) > 0 such that
et ug(0w)| <1 forall  t>Ty. (3.9)

From (3.8) and (3.9), we obtain

0 0
\v(t,H_tw,vo(Q_tw))]%I <l+ec / exp VT+5/|y(9rw)|2dr g(0rw)dr

—0o0

forall t > T = max {711, T>}.

Lemma 3.1 is proved.

Lemma 3.2. The random dynamical system ® has a random absorbing set K = {K(w)}, cq
in H, where K is independent of ¢.

Proof. Let {B(w)},cq € D be fixed. For given ug(w) € H, let v be the solution of (2.11)
with the initial condition v(0) = up(w) — €z(w). Then we have

[vo(w) [ = luo(w) — e2(w) < 2(Juo(w)[ + *|2(w)[E) <

< 2(|B(w) [ + [2(w)[F)-
This implies that v(w) € B(w) for all w € Q, where
B(w) ={ue H: |[u]* <2(|Bw)[i +|2(w)li)} - (3.10)

Moreover, since {B(w)} .o € D and |z(w)| is tempered, this follows {B (w)} € D. Then, by

€n
(3.1), we obtain ?
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0 0
|U(t,9_tw,v0(9_tw))]%{Sl—i—c/exp VT—i—B/]y(HTw)FdT g(0rw)dr, (3.11)

provided t > T and vo(0_sw) € B(f_sw). On the other hand,
D(t, 01w, ug(_1w)) = v(t, 0_tw,ve(0_1w)) + e2(w). (3.12)
From (3.11) and (3.12), we get, for all ¢ > T" and up(0_w) € B(0_w),

[D(t, 01w, uo(0—w)) |7 < 2(ro(w) + |2(w)[7),

0

0
where ro(w) = 1 + c/ exp <Z/7' + ,8/ y(&rw)|2dr> g(0rw)dr. This implies that & possesses
—00 T

a random absorbing set in H, which is independent of ¢.

3.2. Pullback asymptotic compactness. In this subsection, we prove the D-pullback asymptotic
compactness of solutions to problem (2.11). For this purpose, we need the following weak continuity
of solutions with respect to initial data, which can be established by the standard method as in [6, 21].

Lemma 3.3. Let w € Q and xg € H. If v, — xg weakly in H, then the solution v of problem
(2.11) has the following properties:

v (t,w, zy) = v (t,w, zo) weakly in H for all t >0,
v (s w, xn) — v (-, w, x0) weakly in L? (0,T;V) forall T >0,

u (- w, 2y — e2(w)) — u (-, w, 20 — e2(w)) weakly in L*(0,T;V) forall T > 0.

The next lemma is concerned with the pullback asymptotic compactness of problem (2.11).

Lemma 3.4. For every w € Q,B = {B(w)},cq € D and t, — +00,x, € B(0_,w), the
sequence of solutions {v(t,,0_;,w,xy)} to (2.11) has a convergent subsequence in H.

Proof. Since t,, — 400, there exists Ny € N such that ¢, > T for all n > Ny. Note that
xn € B(0_4,w), we get from (3.1) that, for all n > Np,

0 0
[0(tn, Ot w,z,)|5% < 1+c / exp V7+5/|y(9rw)|2dr g(0rw)dr.

Hence, there exist v € H and a subsequence (which is not relabeled) such that
V(tn, O, w,Tp) — 0 in H. (3.13)

We now prove that the weak convergence of (3.13) is actually a strong convergence, which will
complete the proof. Note that (3.13) implies that

liminf |v(ty, O—t,w, zp)| g > |0]H.

n—oo

So we only need to show that
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lim sup [v(tn, 0—¢,w, 20) 1 < |3]11- (3.14)

n—oo

We will establish (3.14) by the method of energy equations due to Ball [5]. Given k € N, we have
V(tn, O—p,w,zn) = v(k+t, — k,0_y,w, ) = v(k,0_gw,v(tn — k,0_,w,x,)). (3.15)

Since ¢, — oo and z, € B(0_;,w), for each k, let Ny be large enough such that ¢,, > T + k for
all n > Ny,. Then it follows from Lemma 3.1 that, for n > N,

[0(tn — k, 0_¢, w, 20)|% <

0 0
< ek e_gt”|:z,‘n|%{—|—c/exp V7+ﬁ/|y(9rw|2dr g(0rw)dr| <
0 0
< ek 1+c/exp u7+ﬁ/|y(9rw2dr g(0rw)dr |, (3.16)

which shows that, for each fixed k& € N, the sequence v(t, — k,0_, w, x,) is bounded in H. By a
diagonal process, one can find a subsequence (which we do not relabel) and a point v, € H for each
k € N such that

(t, — k,0_¢,w,x,) — 0 in H. (3.17)
By (3.15)-(3.17) and Lemma 3.3, we get that, for each k € N,
V(tn, O, w,xn) — v(k,0_gw,v) in H, (3.18)
and
V(- 04, w, 0(tn, 0_¢,w, ) — v(-,0_gw, Ty) in L2(0,k; V).
From (3.13) and (3.18), we obtain
v(k,0_gw,0) =0 forall k> 0. (3.19)
Denote 6(v) = 2 o]/ - gl/\v|2, we have
S5 lvl? < 6(v) < 25 lof? forall v eV,
this indicates that ¢(-) is an equivalent norm of V. On the other hand, (2.11) implies that
d, o 3 9 -
£|v| + §I/|U| + o(v) + 2(B(u,u),v) < 2(F,v), (3.20)
where v is defined in (3.2) and F = f — Az — eRz + e02.

ISSN 1027-3190. Vkp. mam. scypn., 2019, m. 71, Ne 12



1658 CUNG THE ANH, NGUYEN TIEN DA

Multiplying (3.20) by e with = ?V and integrating the resulting equation on (0, ¢), we obtain

v (¢, w,v0(w)) % + 2/6_’7“_5) (B(u (s,w,up(w)),u(s,w,ug(w))),v(s,w,vo(w)))ds =
0
= e Mg (w) |4 + 2 / e M) (f 4 eoz(Baw) — eAz(sw) — eR2(05w), v (5, w, vo(w)) ds+
0

¢
+/e_y(t_s)d)(s,w,vg(w))ds. (3.21)
0

Replacing ¢, w in (3.21) by k and 6_;w, respectively, and by (3.19), we find

0% = [v(k, 0w, T) 3 =

k
= 2/€_n(k_s)<B(U (8,0—kw, tnk) , u(8, 0—pw, un 1)), v(s, 0—_gw, Ux))ds+
0
k
+2 / e MF=9) (f 4 e02(0s_pw) — eAz(05_pw) — eRz(Os_pw), v (s, 0_pw, Ty))ds+
0

k
+e”k\f}k\%{+/e”(ks)gb(s,@_kw,f}k)ds, (3.22)
0

where w, ;, = U + €2(0_kw). Similarly, by (3.15) and (3.21), we get

[ (k, 0k, v k)3 =

k
= 2/6_"(’“_5)(B(u (8, 0w, Up i), u(s, 0_gw, unk)), v(s, 0_gw, vy i) )ds+
0

k
+2 / e M=) (f + e02(0,_pw) — eAz(05_pw) — eRz(05_pw), v (s, 0_w, U k))ds+
0
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k
L / e M=) (s, 0_rw, vp 1 )ds, (3.23)
0
where
Uk =0(tn — k,0_,w,2p), Upk = Vi +ez(0_gw).

We now consider the limit of each term on the right-hand side of (3.23) as n — oco. For the first
term, by Lemma 3.2 and [6] (Corollary 5.3),

k
limsup/e_"(k_s) (B(u (8, 0_rw, un k), u(s, 0_pw, un)), v(8s, 0_pw, vy k))ds =

n—oo

k
= / e W (B u (s, 0_ 4w, i), u(s, 0_pw, k), (s, 0_gw, ) )ds, (3.24)
0

where Uy, = Uy + ez(0_gw). For the second term, note that

e M=) (f 4 eoz(0._pw) — eAz(0._pw) — eRz(0._jw)) € L2(0,k; V'), (3.25)
thus, we find
k
lim Sup/e_”(k_s)(f +eoz(ls-pw) — eAz(0s_jpw) — eR2(Os_kw), v (8, 0_kw, vy ;) )ds =
n—o0
k
= / f +eoz(0s_pw) — eAz(05_jw) — eRz(0s_pw), v (s, 0_w, V) )ds. (3.26)
0

k
Moreover, e 1k=5)(.)ds defines a norm in L2(0, k; V) which is equivalent to the usual one,
0
thus, by (3.17), we obtain
k

k
liminf/ S)qb(s 0_rw, vy )d / (s,0_pw,vy)ds. (3.27)
0

n—00
0

3
Finally, by (3.16) and np = Ey, we get

0
e Mo pl2 < eIk [ 14 ¢ /exp VT+,8/|y O,wdr | g(6,w)dr | =

—0o0
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0 0
= e 2k l—i—c/exp u7+6/\y(9Tw]2d7“ g(Orw)dr | . (3.28)

By (3.15) and (3.22)-(3.28), we have

lim sup \v(tn,ﬁ_tnw,mn)\% — \6\%{ < e_%kro(w) — e_”k]f)k]%[ <

n—o0

< e 2Frg(w) = 0 as k — +oo,

0

0
where ro(w) =1+ c/ exp (1/7' + 6/ |y(9rw\2dr> g(0rw)dr < +o0. This implies that

—00

limsup [v(tn, O_t,w, z0)|% < 0%,
n—oo

whence (3.14) follows.

Lemma 3.4 is proved.

Lemma 3.5. The RDS @ is pullback D-asymptotically compact in H, that is, for every w € (),
B = {B(w)},eq € D, and t, — +o00, 1, € B(0_t,w), the sequence P(tn,0 1, w,x,) has a
convergent subsequence in H.

Proof. Since B € D and x,, € B(f_,w), by the proof of Lemma 3.2, we find, for each n € N,
Yn = Tp — ez(w) € B, where B € D is the family defined by (3.10). Then it follows from Lemma
3.4 that the sequence v(ty,0_¢,w,y,) of solutions to problem (2.11) has a convergent subsequence
in H. On the other hand, by (2.13), we have

u(tny thnwy xn) = U(tna Hftn("% yn) + Ez(w)7

and hence, the sequence u(ty,0_¢,w,x,) has a convergent subsequence in H. This implies that
&(ty, 01, w,x,) has a convergent subsequence in H.

Lemma 3.5 is proved.

3.3. Existence of a random attractor.

Theorem 3.1. For each ¢ > 0, the continuous RDS & associated with problem (2.8) has a
unique D-random attractor A. = {A-(w)},,cq in H.

Proof. By Lemma 3.2, we know that the continuous RDS @ has a family of D-random
absorbing sets {K.(w)},cq in D. On the other hand, by Lemma 3.5, we find that RDS & is D-
pullback asymptotically compact. Then it follows from Theorem 2.1 that ® has a unique D-random
attractor A, in H and the structure of A. = {A.(w)},,c( is given by

Acw) = (U2 0-w, K (0_4w)).

T>0t>T1

4. Upper semicontinuity of the random attractor. In this section, we prove the upper semi-
continuity of random attractors for the 2D hydrodynamical type systems when the stochastic pertur-
bations approach zero. The existence of the global attractor Ay for the (deterministic) dynamical
system associated to (1.1) when € = 0 has been proved in [11] (Section 4.5). To prove the upper
semicontinuity result, we first establish the convergence of solutions to problem (2.11) when € — 0,
and then show that the union of all perturbed random attractors is precompact in H.
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Lemma 4.1. Foreveryt € R and w € Q, if ¢, — 0 and x,, — xo in H, then

Ve, (t,w, ) — vo(t, xo).

Proof. Let vo(-) = vo(+,x0), for every n € N, we denote v,,(-) = ve, (-,w, z,) a solution of
equation (2.11) with ¢ is replaced by ¢,. Denote w,, = v, — vg, we obtain

Oywy, + Awy, + Rwy, + B(vy, + €pz,vn + €n2) — B(vg, v9) = —ep Az — e Rz + 02,

with wy,(0) = z,, — zp. Hence, we have

1d
§£’w”|2 + ”wnH2 = —(Rwy, wpn) — (B(vn + €nz, vy + €n2) — B(vo, v0), wn)—

—(endz + enoz,wy) + (en Rz, wy,) <

R
< Wom 2 — (B + €2, 1+ 202) — Bwo, 1), we) -

—(enAz + enoz,wy) + (en Rz, wy),
thus,

4
dt

w|? + 2TI/HwnH2 < —2(B(vn + €nz, vy + €nz) — B(vo,v0), wn)+

+2(—enAz +epoz,wy) + 2(—en Rz, wy). 4.1
Now we will estimate the terms on the right-hand side of (4.1). For the first term, we get
| — 2(B(vp + enz,vn + en2) — B(vg, v0), wn)| <

< 2|(B(wn, wn),vo0)| + en|(B(vn, 2), wn)| + enl{B(2, vn), wn)| + 5721’<B(27Z)7wn>‘7 (4.2)

and by (2.2)—(2.5), we obtain
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2[(B(wn, wn),v0)| < 2Cag|wn||[vollllwn] <

< R
< 22D 2 |2 + Ll

2en|(B(vn, 2), wn)| < 2enCollvnlll|z[[Jwn]] <

4>\C
02 22 unl? + el
(4.3)
2en|(B(2, vn), wn)| < 2Coen||vnl|]|2]/|wnl| <
4)\()
2 enlll*[lval® + AHwnll2a
23 [(B(2, 2), wn)| < 200 |21 ||wnll <
4)\C’
—Lepllz]| + IIwnII2
For the second term, after a few simple computations, we get
2 v
2(endz + en0z, wn)| < 2 (1+ 02 (A2l + [2) + o fun* =
14
= cien (|42 + [2%) + ﬁllwnHQ, (4.4)
2 2
where ¢; = —(1 4 0°). Moreover,
14
v
2|(=en Rz, wn)| = 2en|(Rz,wn)| < *6 Al RIS 2% + oy llwn]l® <
< cacllzf? + o fwall?, (4.5)
- 2\
where ¢co = el ”Op . From (4.1)-(4.5), we have

d
Sl < espPlunl? + (cs? + (e1 + )y ) Ely@uo)]? + eshly(@u)l’

where
4NC2%ad 2
v

C3 =
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8A\C?
ca = —2|n|?,
14

ANC?
c5 = TO\Ih\I4,

p=p(t) = sup [[vn(s).
s€[0,¢]

By the Gronwall lemma, we deduce that
lwn, ()% < (Jw, (0)|% + E%r(t))e%pzt — 0 asn — oo,

where
t

rit) = [ [(c? + (1 + el bl @) + cslyBu)|*] ds < +cx.
0
This implies that lim,, o |wy,(t)| 7 = 0.
Lemma 4.1 is proved.
The above lemma enables us to obtain the second condition in Theorem 2.2.
Lemma 4.2. For P-a.e. w € (),

b, (t,w,xpn) = P(t)x forall t>0, provided e, —0 and x,—x in H.
Proof. By (2.13), we have
D, (t,w, ) = v, (t,w, Ty, — enz(w)) + enz(Oiw).
Note that x,, — ¢ in H and ¢, — 0, we find
|zn —enz(w) — xolpg < |Xn — To|lH + enl2(w)|w — 0.
Therefore, by Lemma 4.1, we obtain
[ve, (t,w, p, — enz(w)) — vo(t, xo)|g — 0 as n — 00.
But &(t, z¢) = vo(t, zp), then

|@e,, (8w, xn) — D(t,20) |1 = [ve, (t,w, 2n — Enz(w)) + nz(Biw) — vo(t, zo)| <

< vz, (t w, 20 — enz(w)) — vo(t, 20) | + en|2(0w) | — 0.

Lemma 4.2 is proved.
The proof of the following lemma is similar to that given in [6], so we only state the result.
Lemma 4.3. Let {B(w)},cq € D. Suppose that e, — €q,t, — 400 and y, € B(0_4,w), then

{¢5n (tn7 H_tnw7 yn)}

is precompact in H.
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Now, given 0 < & < 1, it follows from Lemma 3.2 that, for every {B(w)},cq € D and P-ae.
w € Q, there exists 7' = T'(B,w) > 0, independent of ¢, such that, for all t > T,

|¢8(ta (9_,50.), UO(G—tw))’%{ = ‘U(t7 g—tw> Uo(e—tw)) =+ {:‘Z(W)Eq <
< 2(Ju(t, 0w, vo(6—1)) 7 + % 2(w) ) <

< 2(ro(w) + €2|2(w) %),

0

0
where ro(w) =1+ c/ exp (1/7' + 6/ |y(9rw)|2dr> g(0rw)dr. Denote

Ke(w)={ue H: Jul* <2(ro(w) + z(w)[3)} (4.6)
and
K(w)={ue H: |ul* <2(row) + |z(w)[7)} -

Then, for every 0 < e < 1, {K.(w)},cq € D is a closed absorbing set for &, in D and

U Kilw) c K(w). (4.7)

0<e<1

It follows from the invariance of the random attractor {A.(w)} .o € D and (4.7) that

U Aw)c |J K-(w) C K(w). (4.8)

0<e<1 0<e<1

Lemma 4.4. For every w € 1, the union | )., A:(w) is precompact in H.

Proof.  First, we take an sequence {2y} C [J.¢(g 1 A:s(w), then there exists o such that A,
contains infinitely many elements of z,,. From the compactness of A.,, we find that {z,} has a
convergent subsequence. On the other hand, we can assume that z,, € A, (w) with ¢, € (0,1]
and €, # &, when m # n. Due to {e,} C (0,1], without loss of generality, we can assume that
en — € € [0,1] as n — 4o0. Fix a sequence ¢,, such that ¢,, — +o00. By the invariance of A, ,
we find that

‘A5n (w) = ¢5n (tn? e_t'er’ Aan (a_tnw)) .

Since x,, € D., (tn,0_t,w, Ae, (0_1,w)), there exists an element y, € A, (6_;,w) such that
Ty = P, (tn,0_4,w,yy). Note that by (4.8), we have ¢, — €o,t, — 400, and y, € K(0_;,w),
thus applying Lemma 4.3, we obtain {®., (tn,0_¢,w,y,)} is precompact in H, i.e., {z,} has a
convergent subsequence.

Theorem 4.1. For P-ae. w € (,

lim dist (A (w), Ag) = 0. (4.9)

e—0
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Proof. Recall that {K.(w)}, cq is a closed absorbing set for &, in D, where K.(w) is given
by (4.6). By (4.6) we find that

limsup | K. (w)| < v/2rp(w) := M. (4.10)
e—0
Let ¢, — 0 and x,, — xg in H, then by Lemma 4.1 we find that, for P-a.e. w €  and ¢t > 0,
., (t,w, zy) — D(t, x0). (4.11)

Note that (4.10), (4.11) and Lemma 4.2 indicate all conditions in Theorem 2.2 are satisfied, and
hence, (4.9) follows.

Remark4.1. As a direct consequence of the abstract results obtained in the paper, we get the
existence and upper semicontinuity of random attractors for many 2D partial differential equations
in fluid mechanics with additive noise in bounded domains or unbounded domains satisfying the
Poincaré inequality, including 2D Navier—Stokes equations, 2D MHD equations, 2D Boussinesq
equations, 2D magnetic Bénard equations, and also some 3D models such as 3D Leray-a model, the
shell models of turbulence. To do this, it only need to verify the abstract conditions for each concrete
model (see [11] (Section 4.6) or [12] for details).
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