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ON AN APPLICATION OF THE LAX – PHILLIPS SCATTERING
APPROACH IN THEORY OF SINGULAR PERTURBATIONS 

ZASTOSUVANNQ ROZSIQNNQ LAKSA – FILLIPSA

V TEORI} SYNHULQRNYX ZBUREN| 

For a singular perturbation A = A0  + 
i j

n
ij j it

,
,

=∑ ⋅
1

ψ ψ ,  n ≤ ∞, of a positive self-adjoint operator A0

with Lebesgue spectrum, the spectral analysis of the corresponding self-adjoint operator realizations AT

is carried out and the scattering matrix 
 
� A AT , ( )

0( ) δ  is calculated in terms of parameters tij  under some

additional restrictions on singular elements ψ j  that provides the possibility of application of the Lax –

Phillips approach in the scattering theory.

Dlq synhulqrnoho zburennq  A = A0  + 
i j

n
ij j it

,
,

=∑ ⋅
1

ψ ψ ,  n ≤ ∞,  dodatnoho samosprqΩenoho

operatora  A0   iz spektrom Lebeha provedeno spektral\nyj analiz vidpovidnyx samosprqΩenyx

realizacij  AT .  Krim toho, obçysleno matrycg rozsiqnnq  � A AT , ( )
0( ) δ   çerez parametry  tij   pry

deqkyx dodatkovyx obmeΩennqx na synhulqrni elementy  ψ j .  OderΩani rezul\taty dozvolqgt\

zastosovuvaty sxemu Laksa – Fillipsa v teori] rozsiqnnq.

1.  Statement of the problem.  Let  A0   be a positive self-adjoint operator acting in a
Hilbert space  �  and let

 � � � � �2 0 1 0 1 0 2 0( ) ( ) ( ) ( )A A A A⊂ ⊂ ⊂ ⊂− −

be the standard scale of Hilbert spaces associated with  A0   [1].  Precisely,    �2 0( )A  =

= D ( )A0 ,    �1 0( )A  = D A0
1 2/( )  with the norms  u k  = A I uk

0
2+( ) / ,  k = 1, 2,  and

the conjugated spaces    �−k A( )0   can be defined as the completions of  �  with respect
to the norms

u A I uk
k

−
−= +( )0

2/     ∀ ∈u � . (l)

By (1), the operator  A I0
1+( )−   can be continuously extended to an isometric

mapping  A0
1+( )−I   of    �−2 0( )A   onto  �.  Thus, for any   ψ ∈ −� 2 0( )A ,  the element

A0
1+( )−I ψ   belongs to  �  and the relation

ψ ψ, ,u A I u I= +( ) +( )( )−
0 0

1
A      ∀ ∈u A�2 0( ) (2)

enables one to consider any element   ψ ∈ −� 2 0( )A   as a linear continuous functional
on  �2 0( )A .

Let us fix an orthonormal system  ψ j j

n{ } =1
  n ∈ ∞{ }( )N,   in    �−2 0( )A   and

consider the formal expression

A t
i j

n

ij j i0
1

+ ⋅
=
∑
,

,ψ ψ ,    t tij ji= ,    n ∈ ∞{ }N, . (3)
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In what follows we suppose that the linear subspace  X  of    �−2 0( )A   generated by

the basis  ψ j j

n{ } =1
  satisfies the condition     X ∩ � = {0}  (i.e., elements  ψj  are  � -

independent).  In this case, the potential  V = 
i j

n
ij j it

,
,=∑ ⋅

1
ψ ψ   is singular; the

symmetric operator

A A
Asym

sym
:= ( )0�D

,      D A u D A u j njsym( ) = ∈ = ≤ ≤{ }( ) , ,0 0 1ψ (4)

is closed densely defined in  �  and the deficiency indices of  A sym  are equal to  n.
Using approaches developed in the theory of singular perturbations [2], we can

associate with the formal expression (3) its self-adjoint operator realization  AT   acting
in  �  (see Theorem 1) and, as a result, to reduce the scattering problem for (3) to the
study of the scattering operator

S A A W A A W A AT T T, , ,*
0 0 0( ) = ( ) ( )+ −  (5)

for perturbed  AT   and unperturbed  A0   operator realizations of (3), where the wave

operators  W A A±( )B, 0   are defined as follows:

W A A s e e
t

i A t i A t
±

→±∞

−( ) = −T
T, : lim0

0 .

In the case  n < ∞,  operators  AT   and  A0   are different self-adjoint extensions of
the symmetric operator  A sym  with finite deficiency indices.  On the basis of this fact,

the scattering matrix  
  
� A AT , ( )

0( ) δ   (in other words, the image of the scattering operator

S A AT, 0( )  in the spectral representation of  A0 )  was expressed in terms of parameters
of the Krein’s resolvent formula with the use of the stationary approach in the
scattering theory (see [3])*.

In the present paper, we apply one of the well-developed nonstationary scattering
approaches (the Lax – Phillips approach) for the study of spectral and scattering
properties of operator realizations  AT   of the formal expression (3), where, in general,
the singular perturbation is not assumed to be of finite rank.  In particular, for finite
rank singular perturbations, we obtain a representation of the scattering matrix

  
� A AT , ( )

0( ) δ   directly in terms of parameters  tij   of the singular potential  V.

Of course, in order to employ the Lax – Phillips approach we have to impose some
restrictions on the unperturbed operator  A0   and singular elements  ψj .  An example
of such restrictions and the spectral analysis of the corresponding operator realizations
of (3) are contained in Section 3.  In Section 2, we discuss the problem of realization of
the heuristic expression (3) as a self-adjoint operator in  �   and present a simple
description of such realizations in terms of parameters  tij .  The expression of the

scattering matrices  � A AT , ( )
0( ) δ   for nonnegative self-adjoint operator realization  AT

of (3) is presented in Section 4.  Section 5 contains an application of the obtained
results to the case of one-dimensional Schrödinger operator with symmetric zero-range
potentials.

Let us make a remark about notations.  In what follows, any Hilbert space is
assumed to be separable.  D ( )A   and  ker A  denote the domain and the null-space of a
linear operator  A,  respectively.  A�D   means the restriction of  A  onto a set  D.

2.  Operator realizations of singular perturbations.  To define a self-adjoint
operator realization of (3) in  �  with a given singular perturbation

* A survey of further development of the stationary scattering approach in the theory of singular
perturbations can be found in [2].
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V  =  
i j

n

ij j it
,

,
=
∑ ⋅

1

ψ ψ ,

we use an approach suggested initially in [4] (see also [2]) for the case of finite rank
singular perturbations and its generalization to the infinite dimensional case [5].  The
main idea consists in the construction of some regularization 

AT : ,
,

= + ⋅
=
∑A t

i j

n

ij j i0
1

ψ ψex , (6)

of (3) that is well defined as an operator from  D Asym
*( )  to   �−2 0( )A .  In this case, the

corresponding operator realization  AT   of (3) is determined by the formula

AT   =  AT T
�D A( ) ,       

D DA f A fT T( ) ∈ ( ) ∈{ }= sym
*

A � . (7)

Let us clarify the meaning of components  A0   and  ψ j
ex   in (6).  First of all we

observe that  A0   is the continuation of  A0   as a bounded linear operator acting from
�  into    �−2 0( )A   and this continuation is determined by the formula

A A0 0
1 1

f I f f:= +( )[ ] −− −
      ∀ ∈f �. (8)

Next, the linear functionals  ψ j
ex   are extensions of the functionals  ψj   onto

D Asym
*( ).  Using the well-known relation

D Asym
*( )  =  D HA0( ) +̇ ,    where    H = ker *A Isym +( ) , (9)

we arrive at the conclusion that  ψj   can be extended onto  D Asym
*( )  if we know their

values on  H.
It follows from (1), (2), and (4) that the vectors

h Ij j= +( )−A0
1ψ ,    j = 1, … , n, (10)

form an orthonormal basis of the Hilbert space  H.  Hence,  ψ j
ex ,  1 ≤ j ≤ n,  are well-

defined by the formula

ψ ψ αj j
p

n

p jpf u rex, : ,= +
=
∑

1

(11)

for all elements  f = u + 
p

n
p ph=∑ 1

α ,  u A∈ ( )D 0 ,  α p ∈C ,  from  D Asym
*( )  if we

determine the entries

r I hjp j p j p: , ,= +( ) =−ψ ψ ψA0
1

of a (in general, infinite-dimensional) matrix  R = rjp j p

n( ) =, 1
.

If all  ψ j A∈ −� 1 0( ),  then  rjp   are well defined and  R  is defined uniquely
(see [2]).  In other cases, the most appropriate choice of  R  has to be determined by
imposing additional requirements related to the nature of a perturbation (see, e.g., [2]).  
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We recall (see, e.g., [6]) that a matrix  X = xij i j

n( ) =, 1
  is called the matrix

decomposition with respect to the basis  hj j

n{ } =1
  of a bounded operator  X  acting in

H  if its entries  xij   are defined by the expansions

Xh x hj
i

n

ij i=
=
∑

1

,    1 ≤ j ≤ n.

In what follows we assume that  R  is already chosen as a matrix decomposition

(with respect to the basis hj
n{ }1
) of a bounded self-adjoint operator  R  acting in  H.

Our aim now is to describe operator realizations  AT   of (3) in terms of parameters
tij   of the singular perturbation  V.  To do this, the method of boundary triplets (see [7]
and references therein) can be used.

We recall that a triplet  H , ,Γ Γ0 1( ) ,  where  Γ0 ,  Γ1  are linear mappings of

D Asym
*( )  into  H,  is called a boundary triplet of  Asym

*   if

A f gsym
* ,( )  – f A g, *

sym( )   =  Γ Γ1 0f g,( )  – Γ Γ0 1f g,( ) ,    f g A, *∈ ( )D sym , (12)

and for any  F0 ,  F1 ∈H   there exists an element  f A∈ ( )D sym
*   such that  Γ0 f  = F0 ,

Γ1 f  = F1.  
Denote

Γ̂0 0
f P fA= ,      

  
ˆ *Γ1 f P A I f= +( )H sym ,    f A∈ ( )D sym

* , (13)

where  PH   is the orthogonal projector onto  H   in  �   and  PA0
  is the projector onto

H  with respect to the decomposition (9).  The triplet  H , ˆ , ˆΓ Γ0 1( )   is an example of the
well-known boundary triplet that is used widely in the Krein – Birman – Vishik
extension theory.  

Lemma 1.  The triplet  H , ,Γ Γ0 1( ) ,  where

Γ Γ Γ0 1 0f f R f= +ˆ ˆ ,      Γ Γ1 0f f= − ˆ ,    f A∈ ( )D sym
* , (14)

forms a boundary triplet of  Asym
* .

Proof.  Since  H , ˆ , ˆΓ Γ0 1( )   is a boundary triplet, we get

A f g f A g f g f gsym sym
* *, , ˆ , ˆ ˆ , ˆ( ) ( ) ( ) ( )− = −Γ Γ Γ Γ1 0 0 1 . (15)

Expressing  Γ̂i   in terms of  Γi   with the use of (14), substituting the obtained

expressions into (15), and taking into account that  R  is a self-adjoint operator in  H,
we establish (12) for  Γi .

Let  F0 ,  F1  be arbitrary elements of  H.  Since,  H , ˆ , ˆΓ Γ0 1( )   is a boundary triplet,

there exists  f A∈ ( )D sym
*   such that  Γ̂0 f  = −F1  and  Γ̂1 f  = F0  + RF1.  Comparing

these relations with (14), we get  Γ0 f  = F0   and  Γ1 f  = F1.  Thus,  H , ,Γ Γ0 1( )   is a
boundary triplet.

Lemma 1 is proved.  
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Theorem 1.  Let the coefficient matrix  T  = tij i j

n( ) =, 1
  of the singular perturbation

V   =  
i j

n
ij j it

,
,=∑ ⋅

1
ψ ψ   in (3) be a matrix decomposition (with respect to the basis

hj
n{ }1
)  of a bounded self-adjoint operator  T  acting in  H ,  then the corresponding

self-adjoint operator realization  AT   of (3) is defined as follows:

A AT T
�D ( ) ,    D DA f A T f fT( ) = ∈ ( ) ={ }sym

* Γ Γ0 1 . (16)

Proof.  Representing  f A∈ ( )D sym
*   in the form  f  = u  + 

i i ih=∑ 1
α ,  where

u A∈D( )0 ,  hi ∈H ,  αi ∈C   and employing (2), (10), (11), (13), (14), we get

T fΓ0   =  T R fˆ ˆΓ Γ1 0+( )   =  
i j p

n

ij j p jp it u r h
, ,

,
=

∑ +( )
1

ψ α   =  
i j

n

ij j it f h
,

,
=
∑

1

ψex

and  Γ1 f  = − =∑i

n
i ih

1
α .  Using these relations and taking (6), (8), and (10) into

account, we obtain

AT f   =  A u0   –  
i

n

i ih
=
∑

1

α   +  
i j

n

ij j it f
,

,
=
∑

1

ψ ψex   +  
i

n

i i
=
∑

1

α ψ   =

=  A fsym
*   +  A0

1 1
0 1+( )[ ] −( )− −

I T fΓ Γ . (17)

Since  A0
1 1

+( )[ ]− −
I   maps  H   onto the subspace  X  of    �−2 0( )A   generated by

the basis  ψ j j

n{ } =1
  and such that  X ∩ H  = {0},  equalities (7) and (18) imply that

f A∈D ( )  if and only if  T fΓ0  – Γ1 f  = 0.  Therefore, the operator realization  AT   of
(3) is determined by (16).  The self-adjointness of  AT   follows from the fact that  T  is
self-adjoint and the general properties of boundary triplets [7].

Theorem 1 is proved.  
Remark 1.  For the case of finite rank singular perturbations, Lemma 1 and

Theorem 1 were proved in [8].
3.  A sufficient condition of the applicability of the Lax – Phillips approach and

spectral analysis of  AT.  In what follows we suppose that the unperturbed operator
A0   in (3) has absolutely continuous spectrum on  R+  = 0, ∞[ )   with the same

multiplicity  m ≤ ∞  at each point of  R+   ( i.e., the spectrum  σ( )A0   is Lebesgue and

σ( )A0  = R+ ).  This condition is equivalent (see [9]) to the existence of a simple
maximal symmetric operator  B  in  �   such that  A0   is a self-adjoint extension of

the symmetric operator  B2   and

A u u B u0
2

, *( ) =       ∀ ∈u AD ( )0 . (18)

(Note that the non-zero deficiency index of  B  coincides with  m  and  B2   is a densely
defined symmetric operator with deficiency indices  m.)

We also suppose that the symmetric operator  Asym  defined by (4) coincides with

B2   (if  n = m )  or  Asym  is a symmetric extension of  B2   (if  n < m ).
It should be noted that such a situation is typical for Schrödinger operators with

point interactions and for cases where singular elements  ψ j  in (3) possess the

ISSN  0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5
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homogeneity property with respect to the scaling transformations in  L p
2 R( )   (see,

e.g., [10, 11]).
It has been established in [10, 12] that the restrictions imposed above on  A0   and

Asym  are sufficient for the applicability of the well-developed methods of the Lax –
Phillips scattering approach to the spectral analysis of  AT .

Note also that the case  n < m  can be reduced to the case  n = m  by the supplement

of elements  ψ j   of the basis  ψ j j n

m{ } = +1
  of  ker *B I2 +( ) �  H  with zero entries  bij

in (3).  Thus, in what follows, without loss of generality, we suppose that  n = m  and,

hence,  Asym = B2   and  H = ker *B I2 +( ).
Assume that  − ∈ ( )1 ρ AT   and denote

C A I B B I0 0
1 1

: *= +( ) − +( )− −
,      C A I A IT T:= +( ) − +( )− −1

0
1. (19)

Since  A0 ,  B B* ,  and  AT   are self-adjoint extensions of  B2 ,  the operators  C0

and  CT  are self-adjoint in the Hilbert space  H.  Moreover, taking (18) into account
and using Lemma 3.5 in [12] (Chapter 4), we get that the spectrum  σ( )C0   of  C0   is a
pure point (i.e.,  σ( )C0  = σ p C( )0 )  and it may consists of only points  0  and  1 / 2.

Theorem 2.  For any self-adjoint operator realization  AT   of (3) defined by (7)
the following statements are true:

1.  The point spectrum  σρ( )AT   has empty intersection with  R+ .

2.  If  AT   is nonnegative, then the wave operators  W A A±( )T, 0   exist and are
unitary operators in  �.

3.  For the case of finite rank singular perturbations  (n  < ∞), AT   is non-
negative if and only if  ker I RT+( ) = {0}  and

0  ≤  C0   –  T I RT+( )−1  ≤  1
2

I .

Proof.  Statement 1 follows from Corollary 3.3 in [12] (Chapter 4) and statement 2
is a particular case of Proposition 2 in [10].

Let us prove statement 3.  Recalling the well-known result [13] on extremal

properties of the Friedrichs  B B*   and Krein – von Neumann  BB*  extensions of  B2 ,
we arrive at the conclusion that  AT   is nonnegative if and only if  − ∈ ( )1 ρ AT   and

B B I* +( )−1
  ≤  A IT +( )−1  ≤  BB I* +( )−1

.

Using (19), we rewrite this relation as follows:

0  ≤  CT  +  C0   ≤  CN   =  BB I* +( )−1
  –  B B I* +( )−1

.

It follows from Lemma 3.5 in [12] (Chapter 4) that  CN  = 1
2

I .  Hence,

AT ≥ 0  ⇔  − ∈ ( )1 ρ AT     and    0  ≤  CT  +  C0   ≤  1
2

I . (20)

Let us show that conditions  − ∈ ( )1 ρ AT   and  ker I RT+( ) = {0}  are equivalent.
Since  AT   is a finite rank self-adjoint extension of  Asym,  condition  − ∈ ( )1 σ AT   is

equivalent to the existence of an element   f A∈D H( )T ∩ .  By virtue of (13),   Γ̂0 f  ≠

ISSN  0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5



ON AN APPLICATION OF THE LAX – PHILLIPS SCATTERING APPROACH IN THEORY … 685

≠ 0  and  Γ̂1 f  = 0.  Using (14) and (16), it is easy to establish that the existence of such

f  means that  Γ̂0 f  ∈  ker I T R+( )  and, hence,  ker I RT+( )  also is a nontrivial
subspace of  �.  Thus,  − ∈ ( )1 ρ AT  ⇔ ker I RT+( ) = {0}.

To calculate  CT  in (20), we observe that condition  − ∈ ( )1 ρ AT   is equivalent (see,
e.g., [7]) to the presentation of  D ( )AT   in the form

D ( )AT   =  f A C f f∈ ( ) ={ }D sym
* ˆ ˆ

TΓ Γ1 0 .

Comparing this relation with (16) and taking Lemma 1 into account, we get  CT =

= − +( )−T I RT 1.  Substituting the obtained expression into (20), we establish
statement 3.  

Theorem 2 is proved.
Remark 2.  Another description of nonnegative self-adjoint extensions of a

nonnegative symmetric operator has been obtained recently in [14].
4.  Scattering matrices.  Since  A0   has a Lebesgue spectrum on  R+ ,  there exists

an isometric mapping  � :  � →onto
 L N2 R+( ),   (N  is an auxiliary Hilbert space and its

dimension is equal to the multiplicity  m  of  σ( )A0 )  such that

 �A u0( )( )δ   =    δ δ2 �u( )( ),    δ > 0,    ∀ ∈u AD ( )0 .

The mapping  �  determines a modified spectral representation of the unperturbed

operator  A0   in which the action of  A0   corresponds to the multiplication by  δ2   in
L N2 R+( ), .  This representation is determined uniquely up to isometrics of  N.  Since

the dimensionalities of  N  and  H  coincide and are equal to  m,  without loss of
generality, we can choose  N = H.

Let us consider a nonnegative operator realization  AT   of (3) defined by (16).  By
Theorem 2, the wave operators  W A A±( )T, 0   are complete and the image

  
� � �A A A AS

T T, ,:
0 0

1
( ) ( )

−=

of the scattering operator  S A AT , 0( )  is a unitary operator in the modified spectral

representation  L2 R+( ), H .
Denote  JA0

 = P Cker 0
 – P C Iker /0 2−( ) ,  where  PM   is the orthogonal projector onto

M  in  H   and  C0   is defined by (19).  It has been proved [10] that the operator
� A AT , 0( )  coincides with an operator of multiplication by the boundary value*

  
� A AT , ( )

0( ) δ   of the contraction operator-valued function

� A AT , ( )
0( ) λ   =  J I i C I i CA0

2 1 2 1 1− −[ ] − +[ ]−( ) ( )λ λ ,    λ ∈ +C (21)

(here  C = A IT +( )−1 – B B I* +( )−1
)  analytic in the upper half-plane.  

In the case of finite rank singular perturbations  (n < ∞), Theorem 2 yields that  C =

= C0  – T I RT+( )−1.  Thus, formula (21) provides a representation of the analytic
continuation of the scattering matrix  

  
� A AT , ( )

0( ) δ   in terms of coefficients  tij   of the

singular perturbation.  This formula becomes especially simple if  A0   coincides with

the Friedrichs  B B*   or with the Krein – von Neumann  BB*  extensions of  Asym.  In

* In the sense of strong convergence.

ISSN  0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5
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particular, if  A0  = B B* ,  then  JA0
 = I,  C0  = 0  and, after simple transformations, we

get

  
�

A B BT , * ( )( ) λ   =  I R i I T I R i I T+ + −( )[ ] + + +( )[ ]−2 1 2 1 1( ) ( )λ λ ,    λ ∈ +C .

Similarly, if  A0  = BB*,  then  JA0
 = – I,  C0  = I / 2  and

  
�

A BBT , * ( )( ) λ   =  i I i R i I T i I i R i I Tλ λ λ λ λ λ+ + −( )[ ] + − +( )[ ]−2 1 2 1 1( ) ( ) .

5.  One-dimensional Schrödinger operator with symmetric zero-range
potentials.  A one-dimensional Schrödinger operator corresponding to a general zero-
range symmetric potential at the point  x = 0  can be given by the expression

A0   +  a δ δ, ⋅   +  b ′ ⋅δ δ,   +  c δ δ, ⋅ ′   +  d ′ ⋅ ′δ δ, , (22)

where  A0  = − d
d x

2

2   D( )A W0 2
2= ( )( )R   acts in  � = L2 R( ) ,  δ ′  is the derivative of the

Dirac  δ-function (with support at  0),  the parameters  a, d  are real, and  b = −c .
In this case, the singular elements  ψ1 = 2δ  and  ψ2  = 2δ ′  form an orthonormal

system in  �−2 0( )A  = W2
2− ( )R   and the functions

A0
1

1+( )−I ψ   =  h x1( )  =  
e x

e x

x

x

− >

<







, ,

, ,

0

0

A0
1

2+( )−I ψ   =  h x2( )  =  
− >

<







−e x

e x

x

x

, ,

, ,

0

0

form an orthonormal basis of  H = ker *A Isym +( ) ,  where  Asym
*  = − d

d x

2

2 ,  D Asym
*( ) =

= W2
2 0− ( )R \{ }   and  Asym = − d

d x

2

2 ,  D Asym( ) = {u x( )  ∈  W2
2

R( ) | u( )0  = ′u ( )0  = 0}.

Representing (22) in the form (3), we get

− d
d x

2

2  + 
i j

n

ij j it
,

,
=
∑ ⋅

1

ψ ψ , (23)

where coefficients  t a
11 4
= ,  t b

12 4
= ,  t c

21 4
= ,  t d

22 4
=   form the Hermitian matrix  T  =

= tij i j{ } =, 1

2
.

To obtain the regularization  AT   of (23) it suffices to extend the distributions  δ
and  δ ′  onto  W2

2 0R \{ }( ) .  The most reasonable way (based on preserving of initial
homogeneity of  δ  and  δ ′  with respect to scaling transformations, see, for details, [2])
leads to the following definition:

δex,
( ) ( )

f
f f= + + −0 0

2
,    ′ = − ′ + + ′ −δex,

( ) ( )
f

f f0 0
2

(24)

for all   f x( ) ∈ W2
2 0R \{ }( ) .   In this case, applying Theorem 1, we immediately obtain
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the following description of self-adjoint operator realizations  AT   of (23) that has been

obtained for the first time in [15]:  AT  = − ( )
d

d x A

2

2 �D T
,

D AT( )  =  f x W f f( ) \{ }∈ ( ) ={ }2
2

0 10R TΓ Γ ,      T = 1
4

a b

b d







, (25)

where

Γ0 f   =  
f f

f f

( ) ( )

( ) ( )

+ + −

− ′ + − ′ −







0 0

0 0
,      Γ1 f   =  1

2

0 0

0 0

′ + − ′ −

+ − −







f f

f f

( ) ( )

( ) ( )
.

Let us consider the following simple maximal symmetric operator  B  in the space
L2 R( ):

B i x d
d x

= ( )sign ,      D B( )  =  u x W u u( ) \{ } ( ) ( )∈ ( ) − = + ={ }2
1 0 0 0 0R .

It is easy to verify that  A0   satisfies (18) and  Asym = B2   for such a choice of  B.
Thus, we can apply the Lax – Phillips scattering approach to the investigation of

operator realizations of (22).  In our case,  R = 
2 0

0 2−







  and the matrix

decomposition  C0   (with respect to the basis  h xi i( ){ } =1
2 )  of the operator  C0   defined

by (19) has the form  C0  = 
1
2

0

0 0









 .  Using Theorem 2, it is easy to prove the

following statement.
Proposition 1.  A self-adjoint operator realizations  AT   of (23) is nonnegative if

and only if  p : = b 2 – ad + 2( )a d−  + 4 ≠ 0  and

0  ≤  1 4 2 2

2 4 2p

d b

b p a

− −

− − −







  ≤  

1 0

0 1







.

In this case the spectrum  σ AT( )  is Lebesgue and it coincides with  0, ∞[ ).  In the
opposite case,  AT   possesses at least one negative eigenvalue.

By virtue of the definition of  C0 ,  the matrix decomposition  JA0
  of  JA0

  has the

form  JA0
 = 

−





1 0

0 1
.  Taking this fact into account and going over to the matrix

decomposition in (21), we get that the matrix decomposition of the analytic
continuation  

 
� A AT , ( )

0( ) λ   of the scattering matrix into the upper half-plane has the

form 

S
TA A, ( )

0( ) λ   =

=  
− + −( ) −( )

− −( ) − −( )







− +( ) − +( )

− +( ) − +( )








−p i i

i p i

p i i

i p i

1 1

1 1

1 1

1 1

11 12

21 22

11 12

21 22

1λ α λ α

λ α λ α

λ α λ α

λ α λ α
,

where  α11 = 4 – 2d,  α12 = – 2b,  α21 = −2b ,  α22  = p – 4 – 2a.
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