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JACOBI MATRIX PAIR AND DUAL ALTERNATIVE  
q-CHARLIER POLYNOMIALS 

*
 

PARA MATRYC| QKOBI TA DUAL|NI AL|TERNATYVNI  

q-MNOHOÇLENY ÍARL|{ 

By using two operators, representable by Jacobi matrices, we introduce a family of  q-orthogonal
polynomials, which turn out to be dual with respect to alternative  q-Charlier polynomials.  A discrete
orthogonality relation and completeness property for these polynomials are obtained. 

Za dopomohog dvox operatoriv, zobraΩuvanyx matrycqmy Qkobi, vvedeno sim’g  q-ortohonal\nyx

mnohoçleniv, wo [ dual\nymy po vidnoßenng do al\ternatyvnyx  q-mnohoçleniv Íarl\[.  Dlq

cyx mnohoçleniv otrymano dyskretne spivvidnoßennq ortohonal\nosti ta vlastyvist\ povnoty. 

1.  Introduction.  It is well known that the characteristic properties of orthogonal
polynomials are interwoven with spectral properties of symmetric operators, which can
be represented in some basis by a Jacobi matrix, and with the classical moment
problem (see, for example, [1 – 3]).  Namely, the spectrum of an operator, represented
by a Jacobi matrix, is determined by an orthogonality measure for corresponding ortho-
gonal polynomials.  If orthogonal polynomials admit many orthogonality relations,
then the corresponding symmetric operator is not self-adjoint and it has infinitely many
self-adjoint extensions.  These extensions are determined by orthogonality measures for
the appropriate orthogonal polynomials. 

Contrary to orthogonal polynomials of the hypergeometric type (Wilson, Jacobi,
Laguerre and so on), basic hypergeometric polynomials (or  q-orthogonal polynomials)
are not so deeply understood yet.  These polynomials are collected in the  q-analogue of
the Askey-scheme of orthogonal polynomials (see, for example, [4]), which starts with
Askey – Wilson polynomials and  q-Racah polynomials, introduced in [5] and [6],
respectively.  The importance of these polynomials is magnified by the fact that they
are closely related to the theory of quantum groups.  As an instance of such connection
we refer to a paper [7], in which Al-Salam – Chihara  q-orthogonal polynomials have
been employed to construct locally compact quantum group  SUq (1, 1).  Another appli-
cation of  q-orthogonal polynomials is related to the theory of  q-difference equations,
which often surface in contemporary theoretical and mathematical physics. 

The purpose of the present paper is to study the duality properties of alternative  q-
Charlier polynomials.  We shall show below that this leads to novel type of  q-orthogo-
nal polynomials (expressed in terms of the basic hypergeometric function  3φ0 ) and a
discrete orthogonality relation for them.  To achieve this, we essentially use two
operators  I1  and  J,  which are certain representation operators for the quantum
algebra  Uq ( su1,1 )  with a lowest weight (however, we do not employ explicitly the
theory of representations in what follows).  An orthogonality relation for a set of
orthogonal polynomials and the spectral measure for the associated symmetric (self-
adjoint) operator, representable by a Jacobi matrix, are closely interrelated.  But the
problem usually arises how to find this orthogonality relation (or spectral measure).
We propose to use for this purpose a second operator, also representable (with respect
to another basis) by a Jacobi matrix.  By employing these two operators, one is able to
find orthogonality relations for both alternative  q-Charlier polynomials and their duals.

The first operator  I1  (which is a Hilbert – Schmidt operator and, therefore, has the
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discrete spectrum)  is related  to  the three-term recurrence  relation  for alternative  q-
Charlier polynomials.  We diagonalize the operator  I1  and obtain two bases in the
Hilbert space:  an initial basis and a basis of eigenvectors of  I1.  The initial basis is
orthonormalized.  It is a problem to normalize the second basis.  We normalize it by
means of the second operator  J.  These orthonormalized bases are connected by an
orthogonal matrix  A  (since its matrix elements are real).  Now the orthogonality
relations for rows and columns of this matrix lead to the orthogonality relations for
alternative  q-Charlier polynomials and for the functions, which are dual to these
polynomials (note that the orthogonality relation for alternative  q-Charlier polynomials
is given in [4], Section 3.22, but no proof of it was published;  as is written in [4], no
other references to these polynomials are known).  We extract from the latter functions
a dual set of polynomials and obtain a discrete orthogonality relation for them.  The

unitarity of the matrix  A,  A  A  
–

 
1 = A 

–
 
1

 A   = E,  proves the completeness property of

dual alternative  q-Charlier polynomials in the corresponding Hilbert space  L 
2. 

Throughout the sequel we always assume that  q  is a fixed positive number such
that  q < 1.  We use (without additional explanation) notations of the theory of special
functions and the standard  q-analysis (see, for example, [8] or [9]). 

2.  Pair of operators  (((( I1, J )))) .  Let  H  be a separable complex Hilbert space with
an orthonormal basis  n〉 ,  n = 0, 1, 2, … .  We define on  H   two operators.  The first

one, denoted as  qJ0   and taken from the theory of representations of quantum groups,

acts upon the basis elements as  q n q nJ n0 〉 〉= .  The second operator, denoted as  I1 ,
is given by the formula 

I n1 〉   =  a n a n b nn n n+ + − +〉 〉 〉−1 11 , (1)
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where  a  is any fixed positive number.  Clearly,  I1  is a symmetric operator. 
Since  an  →   0  and  bn  →   0  when  n  →   ∞  ,  the operator  I1  is bounded.

Therefore, we assume that it is defined on the whole Hilbert space  H  .  For this reason,
I1  is a self-adjoint operator.  Let us show that  I1  is a Hilbert – Schmidt operator.  For

the coefficients  an  and  bn  from (1), we have  a a qn n+ →1
3 2/ /   and  b b qn n+ →1 /

when  n  →  ∞ .  Since  0 < q < 1,  for the sum of all matrix elements of the operator  I1
in the basis  n〉 ,  n  = 0, 1, 2, … ,  we have  ( )2a bn nn

+ < ∞∑   and, therefore,

( )2 2 2a bn nn
+ < ∞∑ .  Thus,  I1  is a Hilbert – Schmidt operator.  This means that the

spectrum of  I1  is discrete and has a single accumulation point at  0.  Moreover, the
spectrum of  I1  is simple, since  I1  is representable by a Jacobi matrix with  an ≠ 0 (see
[2], Chapter VII). 

To find eigenfunctions  ξλ  of the operator  I1 ,  I1ξ λξλ λ= ,  we set  ξ λ =

= β λnn
n( ) 〉∑ ,  where  β λn( )  are appropriate numerical coefficients.  Acting by the

operator  I1  upon both sides of this relation, one derives that 

β λn n n n
n

a n a n b n( ) + + − +( )〉 〉 〉−
=

∞

∑ 1 11
0

  =  λ β λn
n

n( ) 〉
=

∞

∑
0

,
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where  an  and  bn  are the same as in (1).  Collecting in this identity all factors, which

multiply  n〉   with fixed  n,  one derives the recurrence relation for the coefficients
βn ( λ ) : 

β λ β λ β λn n n n n na a b+ − −+ +1 1 1( ) ( ) ( )   =  λβ λn( ).

The substitution 

βn ( λ )  =  
( ; ) ( )

( ; ) ( )( )
( )

/

/
( )/− +

+






′− +a q aq

q q a a q
qn

n

n
n

n n
n
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3 4 β λ

reduces this relation to the following one 

– A C A Cn n n n n n n
′ − ′ + + ′

+ −β λ β λ β λ1 1( ) ( ) ( ) ( )  =  λβ λ′
n( ),
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This is the recurrence relation for the alternative  q-Charlier polynomials 

K a qn( ; ; )λ   : =  2 1 0φ λ( , ; ; , )q aq q qn n− −

(see formulas (3.22.1) and (3.22.2) in [4]).  Therefore,  ′ =β λ λn nK a q( ) ( ; ; )  and 

βn ( λ )  =  
( ; ) ( )

( ; ) ( )
( ; ; )

/
( )/− +

+






− +a q aq
q q a a

q K a qn
n

n

n n
n

1
1

2 1 2
1 4 λ . (2)

For the eigenvectors  ξλ  we have the expression 

ξλ  =  β λn
n

n( ) 〉∑ , (3)

where  βn ( λ )  is given by (2).  Since the spectrum of the operator  I1  is discrete, only

for a discrete set of values of  λ  these vectors may belong to the Hilbert space  H  .
This discrete set of eigenvectors determines the spectrum of  I1 . 

Now we look for the spectrum of  I1  and for a set of polynomials, dual to
alternative  q-Charlier polynomials.  To this end we use the action of the operator 

J  : =  q aqJ J− −0 0

upon the eigenvectors  ξλ 
,  which belong to the Hilbert space  H  .  In order to find how

this operator acts upon these vectors, one can use the  q-difference equation 

( ) ( )q aq Kn n
n

− − λ   =  – aK q K K qn n n( ) ( ) ( ) ( )λ λ λ λ λ λ+ − −− − −1 1 11 (4)

for the alternative  q-Charlier polynomials  Kn ( λ )  ≡  K a qn( ; ; )λ   (see formula (3.22.5)
in [4]; observe that (4) can be also derived from the explicit expressions for  Kn ( λ ) ) .

Multiply both sides of (4) by  d nn 〉  and sum up over  n,  where  dn  are the factors in
front of  K a qn( ; ; )λ   in expression (2) for the  βn ( λ ) .  Taking into account formula (3)

and the fact that  J n〉  = ( )q aq nn n− − 〉,  one obtains the relation 

J ξλ  =  – a q q
ξ λ ξ λ λ ξλ λ λ+ − −− −

−
1 1 1 1( ) . (5)

We shall see in the next section that the spectrum of the operator  I1  consists of the

points  qn
 ,  n = 0, 1, 2, … .  This means that  J  has the form of a Jacobi matrix in the

basis of eigenvectors of  I1 ;  that is, the pair of the operators  I1  and  J  form an infinite
dimensional analogue of a Leonard pair (see [10] for its definition). 
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3.  Orthogonal matrix  A.  The aim of this section is to find, by using the operators
I1  and  J,  a basis in the Hilbert space  H ,  which consists of eigenvectors of the
operator  I1  in a normalized form, and to derive explicitly the unitary matrix  A,

connecting this basis with the initial basis  n〉 ,  n = 0, 1, 2, … ,  in  H  .  First we have
to find the spectrum  of  I1 . 

Let us first look at a form of the spectrum of  I1  from the point of view of the spec-
tral theory of Hilbert – Schmidt operators (a detailed calculation is given below this pa-
ragraph).  If  λ  is a spectral point of the operator  I1 ,  then (as it is easy to see from (5))
a successive action by the operator  J  upon the vector  ξλ  (eigenvector of  I1 )  leads to

the eigenvectors  ξ λqm m, , , , .= ± ± …0 1 2     However, since  I1  is a Hilbert – Schmidt

operator, not all of these points belong to the spectrum of  I1 ,   since  q m− λ   →   ∞
when  m  →  + ∞  if  λ  ≠  0.  This means that the coefficient  1 − ′λ   of  ξ λq− ′1   in (5)

must vanish for some eigenvalue  λ′
 .  Clearly, it vanishes when  λ′ = 1.  Moreover, this

is the only possibility for the coefficient of  ξ λq− ′1   in (5) to vanish, that is, the point  λ
= 1  is a spectral point for the operator  I 1 .  Let us show that the corresponding

eigenfunction  ξ1 ≡ ξ
q0   belongs to the Hilbert space  H . 

By formula (II.6) from Appendix II in [9], one has the following  equality

K a qn( ; ; )1   =  2 1 0φ ( , ; ; , )q aq q qn n− −   =  ( )− a qn n2
.  Therefore, for the scalar product

〈 〉ξ ξ1 1,   in  H  we have 

 〈 〉ξ ξ1 1,   =  
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n
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In order to calculate this sum, we take the limit  d,  e  →  ∞   in the formula of Exercise
2.12, Chapter 2, in [9].  Since 

lim ( ; ) ( ; ) ( )
,

/
d e n n

nd q e q aq de
→∞

  =  q aqn n n( )( )−1 ,

we obtain that the sum in (6) is equal to  ( ; )− ∞aq q ,  that is,  〈 〉ξ ξ1 1,  < ∞  and  ξ1

belongs to the Hilbert space  H  .  Thus, the point  λ = 1  does belong to the spectrum
of  I1 . 

Let us find other spectral points of the operator  I1  (recall that the spectrum of  I1

is discrete).  Setting  λ = 1  in (5), we see that the operator  J  transforms  ξ
q0   into a li-

near combination of the vectors  ξq  and  ξ
q0 .  Moreover,  ξq  belongs to the Hilbert

space  H ,  since the series 

〈 〉ξ ξq q,   =  
n
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is majorized by the  corresponding series (6) for  ξ
q0 .  Therefore,  ξq  belongs to the

Hilbert space  H  and the point  q  is an eigenvalue of the operator  I1 .  Similarly, set-
ting  λ = q  in (5), one finds likewise that  ξ

q2   is an eigenvector of  I1  and the point

q2  belongs to the spectrum of  I1 .  Repeating this procedure, we find that all  ξ
qn ,  n =

= 0, 1, 2, … ,  are eigenvectors of  I1  and the set  qn
 ,  n = 0, 1, 2, … ,  belongs to the

spectrum of  I1 .  So far, we do not know yet whether other spectral points exist or not. 
The vectors  ξ

qn ,  n = 0, 1, 2, … ,  are linearly independent elements of the Hilbert
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space  H  (since they correspond to different eigenvalues of the self-adjoint operator

I1 ).  Suppose that values  qn
 ,  n = 0, 1, 2, … ,  constitute the whole spectrum of  I1 .

Then the set of vectors  ξ
qn ,  n = 0, 1, 2, … ,  is a basis in the Hilbert space  H  .

Introducing the  notation  Ξk qk:= ξ ,  k = 0, 1, 2, … ,  we find from (5) that 

J Ξ k  =  – a q q qk
k

k
k k

kΞ Ξ Ξ+
− −

−+ − −1 11( ) .

As we see, the matrix of the operator  J  in the basis  Ξk ,  k = 0, 1, 2, … ,  is not sym-
metric, although in the initial basis  n〉 ,  n = 0, 1, 2, … ,  it was symmetric.  The

reason is that the matrix  ( )amn   with entries  a qmn m
n: ( )= β ,  m ,  n  = 0, 1, 2, … ,

where  βm
nq( )  are the coefficients (2) in the expansion  ξ

qn  = βm
n

m
q n( ) 〉∑   (see

(3)), is not unitary.  This fact  is equivalent to the statement that the basis  Ξn = ξ
qn ,

n = 0, 1, 2, … ,  is not normalized.  To normalize it, one has to multiply  Ξn  by

appropriate numbers  cn  (which are defined below).  Let  Ξ̂n  = cn 
Ξn 

,  n = 0, 1, 2, … ,
be a normalized basis.  Then the matrix of the operator  J  is symmetric in this basis.  It

follows from (5) that  J  has in the basis  Ξ̂n{ }  the form 

J nΞ̂   =  – c c a q c c q qn n n
n

n n n
n n

n+
−

+
−

−
− −

−+ − −1
1

1 1
1

11ˆ ˆ ( ) ˆΞ Ξ Ξ .

The symmetricity of J in the basis Ξ̂n{ } means that c c an n+
−

1
1  = c c q qn n

n n−
+

− − +−1
1

1 11( ),

that is,  c cn n/ −1 = aq qn n/( )1− .  Therefore, the coefficients  cn  are equal to 

cn  =  c a q q qn n n
n

( )/ /
/ ( ; )+[ ]1 2 1 2

,

where  c  is a constant. 
The expansions 

ˆ ( )ξ
qn x   ≡  ˆ ( )Ξn x   =  c q mn m

n

m
β ( ) 〉∑   ≡  â mmn

m
〉∑ (7)

interrelate two orthonormal bases in the Hilbert space  H .  This means that the matrix
( )âmn ,  m,  n = 0, 1, 2, … ,  with entries 

âmn   =  c qn m
nβ ( )  =  c

a q
q q

a q aq

a q q a q
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1 2
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1
, (8)

is unitary, provided that the constant  c  is appropriately chosen.  In order to calculate
this constant, we use the relation 

〈 〉ˆ , ˆΞ Ξ0 0   =  
m

ma
=

∞

∑
0

0
2ˆ   =  

m
mc q

=

∞

∑
0

0
2 2 0β ( )  =  1.

The last sum is a multiple of the sum in (6) and, consequently,  c  =  ( ; ) /− ∞
−aq q 1 2 . 

The matrix  A amn: ˆ( )=   is real and orthogonal.  Thus, if  Ξ̂n ,  n = 0, 1, 2, … ,  is a

complete basis in  H ,  then  A A 
–

 
1 = A 

–
 
1

 A  = E,  that is, 

n
mn m na a∑ ′ˆ ˆ   =  δmm′,      

m
mn mna a∑ ′ˆ ˆ   =  δnn′ . (9)

Substituting into the first sum over  n  in (9) the expressions for  âmn   from (8), we ob-
tain the identity 
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n

n n n

n
m

n
m

na q
q q

K q a q K q a q
=

∞ +

′∑
0

1 2( )/

( ; )
( ; ; ) ( ; ; )   =  

( ; ) ( ; )

( )
( )/−

+
∞ +

′
aq q a q q

aq
q

m m
m

m
m m

mm1 2
1 2 δ , (10)

which must yield the orthogonality relation for alternative  q-Charlier polynomials.  An
only gap, which remains to be clarified, is the following.  We have assumed that the

points  qn
 ,  n = 0, 1, 2, … ,  exhaust the whole spectrum of  I1.  Let us show that this is

the case. 
Recall that the self-adjoint operator  I1  is represented by a Jacobi matrix in the

basis  n〉 ,  n = 0, 1, 2, … .  According to the theory of operators of such type (see, for
example, [2], Chapter VII), eigenvectors  ξλ  of  I1  are expanded into series in the

basis  n〉 ,  n = 0, 1, 2, … ,  with coefficients, which are polynomials in  λ  .  These
polynomials are orthogonal with respect to some positive measure  d µ ( λ )  (moreover,
for self-adjoint operators this measure is unique).  The set (a subset of  R ),  on which

these polynomials are orthogonal, coincides with the spectrum of the operator under
discussion and this spectrum is simple. 

We have found that the spectrum of  I1  contains the points  qn
 ,  n = 0, 1, 2, … .  If

the operator  I1  had other spectral points  xk ,  then the left-hand side of (10) would
contain other terms  µx m k m kk

K x a q K x a q( ; ; ) ( ; ; )′   with positive  µxk
,  corresponding to

these additional points.  Let us show that these additional summands do not appear.  To
this end we set  m = m′ = 0  in relation (10) with the additional summands.  Since
K x a q0( ; ; ) = 1,  we have then the equality 

n

n n n

n
x

k

a q
q q k

=

∞ +

∑ ∑+
0

1 2( )/

( ; )
µ   =  ( ; )− ∞aq q .

According to the definition of the  q-exponential function  Eq ( a )  (see formula (II.2)
from  Appendix II in [9]), we have  

n

n n n

n

a q
q q=

∞ +

∑
0

1 2( )/

( ; )
  =  ( ; )− ∞aq q .

Hence,  µxk k∑  = 0  and all  µxk
  have to vanish.  This means that additional sum-

mands do not appear in (10) and hence (10) does represent the orthogonality relation
for alternative  q-Charlier polynomials.  Thus, the following proposition is true: 

Proposition 1.  The spectrum of the operator  I1  coincides with the set of points

qn
 ,  n = 0, 1, 2, … .  This spectrum is simple and the vectors  Ξ̂n ,  n = 0, 1, 2, … ,

form a complete set of eigenvectors of  I1.  The matrix  ( )âmn   with entries (8) rela-

tes the initial basis  n〉{ }  with the normalized basis  Ξ̂n{ }. 

4.  Dual alternative  q-Charlier polynomials.  Now we consider the second iden-
tity in (9), which gives the orthogonality relation for the matrix elements  âmn ,  consi-
dered as functions of  m.  Due to the expression for alternative  q-Charlier polynomials
from Section 2, these functions coincide (up to multiplicative factors) with the func-
tions 

F x a qn( ); |   =  2 1
10φ ( , ; ; , )/x a x q qn− + , (11)

considered on the set  x ∈ { }, , ,q mm− = …0 1 2 .  Consequently, 

âmn   =  c
a q

q q
aq

aq q q q a q
F q a q

n n n

n

m

m
m

m m m n
m
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∞
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1
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and the second identity in (9) gives the orthogonality relation for  F q a qn
m( ; )|− : 

m

m m m

m m
m

n
m

n
maq q

a aq q q q
F q a q F q a q

=

∞ − +

∞

−
′

−∑ +
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2 1 21( )

( ; ) ( ; )
( ; ) ( ; )

( )/
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( ; ) ( )/q q

a
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n
n n

nn
− +

′
1 2 δ . (12)

The functions  F x a qn( ; )|   can be represented in another form.  Indeed, taking the
limit  c  →  ∞  in transformation (III.8) from Appendix III in [9], one derives the rela-
tion 

2 1
10φ ( , ; ; , )q aq q qm m n− +−   =  ( ) ( , , ; ; , )/− − − −− −a q q aq q q q am m m m n n2

3 0φ .

Therefore, we have 

F q a qn
m( ; )|−   =  ( ) ( , , ; ; , )/− − − −− −a q q aq q q q am m m m n n2

3 0φ . (13)

The basic hypergeometric function  3 0φ   in (13) is a polynomial of degree  n  in the va-

riable  µ( ) :m q aqm m= −− ,  which represents a  q-quadratic lattice;  we denote it by 

d m a qn( ( ); ; )µ   : =  3 0φ ( , , ; ; , )/q aq q q q am m n n− −− − − . (14)

Then formula (12) yields the orthogonality relation 

m

m m m m

m
m

n n
aq a q

aq q q q
d m d m

=

∞ −

∞
′∑ +

−0

2 3 1 21( )

( ; ) ( ; )
( ( )) ( ( ))

( )/

µ µ   =  
( ; ) ( )/q q

a
qn

n
n n

nn
− +

′
1 2 δ (15)

for the polynomials (14) when  a > 0.  As far as we know this orthogonality relation is
new.  We call the polynomials  d m a qn( ( ); ; )µ   dual alternative  q -Charlier
polynomials.  Thus, we proved the following theorem. 

Theorem.  The polynomials  d m a qn( ( ); ; )µ ,  given by formula (14), are ortho-

gonal on the set of points  µ( ) :m q aqm m= −− ,  m  = 0, 1, 2, … ,  and the orthogona-
lity relation for them is given by formula (15). 

Remark.  The duality of polynomials is a well-known notion in the case of
polynomials, orthogonal with respect to a finite number of points (see, for example, [9],
Chapter 7).  It reflects  the simple fact that a finite-dimensional matrix, orthogonal by
rows, is also orthogonal by its columns.  In the case when polynomials are orthogonal
on a  countable set of points, the situation is more complicated (see, for example, [11 –
13]).  Usually a dual set with respect to such orthogonal polynomials is given in terms
of functions (for instance, their explicit form (11) for the case of alternative  q-Charlier
polynomials is given above).  One therefore needs to make one step further in order to
extract an appropriate family of dual polynomials from these functions (of course, in all
those cases when functions admit such a separation).  Observe that in our approach to
the duality of  q-polynomials it is not assumed that an orthogonality relation for the
initial set of polynomials is known;  this orthogonality is straightforwardly derived.
Besides, one naturally extracts from a dual set of orthogonal functions an appropriate
dual family of  q-polynomials.  Other instances of the similar approach to the duality
can be found in [14] and [15]. 

Let    � a
2   be the Hilbert space of functions on the set  { }, , ,m = …0 1 2   with the sca-

lar product 

〈 〉f f1 2,   =  
m

m m

m
m

m maq a

aq q q q
q f m f m

=

∞

∞

−∑ +
−0

2
3 1 2

1 2
1( )

( ; ) ( ; )
( ) ( )( )/ , (16)

where the weight function is taken from (15).  The polynomials (14) are in one-to-one
correspondence with the columns of the orthogonal matrix  ( )âmn   and the orthogonali-
ty relation (15) is equivalent to the orthogonality of these columns.  Due to (9) the
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columns of the matrix  ( )âmn   form an orthogonal basis in the Hilbert space  �2   of

sequences  a = { }, , ,a nn = …0 1 2   with the scalar product  〈 〉′a a,  = a ann n∑ ′ .  This
scalar product is equivalent to the scalar product (16) for the polynomials
d m a qn( ( ); ; )µ .  The fact that the set of all columns of the matrix  ( )âmn   is a basis in

  �
2   means that the set of all polynomials (14) forms a basis in   � a

2 .  Thus, the following
proposition is true: 

Proposition 2.  The set of polynomials  d m a qn( ( ); ; )µ ,  n = …0 1 2, , ,  ,  form an

orthogonal basis in the Hilbert space    � a
2    that is, this set is complete in    � a

2 . 
We have been unable to clarify yet whether the moment problem, connected with

the polynomials (14), is determinate or indeterminate.  Nevertheless, Proposition 2
means  that if this moment problem is indeterminate, then the measure in (15) is
extremal. 

A recurrence relation for the polynomials  d m a qn( ( ); ; )µ , 

( ) ( ( ))q aq d mm m
n

− − µ   =  – ad m q d m q q d mn
n

n
n n

n+
− −

−+ − −1 11( ( )) ( ( )) ( ) ( ( ))µ µ µ ,

where  d mn( ( ))µ  ≡ d m a qn( ( ); ; )µ ,  is readily derived from (4).  A  q-difference equa-
tion for  d mn( ( ))µ   can be obtained from the three-term recurrence relation for alterna-
tive  q-Charlier polynomials  K x a qn( ; ; ) . 
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