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KINETIC EQUATIONS
AND THE INTEGRABLE HAMILTONIAN SYSTEMS

KIHETHUYHI PIBHAHHSA
TA IHTEI'POBHI TAMIJIBTOHOBI CUCTEMUA

A survey of interrelations between kinetic equations and integrable systems is presented. We discuss
common origin of special classes of solutions of the Boltzmann kinetic equation for Maxvellian particles
and the special solutions for integrable evolution equations. The thermodynamic limit and the soliton
kinetic equation for the integrable Korteweg—de Vries equation are considered. The existence of decaying
and degenerate dispersion laws and the appearance of additional integrals of motion for the interacting
waves is discussed.

HaBeneno ommsi B3a€eMO3B’SI3KIB MDX KIHETMYHHMY DIBHSHHAMM Ta IHTErpOBHUMH cuctemamu. OOro-
BOPEHO 3arajibHe IOXO[PKEHHS CIeL[iallbHUX KJIAciB PO3B’sI3KiB KiHETHYHOTO PiBHSHHS BoiblMana Juist
MAKCBEJUTIBCHKHUX YaCTHHOK 1 CHELIaIbHUX PO3B’SI3KiB IHTEIPOBHHUX CBOJIOMIWHUX PIBHAHB. PO3NIsTHYTO
TepPMOJMHAMI4YHy IPAHHUIIIO Ta COJTITOHHE KiHETHYHE PiBHSHHS 1 iHTerpoBHOroO piBHAHHA KopTesera — e
®piza. OOroBopeHo iCHYBaHHs PO3MAJIHUX I BUPO/DKCHUX 3aKOHIB JUCIEPCii Ta BUHUKHEHHS TOTaTKOBHUX
IHTETpaiB PyXy ISl B3aEMOMIFOUMX XBHJIb.

1. Introduction. There are different rich, interesting and deep interrelations between

kinetic equations and integrable systems. Our aim here is to present a survey of
appropriate studies in this field. We formulate results which are related to this question
but do not prove them and give only references.

Our paper is organized as follows. The second section presents a short discussion of
a Poincar¢ linearization method for nonlinear equations. In the third section we describe
a construction by A. V. Bobylev the exact solutions of the Boltzmann kinetic equation
for Maxwellian particles. In the fourth section we present the inverse spectral transform
method for solution of integrable nonlinear partial differential equations as a linearization
method. In the fifth section we consider results by V. E. Zakharov and E. I. Shul’man
on the kinetic equation, integrals of motion and degenerative dispersion laws. Then we
deduce the kinetic equation for solitons of the Korteweg —de Vries equation.

2. A linearization method for nonlinear equations. According to Poincaré one
can transform any nonlinear nonresonance vector field to its linear part by means of a
formal diffeomorphism. By means of a Poincaré — Dulac transformation we can also take
in account resonance terms. If a convex hull of eigenvalues of a linear part of the vector
field does not contain a zero then this vector field is reduced to a polynomial normal
form by means of above diffeomorphism (see e.g. [1]).

2.1. Nonlinear integro-differential equation. Let us apply this theorem on the
normal form to a case of function

u(z,t), —oo<zx<+oo, 0<t<+4oo,
satisfying the nonlinear (quadratic, for simplicity) integro-differential equation
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o0

ug(x,t) + /dGA(G)u(x +0,t) =
0

- / a6, / A6, H (6, 62)u(z + 6y, t)u( + o, ).
0 0

Using the Poincaré theorem it is possible to transform this nonlinear equation to its linear
part. We give an exact formulation of the above statement.
Theorem 2.1. If v(x,t) is a solution of the linear equation
(o)
ve(x, t) + /d@A(@)v(JE +6,t) =0, (D)
0

and a following nonresonance condition for the spectrum of the linear equation is
fulfilled,

‘An(pla 7pn) >07 n:273a"'a (2)
then the function
o0 o0 0 n
u(z,t) = Ro(x,t) = Z/d91 . ../daan(el S | ECEZ N ©)
n=1 0 0 j=1

is a formal solution of the nonlinear equation

ug(x,t) + [ dOA(Q)u(z +0,t) =
/

= /d91 /d@gH(@h HQ)U(JZ‘ + 04, t)u(a: + 05, t). 4
0 0

Here the coefficient functions R, (01 ...0,,), are expressed in terms of its Laplace images
Tn(ph s 7pn)7

rn(ph...,pn):/d91.../d@an(Hl...Gn)eXp —ijﬁj ,
0 0 J=1

that satisfy the recurrent relations

ri(p1) =1,
1

74n(plv cee >pn) = Agl(plv cee 7pn) h(pl + ... +pkapk+l +... +pn)><
1

3
|

el
I

X'rk(plw"1pk)rn7k(pk+1a~~'vpn)7 n:273a"'7

where

oo

A(p) = / d6A(6) exp(—ph).
0
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h(p1,p2) :/d91/d92H(91»92)eXp(—(p191 + pabs)),
0 0

An(pr,--pn) =X D05 | = D0 AD)
j=1 j=1

In order to prove the theorem we have just to substitute the above expression for the
function u(z,t) in terms of the v(x,t) into the nonlinear equation (4). Obviously we
can generalize the theorem from quadratic to higher type of nonlinearity.

2.2. Special case. Let us study a special case of the functions 7, (p1, ..., p,) When
Tl(pl) = 17
n—1
<Tn(p17"’7pn)>:<Hr2(pjapj+1)>7 7122,3,...,
j=1

where ( ) means averaging over all permutations of arguments. Under this assumption
we can prove the following theorem.
Theorem 2.2. The function

K(ea) = (1= 470 (G4 0))

with the operator A acting on the function of two variables f(x,y) in such a way,

o0 o0 1
(Af)(l‘, y) = d(glf(l‘, T + 291) d92R2(01, 92)1} *(.’L‘ + y) ) ,
oo oo (-0

defines a solution of the nonlinear equation (4) as follows:
u(z) = K(z, ).
2.3. The N-mode solutions. 1t is possible to prove that the following solutions of
the linear equation:

N

’UN(Z', t) =
i=1

Vi

oy 1) Pl (@ + Mea)], N=1.2,...,

with real parameters
Yis O ipo <o < ..o <op <O <. <Any-—q,

correspond to the following solutions of the nonlinear equation:

oo N N
uN(x,t):Z Z Z TGy s« - -y Qi ) X

n=1m;=1 mp=1

n ,_ij
M expl—(am x4 Mam )], N=1,2,...,
xj[[lr(aijrl)exp[ (v, + Mo, )t)]

or

un(z,t) = Fn(z1,...,2n), 2z =exp|—(oiz + Aay)t)], i=1,...,N,
where Fi(z1,...,2n) is a formal power series with linear terms coinciding with
vn (z,t). These solutions are called the N-mode solutions with parameters az, ..., aN.
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3. Exact solutions of the Boltzmann equation for Maxwellian particles. By
means of the normal form theorem we can construct a class of exact solutions of the
Boltzmann kinetic equation for Maxwellian particles. These solutions were discovered
by A. V. Bobylev [2, 3] and M. Krook and T. T. Wu [4, 5].

The famous Boltzmann equation for the particle distribution function f(r, v, t) looks
as follows:

(0y + vV, 4+ aV,) f(r,v,t) =

= /dw/dn go(g,x) [f(l‘,V/,t)f(l‘, W/at) — flr,v,t) f(r,w,t)].

Here g = v—w is a relative velocity, g = |g|, n is a unit vector in the scattering direction,
X = arccos(g - n/g) is a scattering angle, o (g, x) is a differential cross section and

v’:%(v—&—w)—&—n|v—w|7 w’:%(v+w)—n|v—w|.
If the interaction potential is of the form
U(r)=rr=° k>0,
then transport cross section
ga(g.x) = g'~“*a(cos x).
For the so called Maxvellian particles
s =4,
and therefore in this case the transport cross section go (g, x) does not depend on velocity,
g0(g,x) = a(cosx).
Further we study a homogeneous and isotropic distribution functions,
flrv,t) = f(v,),
when the Boltzmann equation has the well known equilibrium Maxwellian solution
Jolw) = (2m) "2 exp (—0?2).
In this case the Fourier transformation of the distribution function looks as follows:

fv,1) = / ok, t>(2"7“)

gb(k,t):/f(v,t)e*ikvdv.

The Fourier transformation of the Boltzmann equation for the Maxwellian particles
attains such a form,

kn k+ kn k — kn
oty = [ana (50) fo (M550 o (K55 0) - ation |
Using new variables
2
51<1kn)7 x:flnk—,
2 k 2
and new functions

b(k,t) = e M /21 4 b(z,1)], blz,t) =o(e™®),
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p(s) =a(l—2s), 0<s<1,
we can present the Boltzmann equation for the Maxwellian particles as the normal form
problem, considered above, with the following identification:

H(0),05) = p(e™")e™ M 40)5(e0 4 7% — 1),

AD) = /d61 /dQQH(el, 62)[5(6) — 5(0 — 1) — 5(6 — 6)).
0 0

Using the Poincaré linearization method for this equation we can prove the following
theorem.
Theorem 3.3. The Boltzmann equation for the Maxwellian particles has exact

solutions
_ kv dk
1.0 = [ ot

0o N N
¢(k,t)=e—k2/2{1+z Z Z Trn(Dmys - Pm,, ) ¥
mi=1 mp=1

n=1

n k’2 2 Pm
X H TYm, ( /7) )G_A(pmj ) }»
: J

where the quantities Ty,(Pm,, - .., Pm, ) are defined as it is described in the previous
section and

Mm:/mmmfffuf#L
0

1

o1, pe) = [ dsp(s)s? (1~ 57
0
By means of the same theorem we can construct for the Boltzmann equation a
countable set of conserved quantities, study the Cauchy problem for general class
of initial data, consider asymptotic behavior of the distribution function at |v| — oo
(formation of the so called Maxvellian tails) and at ¢ — oo (rate of relaxation) etc.

4. The linearization method and the inverse spectral transform. The normal
form theorem appears to be equivalent to the famous inverse spectral transform method
used with big success in the theory of integrable nonlinear evolution equations. This
wonderful connection was discussed by A. V. Bobylev [6], V. A. Marchenko [7],
V. E. Zakharov and E. 1. Shulman [8] and others. In fact we consider often the integrable
evolution equations as special weak perturbations of the linear ones.

Here we demonstrate the equivalence of these two methods on an example of the
Korteweg —de Vries equation

Wi + Wege — 6ww, = 0.
By means of the relation w = —u, we present this equation as follows,
Ut + Ugpe + 3“2 =0, (5)
with a linearized form

V¢ + Vgga = 0.
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Theorem 4.4. The nonlinear evolution equation (5) for the function u(x,t) is
equivalent to the nonlinear integral equation considered in the previous section if

AO) =5"(0), H(61,65) = —35'(61)5 (62)-

Under this assumption the function

K(z,y) = (1 - A)" (x‘;y> 7

with the operator A of the form

o0

nten = [ s (S52)).

x

satisfies the Gelfand— Levitan — Marchenko equation
K@)+ Flo+y)+ [ K@s)Fspds =0, y>a.
x

and
u(z) = K(z, ).

The solution

oo

un(z,t) = —/wN(s,t)ds,

xT

where wy (x,t) is a N-soliton solution of the KdV equation, coincides with an analytic
continuation of the N-modal solution, introduced above, to a domain

v <0, ¢=1,...,N.

In terms of this approach we can prove the integrability of the equation (5), construct
a countable set of integrals of motion, study the appropriate symplectic structure and
Poisson brackets (of hydrodynamic type), solve the Cauchy problem for initial data of
general type, etc. This is also valid for other integrable evolution equations.

The tight connection of the Poincaré linearizing method and the inverse spectral
transform method allows to create new approaches in the theory of integrable evolution
equations (see e.g. [9]).

5. Integrability and dispersion laws. It is interesting to understand what properties
of a nonlinear evolution equation makes it integrable. The Poincaré linearizing procedure
can help to discover these properties [8, 10—12].

Let us consider an arbitrary nonlinear evolution for the function u(x, ), x € R%, and
assume that this equation in terms of Fourier amplitude ax(¢) of this function attains the
Hamiltonian form

iia (t) = oH

dt T Sax(t)
where

H = Hy + Hipgs,

HO = /wk|ak\2dk,
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1 $,581,S8 s S S
Hiny = > iz apaytap?d(sk + sk + sako)dkdkydks,

$,581,82
= +1 1 _ -1 _ =
S, S1, S2 = ) ay = ak, ay = = Qk-

We can interpret these equations as the equations for scattering of classical waves.
Asymptotic expressions for the amplitudes of these waves a(t),

+0 _ * . _ 1
ai (t) = ¢ exp(iwkt) = tl}:l:moo ak(t),
are related by the classical scattering matrix S,
a*(t) = (I + S)a *(1).
Matrix elements of the scattering matrix have singularities of a type
-1
(Bgy -+ Ag)

on the resonance manifolds defined by a set of following equations:

q q l
Aq]. = Z Sqwk, =0, P,:= Z SaKa, @q:= Z‘Zj-
le' a j=1

Properties of the classical scattering matrix are important in order to understand
what kind of restrictions we should impose on the Hamiltonian in order to get additional
integrals of motion.

A basic characteristics of the Hamiltonian is a dispersion law wy. The dispersion law
is called decaying or nondecaying depending on whether the equation

Wi, +ko = Wiy T Wk,

has real solution or not. For decaying laws the above equation defines a real surface I'.
The decaying law is called degenerate if there exists a function fi which satisfies on the
surface I' the equation

otk = fig T fio

but is not a linear superposition of the wy and k.
Let us mention here that the well known KP-1 equation is characterized by the
dispersion law

wk = wpq =p" +3¢°/p, k= (p,q)
which is decaying and degenerate, and the KP-2 equation is characterized by the
dispersion law

wk =wpq =p" —3¢%/p, k=(p,q)

which is nondecaying.

It appears that the above properties of dispersion laws are very important for solution
of the following the problem: do there exist any additional, besides of linear momentum
and energy, integrals of motion or not?

According to V. E. Zakharov and E. I. Shulman for the existence of an additional
motion integral of motion of the form

I[a]:1[a]0+...:/Zf,?qa;‘jﬁdu...,
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it is necessary that on each resonance manyfold

q q
qu = Z SaWk, = 0, Pq = Zsaka;
@ o

in the generic situation the following alternative occurs: 1) either the amplitude of the
scattering matrix on the manifold is equal zero, or 2) the following condition holds,

l
Z ijl?j =0.
j=1

6. Kinetic equation for solitons of the Korteweg —de Vries equation. In connection
to integrable evolution equations the kinetic equations naturally appears when one study
many-soliton solutions. As an example let us consider a solitons kinetic equation for the
Korteweg—de Vries equation.

6.1. The N-phase nonlinear wave. The N-phase solution of the KdV equation with
phases ¢;, wave vectors k; and frequencies w; looks as follows (see e.g. [13]):

unN = 0N(¢1a'~'7¢j7"'a¢N)a
¢j =kjz+wit+¢, j=1,...,N.
Here 0 is N-dimensional theta-function,

On(z) = Z exp{—in(m, Bm) + i27(z,m)}, zecC",
mezZN

with the N x NN period matrix Bjj,. This matrix is defined by equality

B, :/T/Jj»
by

where 15, j = 1,..., N, are the normalized holomorphic differentials,
Zajk dE /wj Sk, j=1,...,N,
and ap, bg, k =1,..., N, is a basis ofcycles for the Riemann surface I' of the genus N,
2N+1
r: RYE)= [[ (E-E;), Ee€C,
j=1

E1<E2<...<E2N<E2N+1, EjER.

The wave vectors and frequencies k., wy,, m = 1,..., N, are solutions of a system
of linear equations

Bk = —4man_1,
2n+1
Bimwm = =8m | an—1, E E; +2an_2,
i=1

The wave vector meromorphic differential dpy (F) and the frequency meromorphic
differential dgy (E) are defined as follows:
EN+bN 1EN 1+ +b0 /
) de
R(E)

dpn(E) =

ISSN 1027-3190. Vkp. mam. sicypn., 2005, m. 57, Ne 6
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ENHtL L eNEN 4 4 ¢

dgn(E) =12 R(E) ;

/qu(E):O, l=1,...,N.
by

In terms of above differentials we can present the space rotation number a(E) and
and the time rotation number Sy (E),

an(E) =Re

dpn(E'), FE € (-1,0),

3=

ﬁN(E) Re qu(El), FE e (—1,0).

3|

te— t T

6.2. Slow modulations. Modulations of the N-phase waves
un(z,t; X, T) = On(d1,- -+, @js -, ON[Bim (X, T)),
¢; = kj(X, Tz +w;(X, )t + ¢}(X,T), j=1,...,N,
X=cx, T=ct, K1,

resulting due to modulations of the branchng points through the slow variables X and
T are formulated as a conservation law equation [14]:

Ordpy = Oxdgn.

6.3. The soliton limit. 6.3 Now let us consider a soliton limit of the N-phase
wave [15]

1
|gapE| ~ ., [bandE| ~ e N, N>1, Ee€(-1,0).
We shall designate further the centers of spectral bands as

1
= = 5 (Eajor + Es)),

and assume that
1~y >ne >y 0.

In soliton limit we obtain a following expression for the period matrix

Bl”rn,l‘lii (lnw+n’y(nl)5l7n) ’ l7m:17"'7N7
™ M+ Nm

and the normalization coefficients of holomorphic differentials attains the form,

2N+1 3
~ Ej+2 ~M 1N
aN—l,l—*%, aN—-1,1 G+ aN—Q,l—?a =1, N
j=1

As a result of that we can define now the wave vectors k; and frequencies w; in
terms of the functions x(7;) and w(n;)
1 1
ko= prlm), we= gwlm),

satisfying the following equations:

N
1 nr —1n;
log‘ "“7' +y(nj)k(n;) = —2mn;,
—N;:lj et U RRTCHLI
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N
1 N =N 3
— log ‘w i)+ Jw(n;) = 8n; .
N; a2 00) (1)) = 8
6.4. Thermodynamic limit and kinetic equation. Let us consider a thermodynamic
limit
N,L — o0, N/L = const,

where N is a number of solitons and L is a space length. In this case we can define the
distribution functions for the wave vectors and frequencies «(v), 8(v) in such a way:

do(~1?) = so()a(nd(n),  dB(—) = Jownd(),
where

1
~ 1 — 2 — —
¢(m) =~ N =) 0/¢(n)d77 L o7 Ee[-1,0],

1 1
y(m) =~ —Nlnél + 0 <N> , 0y =FEo — Eg_;.

These distribution functions satisfy the following integral equation:

1
Ui AN ) ™
111’ ‘fa —pS)dp +o(na (—n°) = -,
!‘ T B (- + ool (<) =
1

uﬁ 1,2 02\ 2
!ln’nJru nﬁ( po)dp +o(n)B' (—n") = =27,

where

a(m) =~m)/ém).

Let us introduce the distribution function of solitons

1
1
fo) = zal-P), [ fadn=n,
0
and the velocity of soliton
(02
-2

Then we can write down the kinetic equation for the distribution function of solitons,

1
1 n—p
s ==t =[] 2 folste) — sto)ldn
n n+u [ ]
0
Under assumption of small density of solitons we have [16]

1

4 n—
~ 42_7/1 _— 2 2d.
5= —4an no n‘ﬂ 'u‘f(,u)(ﬂ n°)du
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6.5. Kinetic equation for the solitons with sources. In 1988 V. K. Mel’nikov [17]
studied for the first time the soliton equations with sources. It is possible to generalize
the kinetic equation for solitons on the case of presence of sources. In this case we
should add an additional term to the kinetic equation. This question deserves a special
consideration.

7. Conclusion. We gather in the paper a number of results on the connections of
kinetic equations and integrable systems. It appears that they are related very closely.
They have common problems and common methods to study them. We believe that
considerations of these two domains of mathematical physics from a single point of
view may be helpful for both of them.
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