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STRONGLY NONLINEAR DIFFERENTIAL EQUATIONS 
WITH CARLITZ DERIVATIVES OVER A FUNCTION FIELD*

 

SYL|NO NELINIJNI DYFERENCIAL|NI RIVNQNNQ Z

POXIDNYMY KARLICA NAD FUNKCIONAL|NYM POLEM

In earlier papers the author studied some classes of equations with Carlitz derivatives for  Fq -linear

functions, which are the natural function field counterparts of linear ordinary differential equations.
Here we consider equations containing self-compositions    u u u� …�   of the unknown function.  As an

algebraic background, imbeddings of the composition ring of  Fq -linear holomorphic functions into

skew fields are considered.

U poperednix stattqx avtora vyvçeno deqki klasy rivnqn\ iz poxidnymy Karlica vidnosno  Fq -

linijnyx funkcij nad funkcional\nym polem, qki [ pryrodnymy analohamy linijnyx zvyçajnyx

dyferencial\nyx rivnqn\.  U cij roboti rozhlqdagt\sq rivnqnnq, wo mistqt\ kompozyci]

  u u u� …�  nevidomo] funkci].  Alhebra]çnog osnovog zastosovano] metodyky [ vkladennq kil\cq

Fq -linijnyx holomorfnyx funkcij u tilo.

1.  Introduction.  Let  K  be the set of formal Laurent series  t xj
j

j N
= =

∞∑ ξ   with

coefficients  ξj  from the Galois field  Fq ,  ξN   ≠  0  if  t  ≠  0,  q  =   p v,  v  ∈  Z+ ,  where

p   is a prime number.  It is well known that  K   is a locally compact field of
characteristic  p,  with natural operations over power series, and the topology given by

the absolute value   | t |  =  q  
–

 
N ,  | 0 |  =  0.  The element  x  is a prime element of  K.

Any nondiscrete locally compact field of characteristic  p  is isomorphic to such  K.
Below we denote by  Kc  the completion of an algebraic closure  K   of  K.  The

absolute value  | · |  can be extended in a unique way onto  Kc.
An important class of functions playing a significant part in the analysis over  Kc

is the class of  Fq -linear functions.  A function  f  defined on a  Fq -subspace  K0   of  K

(or  Kc),  with values in  Kc,  is called  F q -linear if  f t t f t f t( ) ( ) ( )1 2 1 2+ = +   and

f t f t( ) ( )α α=   for any  t, t1 , t2 ∈  K0 ,  α  ∈  F q .  A typical example is a  Fq -linear

polynomial  c tk
qk

∑   or,  more generally, a power series  c tk
q

k

k

=
∞∑ 0

,  where

c Kk c∈   and  c Ck
qk

≤ ,  convergent on a neighbourhood of the origin.
In the theory of differential equations over  K  initiated in [1, 2] (which deals also

with some nonanalytic  F q 
-linear functions) the role of a derivative is played by the

operator

  d
q= � ∆ ,      ( ∆u )( t )  =  u( xt )  –  xu( t ) ,

introduced by Carlitz [3] and used subsequently in various problems of analysis in
positive characteristic [4 – 8].

The differential equations considered so far were analogs of linear ordinary
differential equations, though the operator  d  is only  Fq -linear and the meaning of a

polynomial coefficient in the function field case is not a usual multiplication by a
polynomial, but the action of a polynomial in the  Fq 

-linear operator  τ,  τu  =  uq.  Note

that  Fq-linear polynomials form a ring with respect to the composition  u � v  (the usual
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multiplication violates the  F q -linearity), so that natural classes of equations with

stronger nonlinearities must contain expressions like  u � u   or, more generally,

  u u u� …� .  An investigation of such "strongly nonlinear" Carlitz differential equations
is the main aim of this paper.

However we have to begin with algebraic preliminaries of some independent
interest (so that not all the results are used in the subsequent sections) regarding the
ring  R

 K   of locally convergent  F q -linear holomorphic functions.  The ring is

noncommutative, and the algebraic structures related to strongly nonlinear Carlitz
differential equations are much more complicated than their classical counterparts.  So
far their understanding is only at its initial stage.  Here we show that  R K  is imbedded

into a skew field of  Fq 
-linear  "meromorphic" series containing terms like  tq k−

.  Note

that a deep investigation of bi-infinite series of this kind convergent on the whole of
Kc  has been carried out by Poonen [9].  We also prove an appropriate version of the
implicit function theorem.

After  the above preparations we consider general strongly nonlinear first order  Fq

-linear differential equations (resolved with respect to the derivative of the unknown
function) and prove an analog of the classical Cauchy theorem on the existence and
uniqueness of a local holomorphic solution of the Cauchy problem.  In our case the
classical majorant approach (see e.g. [10]) does not work, and the convergence is
proved by direct estimates.  We also consider a class of Riccati-type equations
possessing  Fq -linear solutions which are meromorphic in the above sense.

2.  Skew fields of  Fq-linear power series.  Let  R K  be the set of all formal power

series  a a tk
q

k

k
= =

∞∑ 0
  where  ak ∈  K ,  a Ak

qk
≤ ,  and  A  is a positive constant

depending on  a .  In fact each series  a   =   a (  t  )  from  R
 K   converges on a

neighbourhood of the origin in  K  (and  Kc).

R K  is a ring with respect to the termwise addition and the composition

a b a b tn l n
q

n

l

l

qn l
� =









−

==

∞

∑∑
00

,      b b tk
k

qk
=

=

∞

∑
0

,

as the operation of multiplication.  Indeed, if  b Bk
qk

≤ ,  then, by the ultrametric
property of the absolute value,

a b A B Cn l n
q

n

l

n l

q q
q

qn n l n
n

l

−
= ≤ ≤
∑ ≤ ( ) ≤

−

0 0
max

where  C  =  B max ( A, 1) .  The unit element in  R  K  is  a( t )  =   t .  It is easy to check

that  R K  has no zero divisors.

If  a ∈ R
 K ,  a a tk

q
k

k
= =

∞∑ 0
,  is such that  | a0 |  ≤  1  and  a Ak

qk
≤ ,  |  A |  ≥   1,

for all  k,  then we may write

a Ak
qk

≤ −
1

1,      k  =  0, 1, 2, … , 

if we take  A Aq qk k

1
1≥ −/( )   for all  k ≥ 1.  If also  b b tk

q
k

k
= =

∞∑ 0
,  b Bk

qk
≤ −

1
1,

B1 1≥ ,  then for  
 
a b c tl

q
l

l
� = =

∞∑ 0
  we have
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c A B Cl
i j l

q q
q

qi j
i

l
≤ ( ) ≤

+ =
− − −max 1

1
1

1
1

1

where  C1  =  max ( A1 , B1) .  In particular, in this case the coefficients of the series for
an  (the composition power) satisfy an estimate of this kind, with a constant
independent of  n.

Proposition 1.  The ring  R K  is a left Ore ring, thus it possesses a classical ring
of fractions.

Proof.  By Ore’s theorem (see [11]) it suffices to show that for any elements  a,
b ∈ R K  there exist such elements  a′, b′ ∈ R K  that  b′  ≠  0  and

a′ � b  =  b′ � a. (1)

We may assume that  a  ≠  0,

a a tk
k m

qk
=

=

∞

∑ ,      b b tk
k l

qk
=

=

∞

∑ ,

m, l ≥  0,  am  ≠  0,  bl  ≠  0.
Without restricting generality we may assume that  l =  m  (if we prove (1) for this

case and if, for example,  l <  m,  we set   b t bqm l

1 =
−

� ,  find  a″, b′  in such a way that

a″ � b1  =  b′ � a,  and then set  ′ = ′′
−

a a tqm l
� ),  and that  al  =  bl  =  α,  so that

a t a tq
k

k l

ql k
= +

= +

∞

∑α
1

,

b t b tq
k

k l

ql k
= +

= +

∞

∑α
1

,      α  ≠  0.

We seek  a′, b′  in the form

′ = ′
=

∞

∑a a tj
j l

q j
,      ′ = ′

=

∞

∑b b tj
j l

q j
.

The coefficients  ′ ′a bj j,   can be defined inductively.  Set  ′ = ′ =a bl l 1.  If  ′ ′a bj j,
have been determined for  l  ≤  j  ≤  k – 1,  then  ′ ′a bk k,   are determined from the equality
of the  ( k + l )-th terms of the composition products:

′ + ′ = ′ + ′
+ = +

≠
+ = +

≠

∑ ∑a a b b b ak
q

i j k l
j l

i j
q

k
q

i j k l
j l

i j
qk i k i

α α

(the above sums do not contain nontrivial terms with  ′ ′ ≥a b i ki i, , , since  aj  =  bj  =  0
for  j  <  l).

In particular, we may set  ′ =bk 0 ,

′ = ′ − ′( )
















−

+ = +
< ≠

∑a a b b ak
q

i j k l
i k j l

i j
q

i j
qk i i

α

,

.

If this choice is made for each  k  ≥  l + 1,  then we have  ′ =bi 0   for every  i  ≥  l + 1,
so that
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′ = ′−

+ = +
< ≠

∑a a bk
q

i j k l
i k j l

i j
qk i

α

,

. (2)

Denote  C1  =  | α |–1.  We have  b Cj
q j

≤ 2   for all  j.  Denote, further,  C3  =  

=  max (1, C1 , C2) ,  C Cql

4 3

2
=

+
.  Let us prove that

′ ≤a Ck
qk

4 .

Suppose that  ′ ≤a Ci
qi

4   for all  i, l  ≤  i  ≤  k – 1  (this is obvious for  i  =  1,  since
′ =al 1).  By (2),

′ ≤ ≤
+ = +
< ≠

+ − +
a C C C C C Ck

q

i j k l
i k j l

q q q q qk i i j k k k l

1 4 2 1 4 2

1
max

,

  ≤

≤  C C C Cq q q q q q q
q

qk k l k l l l k l
k

k

3 3
1

3 4

1 1 2+ + + ++ + + + +
= ≤ ( ) =( ) ,

as desired.  Thus  a′ ∈ R K .
The proposition is proved.
Every non-zero element of  R K   is invertible in the ring of fractions  A K  ,  which is

actually a skew field consisting of formal fractions  c–1d, c, d ∈ R K .

Proposition 2.  Each element  a   =   c–1d ∈  A  K  can be represented in the form

a t aq m
= ′

−
  where  tq m−

  is the inverse of  tqm
,  a′ ∈ R K .

Proof.  It is sufficient to prove that any non-zero element  c ∈ R K  can be written

as    c c tqm
= ′ �   where  c′  is invertible in  R K .

Let  c c tk
q

k m

k
= =

∞∑ ,  cm  ≠  0,  c Ck
qk

≤ .  Then

  
c c t c c t tm m m l

q

l

ql m
= +











−
+

=

∞

∑ 1

1

�

where  c c Cm m l
ql−

+
−≤1

1
1  for all  l  ≥  1,  if  C1  is sufficiently large.  Denote

w c c tm m l
q

l

l
= −

+
=

∞

∑ 1

1

,      c′  =  cm( t + w ) .

The series

( ) ( )t w wn n

n

+ = −−

=

∞

∑1

0

1

converges in the standard non-Archimedean topology of formal power series (see [12],

Sect. 19.7) because the formal power series for  wn  begins from the term with  tqm
;

recall that  wn  is the composition power, and  t  is the unit element.  Moreover,

w a tn
j
n q

j n

j
= =

∞∑ ( )   where  a Cj
n q j( ) ≤ −

1
1  for all  j,  with the same constant

independent of  n.  Using the ultrametric inequality we find that the coefficients of the
formal power series
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( )t w a tj
q

j

j
+ =−

=

∞

∑1

0

(each of them is, up to a sign, a finite sum of the coefficients  aj
n( ))  satisfy the same

estimate.  Therefore  ( c′ )–1
  ∈ R K ,  as desired.

The skew field of fractions  AK  can be imbedded into wider skew fields where
operations are more explicit.  Let  Kperf  be the perfection of the field  K.  Denote by

AKperf

∞   the composition ring of  Fq -linear formal Laurent series  a a tk
q

k m

k
= =

∞∑ ,

m ∈Z ,  a Kk ∈ perf ,  am ≠ 0  (if  a  ≠   0).  Since  τ  is an automorphism of  Kperf,

  
AKperf

∞   is a special case of the well-known ring of twisted Laurent series [12].

Therefore  AKperf

∞   is a skew field.

Let  
  
AKperf

  be a subring of  
 
AKperf

∞   consisting of formal series with  a Ak
qk

≤
for all  k  ≥  0.  Just as in the proof of Proposition 2, we show that  

  
AKperf

  is actually a

skew field.  Its elements can be written in the form  t cq m−
�   where  c  is an invertible

element of the ring  
  
R AK Kperf perf

⊂   of formal power series  a tk
q

k

k

=
∞∑ 0

.  In contrast

to the case of the skew field  AK  ,  in  
  
AKperf

  the multiplication of  tq m−
  by  c   is

indeed the composition of (locally defined) functions, so that  AKperf
  consists of

fractional power series understood in the classical sense.

Of course,  AKperf
  can be extended further, by considering  K   or  Kc  instead of

Kperf.  The above reasoning carries over to these cases (we can also consider the ring

  
R Kc

  of locally convergent  Fq 
-linear power series as the initial ring).  In each of them

the presence of a fractional composition factor  tq m−
  is a  Fq -linear counterpart of a

pole of the order  m.

3.  Recurrent relations.  In our investigations of strongly nonlinear equations and
implicit functions we encounter recurrent relations of the same form

c B c c c ai i
j l i
l

jkl
k n n l

n n
q

n
q

q

i

k

n

k

n n

j

k

+
+ =
≠

=

∞

+ + =
=









 +∑ ∑ ∑

+ +

+

−

1

0
1 1

1 2

1 1 1
µ

λ

…

…
…

, (3)

i  =  1, 2, … 

(here and below  n1 , … , nk  ≥  1  in the internal sum), with coefficients from  Kc,  such

that  | µi |  ≤  M,  M  >  0,  B Bjkl
kq j

≤ ,  B  ≥  1,  | ai |  ≤  M  for all  i, j, k, l;  the number

λ  is either equal to 1, or  λ  =  0,  and in that case  | B01l|  ≤  1.

Proposition 3.  For an arbitrary element  c Kc1 ∈ ,  the sequence determined by

the relation (3) satisfies the estimate  c Cn
qn

≤ ,  n  =  1, 2, … ,  with some constant
C  ≥  1.

Proof.  Set  cn  =  σdn ,  | σ |  <  1,  n  =  1, 2, … ,  and substitute this into (3).  We
have
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d Bi i
j l i
l

jkl
k n n l

q q

k

n n n qk
j

+
+ =
≠

=

∞

+ + =

+ + + −=







∑ ∑ ∑

+ + −
+

1

0
1

1 1

1

1 1 1

µ σ
λ

…

… …( )   ×

×  

  

d d d an n
q

n
q

q

i

n

k

n n
j

k

1 2

1 1 1 1…
…+ +

+
−( )








+ −

λ

σ .

Here

 
σ σ

λ λ( )1 1 11 1 1+ + + − −+ + +−
+

≤q q kqn n n q jk
j

… …
,

and (under our assumptions) choosing such  σ  that  | σ |  is small enough we reduce (3)
to the relation

d b d d d ai i
j l i
l

jkl
k n n l

n n
q

n
q

q

i

k

n

k

n n
j

k

+
+ =
≠

=

∞

+ + =

−= ( ) +∑ ∑ ∑
+ +

+
−

1

0
1

1

1

1 2

1 1 1
µ σ

λ

…

…
…

, (4)

i  =  1, 2, … ,

where  | bjkl |  ≤  1.
It follows from (4) that

di+1   ≤

≤  

  

M d d d M a
j l i
l

k n n l
n n

q
n
q

q

i
k

n

k

n n
j

k
max sup max max ,
+ =
≠

≥ + + =
− −+ +

+
−( )






0

1

1 1

1
1 2

1 1 1

…
…

…
λ

σ .

Let  B M d M a
i

i= 







− −max , , , sup1 1
1 1σ .  Let us show that

 d Bn
q qn n

≤
− −+ + +1 2 1… ,      i  =  1, 2, … . (5)

This is obvious for  n  =  1.  Suppose that we have proved (5) for  n  ≤  i.  Then

  
d M B Bi

j l i k n n l

q q q q q

k

n n n n n n n

+
+ = ≥ + + =

+ + + + + +≤ ( − − + − + −

1
1

1

1

1 2 1 21 1 1 2 1 2 1
max sup max

…

… … …

  
…

… … … ……Bq q q
qn n n n n n n n

j
k k k k k1 1 1 1 2 1 11 1

1
+ + + − + + + + + + +

+
− − − −+ + + )   ≤

≤  
  
M B B B B

j l i

q q q q q q qj l j i i i i
max
+ =

+ + + + + + + ++ + − −
≤ =… … …1 1 1 1,

and we have proved (5).  Therefore

c B Cn
q q qn n

≤ ≤− −σ ( )/( )1 1

for some  C,  as desired.
The proposition is proved.
4.  Implicit functions of algebraic type.  In this section we look for  F q 

 -linear

locally holomorphic solutions of equations of the form

P t P t z P t z z P t z z zN

N

0 1 2 0( ) ( ) ( ) ( ) ( ) ( )+ + + + =� � � … � � �…���� (6)
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where  
    
P P PN Kc0 1, , ,… ∈R .  Suppose that the coefficient  P t a tk jk

q
j

j
( ) = ≥∑ 0

  is

such that  a00  =  0,  a01  ≠  0;  these assumptions are similar to the ones guaranteeing
the existence and uniqueness of a solution in the classical complex analysis.  Then (see
Sect. 2)  P1  is invertible in  

  
R Kc

,  and we can rewrite (6) in the form

z Q t z z Q t z z z Q tN

N

+ + + =2 0( ) ( ) ( ) ( ) ( )� � … � � �…���� (7)

where  
    
Q Q QN Kc0 2, , ,… ∈R ,  that is

Q t b tk
j

jk
q j

( ) =
=

∞

∑
0

,      b Bjk k
q j

≤ ,

for some constants  Bk  >  0,  b00  =  0.
Proposition 4.  The equation (6) has a unique solution  z Kc

∈R   satisfying the

“initial condition”

z t

t

( ) → 0,      t → 0.

Proof.  Let us look for a solution of the transformed equation (7), of the form

z t c t
i

i
qi

( ) =
=

∞

∑
1

,      c Ki c∈ ; (8)

our initial condition is automatically satisfied for a function (8).
Substituting (8) into (7) we come to the system of equalities

c b c c c bi
k

N

j l i
j l

jk
n n l

n

n n
q

n
q

q

i

k
j

n

k

n n

j

k
= −

















+
= + =

≥ ≥
+ + =

≥

∑ ∑ ∑
+ + −

2
0 1 1

0

1

1 2

1 1 1

,
…

…
…

,      i  ≥  1. (9)

In each of them the right-hand side depends only on  c1 , … , ci – 1 ,  so that the relations
(9) determine the coefficients of a solution (8) uniquely.  By Proposition 3,  

  
z Kc
∈R .

More generally, let

P t a tj
q

j

j

1 1( ) =
≥
∑

ν
,      ν  ≥  0,      aν1  ≠  0.

Then the equation (6) has a unique solution in  R Kc
,  of the form

z t c t
i

i
qi

( ) =
= +

∞

∑
ν 1

,      c Ki c∈ .

The proof is similar.
5.  Equations with Carlitz derivatives.  Let us consider the equation

  

dz t a z z z t a t
j k

jk
j

k
j

j
q j

( ) ( ) ( )= +
=

∞

=

∞

=

∞

∑ ∑ ∑
0 1 0

0τ � �…���� (10)
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where  a Kjk c∈ ,  a Ajk
kq j

≤ ,  k  ≥  1,  a Aj
q j

0 ≤ ,  A  ≥   1.  We look for a solution

in the class of  Fq 
-linear locally holomorphic functions of the form

z t c t
k

k
qk

( ) =
=

∞

∑
1

,      c Kk c∈ , (11)

thus assuming the initial condition  t–1z( t ) → 0,  as  t → 0.
Theorem 1.  A solution (11) of the equation (10) exists with a non-zero radius of

convergence, and is unique.
Proof.  We may assume that

| aj0 |  ≤  1,      aj0 → 0,    as    j → ∞. (12)

Indeed, if that is not satisfied, we can perform a time change  t  =  γt1  obtaining an

equation of the same form, but with the coefficients  aj
q j

0γ   instead of  a j0 ,  and it

remains to choose  γ  with  | γ |  small enough.  Note that, in contrast with the case of
the usual derivatives, the operator  d  commutes with the above time change.

Assuming (12) we substitute (11) into (10) using the fact that  d c tk
qk( )   =  

=  c k tk
q q qk1 1 1/ /[ ]

−
,  k  ≥  1,  where  k x xqk

[ ] = − .  Comparing the coefficients we come
to the recursion

c i a c c c ai
j l i

j l
k

jk
q

n n l
n n

q
n
q

q

i

k

n

k

n n

j

k

+
−

+ =
≥ ≥

=

∞

+ + =
= +[ ]









 +∑ ∑ ∑

+ +

+

−

1
1

0 1
1

01
1

1 2

1

1 1 1

,
…

…
…

,

i  ≥  1,

where  c aq
1

1
001= [ ]− .  This already shows the uniqueness of a solution.  The fact that

c Cqi

1 ≤   for some  C  follows from Proposition 3.
The theorem is proved.
Using Proposition 4 we can easily reduce to the form (10) some classes of equations

given in the form not resolved with respect to  dz.
As in the classical case of equations over  C  (see [10]), some of equations (10) can

have also nonholomorphic solutions, in particular those which are meromorphic in the
sense of Sect. 2.  As an example, we consider Riccati-type equations

 dy t y y t P y t R t( ) ( )( ) ( ) ( ) ( )= + ( ) +λ τ� (13)

where  λ ∈Kc ,  0 1 2
< ≤ −λ q q/ ,

P y t p y t
k

k
qk

( ) ( ) ( )τ( ) =
=

∞

∑
1

,      R t r t
k

k
qk

( ) =
=

∞

∑
0

,

p r Kk k c, ∈ ,  p qk
q≤ −1 2/ ,  r qk

q≤ −1 2/   for all  k.
Theorem 2.  Under the above assumptions, the equation (13) possesses solutions

of the form

y t ct a tq

n
n

qn
( ) /= +

=

∞

∑1

0

,      c a Kn c, ∈ ,      c  ≠  0, (14)

ISSN  0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5



STRONGLY NONLINEAR DIFFERENTIAL EQUATIONS … 677

where the series converges on the open unit disk  | t |  <  1.
Proof.  For the function (14) we have

dy t c t a n tq q q

n
n

q q qn
( ) / / / /= −[ ] + [ ]

− −

=

∞

∑1 1

1

1 11
2 1

,      −[ ] =1 1x q/ ,

  
( )( ) /

/

/y y t c ct a t a ct a tq

n
n

q

q

n
n

q

m
m

q

q
n m

n

� = +








 + +











=

∞

=

∞

=

∞

∑ ∑ ∑1

0

1

0

1

0

  =

=  c t ca ca tq q q q1 1
0
1

0
2 1+ − −
+ +( )/ /   +

+  
n

n
q q

n
q

l

q

m n l
m n

n m
qca c a t t a a

n n l n

=

∞

+ +
=

∞

+ =
≥

∑ ∑ ∑+( ) +
+

0
1

1
1

0
0

1/

,

.

Finally,

P y t p c t t p a
k

k
q q

l

q

i j l
i j

i j
qk k l i

( ) ( )

,

τ( ) = +
=

∞

+
=

∞

+ =
≥ ≥

∑ ∑ ∑
+

0
1

0
1 0

1
.

Comparing the coefficients we find that

c q= −[ ]−λ 1 11 / ,      a aq
0
1

0 0/ + = , (15)

a l c c al
q q q

l

l

+ ++[ ] −( ) − +

1
1 1

11
1/ / λ λ   =

=  λ
m n l
m n

n m
q

i j l
i j

i j
q

la a p a r
n i

+ =
≥

+ =
≥ ≥

∑ ∑+ +

, ,0 1 0

,      l  ≥  0. (16)

By (15), we have  | c |  ≥   1,  and either  a0  =  0,  or  |  a0 |  =   1.  Next, (16) is a
recurrence relation (with an algebraic equation to be solved at each step) giving values
of  al  for all  l  ≥  1.  Let us prove that  | aj |  ≤   1  for all  j.  Suppose we have proved
that for  j  ≤  l.  It follows from (16) that

a l c a c a ql
q q

l
q q

l
q ql

+ + +
−+[ ] − − ≤

+

1 1 1
11

2
λ λ / . (17)

Suppose that  | al + 1 |  >  1.  We have  λq qc = −[ ]1 ,  so that  λq q qc q= −1/ ,  and

since  l q+[ ] = −1 1  and  | c |  ≥  1,  we find that

a l c a c al
q q

l
q q

l
ql

+ + ++[ ] < <
+

1 1 11
2

λ λ .

Therefore the left-hand side of (17) equals

λq q q
l
q qc c a q

l+

+
−>

1

1
1/ ,

and we have come to a contradiction.
The theorem is proved.
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