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ANALOGUE OF LIOUVILLE EQUATION
AND BBGKY HIERARCHY FOR A SYSTEM
OF HARD SPHERES WITH INELASTIC COLLISIONS*

AHAJIOT' PIBHAHHA JITY BIJIJIA
TA BBI'KI IEPAPXII [1JI1 CHCTEMH TBEP/IUX COEP
3 HEITPY 2KHUM PO3CIsSIHHAM

Dynamics of a system of hard spheres with inelastic collisions is investigated. This system is a model for gran-
ular flow. The map induced by a shift along the trajectory does not preserve the volume of the phase space, and
the corresponding Jacobian is different from one.

A special distribution function is defined as the product of the usual distribution function and the squared
Jacobian. For this distribution function, the Liouville equation with boundary condition is derived. A sequence
of correlation functions is defined for canonical and grand canonical ensemble. The generalized BBGKY hier-
archy and boundary condition are derived for correlation functions.

HocsinKyeTbes AuHaMiKa TBepAuX cdep 3 HeMmpy KHUM po3cissHHsAM. Taka cuctema € MOAEJUIIO I I'pa-
HyJIbOBaHUX NMOTOKIB. Bigo6paxkeHHs:, iHayKoBaHe 3CyBOM Y3I0BXK TPA€EKTOPiii, He 36epirae 06’emM da3oBoro
MPOCTOPY, & Bi[INIOBIIHUI SKOBIaH € Bi/IMIHHUM BiJ] O/IUHUII].

Busnaueno creniasibHy (PyHKINIO pO3HOAiny SK AOOYTOK 3BHYaiHOI (PyHKII po3moaisy Ta KBajapaTa
sKobiaHa. s uiei dyHKUii po3noziny BUBeAeHO piBHsHHA JliyBijid 3 rpaHuyHuMu ymoBamu. [lociii-
JIOBHICTb KOPEJIALINHUX (DYHKIIN BU3HAYEHO AJIs1 KAHOHIYHOrO Ta BEJIMKOr0 KaHOHIYHOro aHncamoutis. s
KopeJIALiHUX DYHKIIiH BUBe/IeHO y3arayibHeHy iepapxito BBI'KI Ta BianoBigHi rpaHnyHi yMOBH.

Introduction. It is commonly accepted that systems of hard spheres with inelastic colli-
sion are proper model of granular flow. Statistical mechanics of systems of hard spheres
should be a theoretical basis of the theory of granular flow. In attempts to adapt classical
statistical mechanics to systems of hard spheres with inelastic collisions, one is faced with
new very difficult problems connected with inelasticity.

First of all it is necessary to define density of probability (distribution function) on
phase space, because the Jacobian of the transformation induced by shift along trajectories
of hard spheres with inelastic collision is different from one and is singular (its derivative
with respect to time contains J-functions). It is necessary to derive the Liouville equation
for defined distribution function and correctly formulate boundary conditions associated
with inelasticity. And at last one should derive the analogue of BBGKY hierarchy for
corresponding correlation functions.

Above mentioned problems are solved in given paper. The distribution function is
defined as follows:

0X(—t,(x
Dy (1, )) = Dx(0, X(~t, (r))) | 2XE L) m
A(z)N
where Dy (0, (z)x) is the initial distribution function, X (—t¢,(x)y) the trajectory of
X(—t
N hard spheres at time —¢ with initial data (x)y atinitial time ¢ = 0, W
)N

the corresponding singular Jacobian different from one. Distribution function satisfies the
law of conservation of full probability

* This paper has been completed during stay of D.Ya. Petrina in November — December of 2003 in Dipar-
timento di Matematica of Politecnico di Milano and Universita di Parma.
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/ D (t, () w)d(x)y = / D (0, (2)x)d(x) (2)
and the Liouville equation
o D sz G Dx(t @), Dy(t (@) ]y = Dy (0. (@)
(3)

with boundary condition according to which for ¢; — ¢; — an = 0 (where || =1 and
a is the diameter of the sphere), and (n, (p; — p;)) > 0, momenta p;, p; should be
replaced by

_LQEHW (pi —pj)),  P;=pj— n{n, (pi — py))

P;:pi+1

1—2¢

N 0
in the operator — E . Pig andin Dy (¢, (z)n); moreover the identity is valid
= q;

DN(tvqlaplvu' s QisDis v yq5,Dj55- - 7qNapN) =

1 *
= (1_25)2DN(taQ17p17"‘ s qisPiy- - ,ijp;;”' an,pN)

for above mentioned phase points; ¢ is a parameter associated with inelastic collisions
1 . .
(5 <e< 1) . Momenta do not change if (1, (p; —p;)) <0, ie., p; =pi, p; =p;.

The following BBGKY hierarchy is derived for a sequence of correlation functions
PNt (@),) =

:N(Nf1)...(N75+1)/DN(t,x1,... J sy Lsply-e s EN)ATsy1 .. . TN
“4)
o0 (¢, (x)s)
ot

:—sz—PgN) ) $)5)+G2Z/dps+1/d77<777 (Pz'—Ps+1)> X
i=1
s

X mszrl (t»q17p17~'~ yQisDis- - 545y Ps> qi _an7p5+1) -

N
_p(g-',-% (t7QIap1a v qiyPiy- -+ y4s,Ps, qi + anap8+1):|a

S5 (. (i —pss1)) 20), PV (2)s) |,y = P ((2)s), 1< s<N.

One should add the same boundary condition as for Dy (¢, (z) ) in the Liouville equa-
tion.

In given paper we did not touch the problem of existence of solution of hierarchy (4)
and existence of the thermodynamic limit.

1. Trajectories of system of hard spheres with inelastic collisions.

1.1. Dynamics. Consider in three-dimensional space R? particles with mass m
that are hard spheres with diameter a. Particles move freely until they touch each other
and the distance between their centers is equal to a. Then they inelastically collide.

Denote position of the center of sphere by ¢ € R3 and its momentum by p € R3.
Let N be the number of particles of the considered system. Particles with numbers ¢
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820 D. YA. PETRINA, G. L. CARAFFINI

and j collide if ¢; — q; = an. If their momenta before collisions are p; and p; and
(n, (pi —p4)) <0, then after inelastic collision they become

p; = pi —en(n, (pi — pj)),
(1.1)
p; = pj +en(n, (pi —pj))

where parameter % < € < 1 characterizes inelastic collision, unit vector 7 is di-
rected from the center of sphere with number ¢ to the center of sphere with number j,
(n, (pi — p;)) is scalar product of vectors 7 and p; — p;. Formulae (1.1) define a linear
transformation of momenta p;, p;. If (n,(p; —p;)) > 0 then after collision p} = p;,
P; =Dj-

Note that this law of inelastic collision (1.1) is true for real evolution of system with
increasing time ¢ (for dynamics forward in time). In statistical mechanics we also need
an imaginary evolution of system with decreasing time (backward in time dynamics). We
define the law of inelastic collision with decreasing time as inverse to (1.1) transformation.
To obtain this desired transformation we consider (1.1) as an equation with respect to p;,
p; for given p;, pi.

Calculating scalar product

(m, (p; —pj)) = (1 =2e)(n, (pi — py))

one obtains from (1.1) desired inverse to (1.1) linear transformation

Di =Dp; + 1_ 2577<777 (pi _Pj)>»

(1.2)

pj=pj — (m, (p; —p;)), (0, (p; —pj)) > 0.

€
1-— 2577
In what follows we will need only backward in time dynamics and it will be useful to
change in (1.2) denotation and write instead of momenta (p;,p;) momenta (pj,p;) and
vice versa. Then transformation (1.2) looks like the following one

Py =pi+ n(n, (pi — pj))s

1—2¢
(1.3)

pj =pj— c 577<777 (pi —Pj)>7 (n, (pi —pj)) > 0.

1-2
It follows from (1.3) that components of vectors p;, pj perpendicular to vector 7 do

not change, and components parallel to vector 1 change according to (1.3). It is obvious

that the Jacobian of transformation (1.3) J can be easily calculated:

1

C1-2¢

J (1.4)

If (n,(pi —p;j)) < 0 momenta do not change, i.e., p; = p;, pj = p;. Letus
calculate kinetic energy after collision in backward motion of particles with number ¢
and j. We have according to (1.3)

62

* * € -
P40 = p) 2 (I e = )" 2 9] 47 (1.5)

(1

1
because ¢ — 2 > 0 for §<€<1.
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Now calculate kinetic energy after collision in forward motion. According to (1.1)
one obtains

P24 pt =0l 4l +2(—e+22) (0, (i — ) < pf + 07 (1.6)
1
because —¢ + 2 < 0 for 3 < ¢ < 1. From (1.5), (1.6) one can see that pf2 +p;f2 is

*
%

greater than p? + p? for backward motion (¢ < 0), and p 24 pjz is less than p + p?

for forward motion:
P24 pt >p+pl <O, -
P 4pt <pi4pl,  t>0. 47
Thus in defined above dynamics with inelastic collisions kinetic energy increases for
t < 0 and decreases for ¢ > 0. Only in the case (1, (p; —p;)) =0, one has pf2+p;*.2 =
=p?+ p? and kinetic energy is preserved, even for % <e< 1l

1.2. Trajectory. Denoteby Q1(—t),...,Qn(—t) positions of hard spheres at time
—t, t >0, by Pi(—t),...,Pn(—t) their momenta, and by ¢, ... ,qy their initial po-
sitions, by p1,...,pn their initial momenta at time ¢t = 0, by (z)nx = (q1,P1,--- , N,
pn) the initial phase point. Obviously we will consider only admissible configurations,
ie., |gi—q;| > a forall (i,7) C (1,...,N). Asit was mentioned above, particles move
freely until they touch each other and then collide and their momenta change according
to (1.3).

We will neglect instantaneous collisions of three or more particles because the set
of such initial positions and momenta has Lebesgue measure equal to zero. Denote
by ¢;;((x)n) the time of collision of particles with number ¢ and j. Considered as a
function of (z)n, t;;((x)n) is continuously differentiable outside of a certain set with
Lebesgue measure equal to zero.

The trajectory X (—, (2)x) = (Qu(—t, (@)x), Po(—t (@)n)s - Qu(~, (@)),
PN(_ta (x)N))a Qz(_t) = Qi(_ta (x)N)a R(_t) = R(_ta (x)N)7 1= 13 v 7N7
is constructed as follows. Until the first collision

X(—t,(z)n) = (@1 — p1t,p1,--- ,qN — PNE,DN)- (1.8)

If at time ¢;;((x)n) particles with numbers ¢ and j collide, then for ¢ > ¢;;(z)n
the trajectory X (—t, (z)x) is again given by formula (1.8), but positions and momenta
of i-th and j-th particles are given by

@ — pitij (@) = pi (t = ti;()), p;, @ —pitij(@) —p;(t —ti;(2)), pj, (1.9

where p;, p; are expressed in terms of p;, p; according to (1.3).

One can continue the trajectory according to (1.9) after all collisions if infinitely many
collisions on finite time interval are absent. Then momenta of all particles involved in
these infinite number of collisions coincide and their spheres touch each other. The cor-
responding set of initial phase points lie on the hyperplanes of lower dimension and has
Lebesgue measure equal to zero.

It is obvious that the trajectory has the group property

X(=t1 = to, (v)n) = X (~t1, X (~t2, (¥)n)) = X(~t2, X(~t1, (z)n))

and it satisfies the following boundary condition:
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for qi _qj = an, <777 (pl _pj)> > 07 (Zvj) C (17 vN)v
X(7t7Q17p17"' sQisPiy-v 3q5,DP55- - 7qNapN) =
= X(_tathlv"' 7qz'7p:;a"' 7qj7p;7 7QN7PN)7 (110)

if ¢; —q; = an, but (n, (p; —p;)) <0 momenta p;,p; do not change. This boundary
condition means that after collision particles depart and distance between them increases.

The trajectory X (—t, (z)n) is a continuously differentiable function almost every-
where with respect to its initial data (z)y and time on every time interval between col-
lision. The detailed proof of above mentioned properties of the trajectory X (—t¢, (z)n)
can be found in books [1, 2], after some modification connected with the inelastic charac-
ter of collisions.

We summarize above formulated results in the following theorem.

Theorem L. The trajectory X(—t,(x)n) of N hard spheres that inelastically col-
lide exists for arbitrary time t > 0, is continuously differentiable with respect to initial
phase points (x)n and time t on intervals between collisions, and has group property
for almost all initial (x)N, that belong to certain domain outside of hypersurface with
Lebesgue measure equal to zero.

Theorem I asserts that trajectories X (—t, (z)n) are well defined between times of
collisions almost everywhere (a.e.) withrespectto (z)y. In many respects, trajectories of
our system of hard spheres with inelastic collisions have the same properties as a system of
hard spheres with elastic collisions. These properties were formulated in Theorem I. But
trajectories of hard spheres with inelastic collisions have also certain specific properties
different from those of the case of elastic collisions. One of these specific properties is
that the map of the phase space induced by the shift along trajectories does not preserve
the volume.

According to definition of trajectories (1.8), (1.9), the Jacobian

a(Xl(_tv (w)N)’ s 7XN(_ta (I)N)) _ a(X(_tv (‘r)N))
= (1.11)
(Ox1,...,0zN) o(z)n
is equal to one if for initial point (x)y there are no collisions until time —¢, and is
equal to

O(Py(—t,(x)N),... ., Pn(—t, (x)N)) 1 \n
l (31]7\27...,6;\,) - _(1725) (1.12)

if there are n pair collisions for initial point (x)y. The Jacobian of transformation (1.3)
is equal to

owi,py) 1
Api,pj) 1—2¢

2. Evolution operator.

2.1. Definition of evolution operator. Let fn(z1,...,2n) = fn((x)n) beacon-
tinuous symmetric (permutation invariant) function defined on phase space RV of N
particles and equal to zero on the set of forbidden configurations. Define at first formally
operator Sy(—t) as the operator of shift along the trajectory X (—t, (z)x) as follows:

(SN(_t)fN)(xlv s 7IN) =
= In(Xa(=t, (@)n), - XN (=t (2)n)) = [N (X (=, (2)n)) 2.0
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on admissible configurations, and

(SN(—t)fN)(xl, N ,QL‘N) =0

on the set of forbidden configurations.

According to definition of the trajectory X (—t, (x)n), function fx(X(—t,(x)n))
has jumps of momenta at the time of collision ¢;;((x)n), because momenta after colli-
sions are different from momenta before collisions, and is again a symmetric function.

In classical statistical mechanics of systems of particles with elastic collisions function
fn(X(—t,(z)n)) is proportional to the probability density of the considered system
at time ¢ in phase space. It should satisfy the law of conservation of full probability,
i.e., full probability has to be independent of time. We also need to derive equation for
fn(X(—t,(z)n)) and equation for the sequence of correlation functions. Therefore we
impose some condition on function fx((z)n).

We suppose that fy((z)x) belongs to the Banach space Ly of functions equal to
zero on the set of forbidden configurations, for which |¢; — ¢;| < a at least for one pair
(i,7) € (1,...,N), and Lebesgue integrable with norm

1wl = / (@ . aen)lde .. dey = / In(@wld@y.  22)

Denote by L%, the subspace of Ly consisting of continuously differentiable func-
tions with compact support and equal to zero in some neighbourhood of the forbidden
configuration. Subspace L%, is everywhere dense in Ly .

If fn € LY, then fn(X(—t,(z)n)) is a continuously differentiable function with
respectto t and (x)n almost everywhere. Indeed, the trajectory X (—t, (z)n) is a con-
tinuously differentiable function with respect to time ¢ and initial points (x)y a.e. on
time intervals between collisions. Collisions happen if |Q; (¢, (z)n) — Q;j(—t, (z)n)| =
= a for some (i,5) C (1,...,N), but function fn(X(—t,(z)n)) is equal to zero
in some neighborhood of these hypersurfaces. Outside of these hypersurfaces trajecto-
ries are continuously differentiable with respect to time ¢ and initial points (x)y a.e.,
and therefore functions fxn (X (—t,(x)n)) have the same property because fn((z)n) €
€ LY. According to definition (2.1), fx(X(—t,(x)n)) itis equal to zero on the forbid-
den configuration together with fy((z)n) € LY. (For more details see [1, 2].)

It is obvious that operator Sy (—t) has the group property

Sn(—t1 —t2) = Sny(—t1)Sn(—t2) = Sn(—t2)Sn(—t1) (2.3)

2.2. Properties of operator Sy(—t). Consider again fyn(X(—t,(z)n)) with
In((z)n) € LY and show that it is Lebesgue integrable. Indeed it is continuous with
respectto (x)n a.e., has compact support and therefore

/|fN (2)x)ld(z)x < 0.

We need only to prove that fn(X(—t,(z)n)) has compact support with respect to
()N if fn((xz)ny) has compact support. If fy((z)ny) has compact support,

say Z (@2 +p?) < R, R > 0, then fy(X(—t,(x)ny)) has compact support
24_1 [Qf(—t (z)n) + P?(—t,(z)n] < R, withrespectto Q;, P, i=1,...,N.
If Z P?(~t,(z)n) < R, then Z pf < R, because at each collision of

i-th and j- th partlcles attime 0 < 7 <t one has P2 (=7, (z)n) + P72 (=7, (x)n) >
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N
> P(—r,(x)n) + P?(—7,(x)n), and therefore R > Z 1P2(—t, (r)N) >
1=

S N
a Zi:l " N N

One has Ziﬂ Q%(~t, (z)n) < R? and therefore Ziﬂ q? < r, where r > 0 is
finite, because Q;(—t, ()y) is shifted from ¢; at finite distance by finite P;(—, (z)n),
0<r<t.

Thus fn(X(—t,(z)n)) has compact support with respect to (x)y, together with
In((@)N).

It the case of elastic collision, operator Sy (—t) is isometric, because the Jacobian
(1.11) is equal to one. In our case of inelastic collision the Jacobian (1.11) is different
from one for such initial (z)x that collisions occur.

If D is some domain in RSY and D_; is the image of D induced by shift along
trajectories X (—t, (x)n), then

Jaw # [ acxe = [ g,
D D_; D

OX (=T, (x)N) 9 0(X(=T,(z)n))
a(x) N or  9x)n
for those (z)x that collisions occur at time 7 = 75, 0 < 7; < ¢, and the Jacobian has a
jump at time 7;.
Denote by V(D) and V(D_,) the volumes of domains D and D_; respectively.

Then one has
Vo = [ O

because # 1 and is proportional to §(7 — 77),

8(m)N
D
_ [ 9X(O0.(x)x) tgaX(—n(x)N)T A
= [ Sy o+ [ [ 5 | s
D D 0
:V(D)+/ %Wm d(z)y.
0

It follows from these formulae that contributions in V(D_;) from hypersurfaces

Qi(—71, (¥)n) — Qj(—7, (z)N)| =a, (i,7) C(L,...,N),
are finite (see for more details in Appendix A and B).
Nevertheless operator S(—t) is “isometric” on L%; in the following sense.

AX (—t, ()n) |

Consider function fx (X (—t, (z)n)) ( ) ) . Later we will show that
N

[ tvxe @ (LN oy = [ @,
2.4)
[ s @l (PEE I aa) — [
i i (X(=t, (@)w)) =1 and it follows from at function
It is obvious that 9 n - =1 and it foll fi (2.4) that funct
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Du(t, (@)w) = Fx(X(~t, (2))) <w> , @5)

that is equal to fy((x)n) at ¢ = 0, may be considered as a probability density in the
phase space of systems of hard spheres with inelastic collisions.
Function (2.5) has the following “group” property:

IX (1 — t, <x>N>>>2

IN(X (=t —t27(33)1v))<

2
—fN<X<t1,X<tQ,(x)N»(@(X(tlvgg)iz’(x)m») )
2

OX(—t1, X(—ta, (z)n))) _ O(X(=t1, X(=t, (z)n))) O(X(—ta, (x)n))

o(z)n B 0X (—ta, (z)N) o(z)N ’

O(X (=ta, X(=t1, (2)n))) _ O(X(=ta, X(~t1, (2)n))) X (~t1, (x)n))

8(.13)]\[ N 6X(—t1, (.Z‘)N) 8($)N

Note that function (2.5) is continuously differentiable together with functions
IN(X (=t (z)N)), fn((z)n) € LY. Indeed function fy(X(—t,(z)n)) is contin-
uously differentiable with respect to time ¢ and initial data (x)y a.e. The Jacobian
I(X(=t, (x)n))

d(z)n

has a jump at time of collisions, but function fxn(X(—t,(x)y)) is equal to zero in a
neighbourhood of time of collisions and, therefore, function Dy (t,(x)n) is continu-
ously differentiable as well as fn (X (—t, (x)n)). The proof is presented below.

2.3. Differential equation for Dy (t,(x)n). Let us show that the function
Dy (t, (z)n) is differentiable with respect to time. It is product of two functions

is a constant function of time on time intervals between collisions and

fN(X(=t,(z)n)) and W One obtains
—DN( ()n) =
fN( } (aX )2 +
(Xt @) >>[ gt(Wﬂ. e

Now calculate derivatives of fy (X (—t,(z)n)) for fn((z)n) € LY. Using group
property of Sy (—t) (2.3) one obtains (see details in [1, 2])

= Jim, [ A0 DI (@)
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=1 a—qz
al 0
= - PZ ) X(— ) )
> Rt ) gy VX )
(2.8)
0 . Sny(=At) -1
O vt @) = Jim PYE Ly () =
Yo
= *;Piy%fN(X(*t, (@)n))-
Now explain derivation of formulas (2.8).
One has
1 A
i, 5 (S8 = D) = = D pig S (@)
onset |¢; — q;| > a, (i,5) C (1,...,N) because fy € L% anditis equal to zero on

some neighbourhood of forbidden configuration.

The trajectory X (—t, (z)n) at ¢;—gq; = an, (n, (p; —p;)) > 0 hasthe jump at ¢ =
= 40, X(=0,(2)n)~X(0, (@)n) = @)k —(@)x, @) = (@1.P1se- 1 40s Pl 205
Djy--- AN, D ~), but function fy € L, is equal to zero in some neighbourhood of such
points, therefore fn((z)%y) = fn((z)n) = 0, ie., function fy(X(—¢,z)) has not
jumpat ¢ = +0. Attime ¢ > 0 X (—t, (z)n) = X(—t, (z)%) and fn(X (-1, (z)N)) =

= [n(X(=t, (z)y)) for ¢; —q; = an, (n,(pi —p;)) > 0.
Note that fn (X (—t, (z)x)) may be different from zero with respect to (x)y on this
neighbourhood of forbidden configuration where fn((x)y) is equal to zero. Therefore

N
i, 3 (Sw(-A8) = D (X(~t,@)x)) = = Y pig- (X (=t (@)

At—0 At
with boundary condition according to which at ¢; —¢; = an, (n,p; —p;) >0, (i,7) C
C (1,...,N) inexpression — Zil piaiqifN(X(—t, (x)n)) momenta p;, p; should
be replaced by p;, pj.

0
Thus we obtain two expressions for —fN(X(—t7 (x)n)), namely

9 d
EfN(X(_ ZP WfN(X(—t,(z)N)),
(2.8a)
and
o) Ny
EfN(X(*t, ()Nn)) = f;pia—qifN(X(—t, ()n)) =
N o (X (1, (@)n) & 9
a0 n ) g YN
Ofn(X(—t,(2)n)) o= D
0P, (1) Zpia—%Pj(—t,(x)N). (2.8b)
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The right-hand side of (2.8a) is a continuous function with respect to (z)y a.e.,
because fn((z)n) € LY and P;(—t,(z)n), i =1,..., N, are continuous functions
of time and (z)y a.e. on time intervals between collisions and have jumps only at time
of collisions, but function fn(X(—t¢,(z)x)) is equal to zero in some neighbourhood of
times of collisions. Q;(—t,(z)n), ¢=1,..., N, are continuous functions of time and
(x)nN a.e. on time intervals between collisions.

The right-hand side of (2.8b) is also a continuous function with respect to (z)xn a.e.,
because (fn(z)n) € LY, and Q;j(—t, (z)n), Pj(—t,(z)n), 1 < j < N, are con-
tinuously differentiable functions with respect to (z)x a.e. on time intervals between
Ofn(X(=t, (z)n))  Ofn(X(t, (z)N))

0Q;(=t,(x)n) = OP(—t, (x)N)

some neighbourhood of times of collisions.
Note that in the right-hand side of (2.8b) we have the following boundary conditions:

collisions, but functions

are equal to zero in

at qi —q; = an, |77‘:17 <na(pl_pj)>>07 ('L,])C(l, 7N)>

N 0
the expressions — Z

- pia—qu(X(*L ()n)), fn(X(—t,(x)n)) should be repla-

ced by:

Pi=p],pj=P}" fn(X(=t, (z)N))

Pi=p;,p;=Dj (2.9)
7

Y9
- Zpiny(X(—ta ()n))

i=1 q

At (n,(pi — p;)) < 0, on the contrary, momenta do not change. These boundary
conditions follow from the definition of the trajectory at ¢; — ¢; = an, (1, (p; —p;)) >
> 0 (1.10), namely X(—t,(z)n) = X(—t,(z)n) |p;=p:, p;=p;, and the fact that
In((z)n) € LY (see[1,2]).

In the right-hand side of (2.8a) the analogous boundary conditions are absent, because
function fy (X (—t,(z)n)) is equal to zero when |Q;(—t, (z)n) — Q;(—t, (x)N)| =

- d Ofn(X(=t, (x)n))
=a, (i,5) C (1,...,N), and the term gPZ‘(—t, (x)N) P (1. (@) )
to zero, because fn(X(—t,(z)n)) is equal to zero where P;(—t,(x)x) have jumps,
i=1,...,N.

At first sight, according to the boundary condition (2.9) at ¢; — ¢; = an, (n, (p; —
—pj)) > 0, there are jumps in the right-hand side of (2.8b), because momenta (p;, p;)
are replaced by (p;,p;). We show that it is not true.

As it was mentioned above, the right-hand side of (2.8a) is a continuous function of
(x)n a.e. on the entire phase space of admissible configurations, i.e., |¢; — qj| > a for
all pairs (i,7) C (1,...,N). The right-hand side of (2.8b) together with boundary con-
dition (2.9) identically coincide with the right-hand side of (2.8a) and therefore it is also a
continuous function of (x)n a.e. on the entire phase space of admissible configurations.

is equal

N 0
Note that only the sum — g - pia—fN(X(—t, (z)n)) is continuous on admissi-
= qi

ble configuration. The each term —piaiqu(X(—t, ()N)), —pjaiqu(X(—t, ()n))
j

has jumps for ¢; — ¢; = an, (n,(pi —p;)) > 0 because p;, p; should be replaced by
0

9qi
to (x)n on admissible configuration (see (2.8b)).

p;, p; and N X (=1, (z)N)), aiqu (X(—t,(x)n)) are continuous with respect
j
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Now consider the second term in the right-hand side of (2.7) and show that it is equal
OX(—t,(x)n)
O(z)n

of ¢ and at time of collisions has a jumps. Therefore

to zero. Indeed, the Jacobian for given fixed (z)x is a constant function
t

90X (~t, (x)x)
t 3(1’)]\[

on time intervals between collisions, but the function f(X(—t,(x)y)) is equal to zero
in neighbourhoods of times of collisions and, as result,

I (X (1, (@)x)) [ o (Lgmywr] —o,

i.e., the second term in the right-hand side of (2.7) is equal to zero.
Taking into account above obtained results we have

is equal to zero

0

5PN (¢ (2)n) = l%fN(X(t7 (x)N))] (Mf

8(37)]\[

2. @) O@)
OX(—t, (x)n)\?
[ sz ta (x)N))]( a(x)N 2l ) =
OX(—t, (z)n)\?

7_sz [ t (x)N))< a(x)N il ) ] =

Yoo
= pria—qDN(t, (z)n). (2.10)

i=1 v

8X(_ta (JJ)N) :
—— s

d(x)n
constant (piece-wise constant) everywhere with respect to (z)y excluding points (z)
at which there are collisions at time ¢, but the function fn(X(—t,(z)y)) is equal to
zero in neighbourhoods of such points and, therefore,

N
Fu(X (1 ( Zpl(;;u>

()N

The last equality in (2.10) follows from the fact that the Jacobian

is equal to zero at such points. Remembering that

D (t, (@)w) = (X (=t (@)n))

one obtains for n € S3 ((n, (p; — p;)) > 0)

0X (—t, (z)N) ) 2
O(z)n

DN(_t7x17"' s iy Piy - - - 7qi_a/777pjﬂ"' )
:fN(X(_t7x17 sQisPiy- v 3Gy — A1, Pjy - - axN))
2
X<8X(t’$1ﬂ"' s QisPiy - - - 7qi7a77apja"' 739N)>

O(z) N
:fN(X(—t,Z‘l, 7qi7p;a"' 7qi_anap;7~ 71‘N) X
aX(_t_O7‘T17"' 7qiapr7"' aQi_anvpja )
X X
A(x)y
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X

8X(—O,l'1,... aQiap;’Kr" 7%‘—@777]0;’“- axN)>2
o(z)n
:fN(X(—t—O,Jfl, 7Qiap:7"' 7qi_anap;7"' axN)) X

X(aX(t07$17"' aqiap;fa"' aqifanap;a"' 7xN)>2 1
(

a(x)% 1—26)2
* * 1
= DN(_tvxla“' yQiyDis- -+ yqi _anvpja"' 7xN)(1_—2€)2 (211)
In deriving (2.11) we took into account that fn (X (—¢,(z)n)) = fn(X(—t, (2)N))
0X(—t
for ¢; —q; = an, (n, (pi —p;)) > 0 and used that the Jacobian W can be
N

calculated as product of Jacobians on consecutive time intervals between collisions and
extract Jacobian that corresponds to collisions of ¢-th and j-th particles at time ¢t = +0.

The last Jacobian is equal to

— 2¢
We must add to (2.10) the following boundary condition: at

qi — g5 = an, |77|=17 <777(pi_pj)>>07 (i,j)C(l,...,N),

expressions

Y9
_ Zpia_qiDN(t, (z)n), Dn(t, (2)n)

should be replaced by

1 N
o (1 _ 25)2 sz’a—%DN(t, (I)N) |p1:=p37pj=p;v
= (2.12)
1

mDN(tv (z)N)

Pi=p;,Pj=P}"

and at (n, (p; — pj)) < 0 momenta (p;,p;) do not change.
The boundary condition (2.12) for Dy (¢, (x)x) follows directly from the boundary
condition (2.9) for fn (X (—t,(z)n)), fn((z)n) € LY, and from equality (2.11).
Obtained results can be summarized in the following fundamental theorem.
Theorem I1. The probability density on phase space of system of hard spheres with
inelastic collisions D (t,(x)n) is a differentiable function with respect to time t and
()N a.e., and satisfies the Liouville equation

9 )
¢ DN (s (2)n) = = ;pia_qDN(t; ()x) (2.13)

(2

with boundary condition (2.12) and initial condition Dy (t, ()N )|t=0 = Dn (0, (z)n) =

0X(—t,(x)N)

~ (o) (LN

8(33)]\[ =0

Note that the right-hand side of (2.13) together with boundary conditions (2.12) is a

continuous function on phase space of admissible configurations a.e., as it follows from
the second expression in the right-hand side of (2.10). Indeed it was already shown that

=1, because X (—t,(z)n)|t=0 = (x)N)

N
0
_ ;Pi(_t, (@N)mfjv()((—t’ (z)n))
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is a continuous function of (x)y on admissible configuration of phase space a.e. The
X (=t, (x)n)

O(z)N
time ¢, but above written multiplier is equal to zero in neighbourhoods of these points,
and therefore expression

Jacobian has jumps only at such points () that there are collisions at

N

—Y Pt (2)n)

i=1

0

S — M)z
0Q.(—t. (@)

P (o)) (25

N 0

has desired property of continuity. Expression — E - pia—D ~(t, (z)n), together
= qi

with boundary condition (2.12), coincide with this continuous function and has the same

property of continuity a.e. on the entire phase space of admissible configurations.

Remark. One can impose some additional conditions on functions fx((z)n) € LY
in order to make function Dy (¢, (x)x) continuous everywhere on admissible configura-
tions in phase space.

Namely, we restrict ourselves with functions fy((x)n) € L% also equal to zero in
neighbourhoods of the hyperplanes where three or more particles collide instantaneously,
times of collisions become infinite and the number of collisions on finite time interval
is infinite. (The trajectories after instantaneous collisions of three or more particles are
defined as the same as before collisions but in opposite directions.) Obviously this set of
functions is again everywhere dense in L. We continue denoting it by L$;. Functions
Dy (t, (z)n) that correspond to such fn((z)xn) are continuous with respect to (x)y
everywhere on phase space and for each time .

3. Equation for sequence of correlation functions.

3.1. Definition of correlation functions. We will use commonly accepted definition
of correlation function. Namely, correlation functions pgN) (t,z1,...,xs) in the frame-
work of the canonical ensemble is defined through the probability density Dy (¢, z1, .. .

.,xn) as follows:
p.gN)(tv'rh e aIs) -

:N(N—1)...(N—s+1)/DN(t,x17... Ly Tstly - , TN )Tt ... dTpN,

1 <s<N.

We integrate in (3.1) over entire phase space of particles with numbers s 4+ 1,... , N,
but function Dy (t, (x)y) is equal to zero on forbidden configurations, and actually in-
tegration in (3.1) is carried out over the admissible configuration |g; — ¢;| > a, (i,7) C
C (1,...,N). Itis supposed that initial probability density Dy (0, (z)n) = fv((z)n)
is normalized to unity:

[ Dx0.@wdta)y = [ fx(@w)da)y =1,
3.2. Equation for correlation function. In order to derive equations for correlation
functions we differentiate both sides of (3.1) with respect to time and use in the right-hand

side of (3.1) the Liouville equation (2.12). One obtains
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&pgN)(txla s a‘rs) =

=NN-1)---(N—-s+1)x

N
0
x/ (—Zpia—qDN(t,xl,... s Tsy Tstly- - ,xN)>dx5+1...d:1cN. (3.2)
i=1 v

Now we are in the same situation as for system of N hard spheres with elastic colli-
sions, and we obtain the following hierarchy of equations [1 - 3]:

- 0
- (’N)(t71'1,... ,:ES) = _;pia—%pg\l)(t,xl,.-. 71_3) +
N
+G2Z/dp5+1/d’l’]<7’], (pz _ps+1)>p.(s+i(t7x17"' y Lsy qi _anvszrl)"_
i=1 &

1
+§a2/d$s+1/dps+2/d77<m (Ps+1 — Ps+2)) X
52

ngﬂ\:%(t,xl, co s Tsy1,Qs1 — AN, Pst2), 1< s <N, (3.3)

where 7 is unit vector and S? is unit sphere.
Now split spheres S? in the second and third terms in the right-hand side of (3.3) into
two parts, S? = S% U S2, where

Si(nKnv (pi*ps+1)> >O)a 53(77|<777 (pifps+1)> <0)a i:]-a"' S
and

ST (N, (Ps1 — Ps42)) > 0), S2(n(n, (Ps+1 — Pst2)) < 0).

It follows from (2.11) that correlation functions satisfy the following boundary condi-
tions:

N
pg—‘—i(tv Tiyeee5qiyPiy- - s Ts,q5 — aﬁ,ps+1) =
N « 1
= pg-}-%(txlv s aQiapry s s sy Gy — an7ps+1)m,
(3.4)
() (4 ~ B
ps+2( s X1y 3 TsyGQs41,Ps+15Gs+1 a777Ps+2) =
) ) . 1
= ps+2(t,ﬂf1, s 7$S7QS+17ps+1a ds+1 — Gﬁ,p5+2)m

for (n, (p; — ps+1)) > 0 and (n, (ps+1 — Ps+2)) > 0 correspondingly.
Show that the third term in the right-hand side of (3.3) is equal to zero. To this aim,

represent it as follows using (3.4):

a2
?/dqs+1/dps+1/dps+2[/d’l\(m (Ps+1 — Psg2))| %
@

N 1
ngJr%(t,:ch ... 7qs+1ap:+1aQS+1 - 117771724.2)@ _

N
—/dn|<n, (Pst1 —ps+2)>\f)g+%(t,$1, o Q41 Dst 15 Gs+1 — A1), Dsg2) |- (B.S)
52
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In the first term we use as new variables of integration momenta p, ,,ps,,. Taking

1
1_2 (M, (Pst1 = Pst2)) <0 for (n, (pss1 —
1
— Psy2)) >0, 3 < e <1, wehave n € S2 with respect to the variables Dir1> Poia-

We have also dpsi1dpsio

into account that (1, (pj, 1 — Pii0)) =

= dp;,,dps, 5. (Note that we used the constant Ja-

1—2¢

o 1 . .
cobian in momentum space equal to T2 ‘ and take into account that linear transfor-
€

mation (1.3) maps domain (7, (ps4+1—ps+2)) > 0 into domain (1, (pi,; —piio)) <0.)
Therefore the first term is equal to

a’2 * * * *
?/qu+1/dps+1/dps+2/d77|<na (Par1 — Py x
S2

N * *
ng+%(t7 Tlyew- 7qs+17ps+17 qs+1 — C”?»ps+2)

and it cancels with the second term.

Now split spheres S, into two parts, S3(n](n, (p; — pst1)) > 0), SZ(n]{n, (p; —
— ps41)) < 0), change the vector n € 52 to vector —n € S%, and use for n € S the
boundary conditions (3.4)

N
pg+i(t’x17"' s QisPiy -+ 545 _an7p5+1) =

N e —
= ,Ong%(t,(tl,... ,qiap;'ka"' ) 4i 7(17],ps+1)(1 — 26)2

in the second term of the right-hand side of (3.3).
Finally, taking this into account, hierarchy (3.3) takes the following form:

0 ° 0
Epgm(t,xl,--- 1 Ts) = —;pia—%pgm(t,xu--- ) +
+a22/dps+1 /dnm (Pi — Pst1)) ¥
i=1 S-2§-

1 N *
X lmﬂ;&(f;xh e aQi7p?a e g — 6”771754.1) -

_p‘(s]-‘,\-q(tal‘h s Qi Diy - - - 7Qi+a777ps+1)]7 NZ SZ 1; (36)
with the same boundary condition at ¢;—¢; = an for — Zi:l pia—qips (t,z1,...,%s),
pgN) (t,xz1,...,xs) as for the Liouville equation (2.12) for Dg(t,x1,... ,xs).

(In the term pgy1(t, 1, .. ,QisPis.-- @ — an,psi1), with 7 € S?, one uses a
new 1’ = —n, ' € 53%.) We have also initial condition p§N> (t,z1,... ,%s)|t=0 =
= pgN)(O7x17 s ams); s> 1.

Consider equation for pgN) (t,21)

0 N 0 N
G t0) = =)+ [dpa [dntn, (o1 = )

2
S+
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1 N « . N
X[mpé )(taQ1aP1aQ1*a77aP2)*P§ )(t7Q1aP1aQ1+a77,P2)

and integrate it with respect to x; over the entire phase space. Using the same tricks as

in proof that the term with ps1o is zero and supposing that | llim pgN)(t, q1,p1) = 0,
q1|—00
one obtains

d
o AN, 21)dwy = 0. (3.7)

This means that /pgN) (t,z1)dxy does not depend on ¢, i.e.,

/pgN) (t,x1)dzy = /p(lN)(O, x1)dxy.
Taking into account that, according to definition (3.1),
pgN)(t, (x)1) = N/DN(t,xl,:cQ, sy xn)day . day
one obtains the law of conservation of full probability

/DN(t,.’El,... ,a:N)darl...da:N = /DN(O,xl,... ,QEN)dJ?l...dZ‘N. (38)

Summarize the obtained above results in the following theorem.

Theorem III. The sequence of correlation functions pgN)(t, X1,...,25)(3.1), 1<
< s < N, satisfies the hierarchy of equations (3.6) with boundary and initial condition
and the probability density Dy (t,z1,... ,xn) (2.5) satisfies the law of conservation of

full probability (3.8).
Remark. 1f one introduces the probability density by formula

0X(—t, (x)N)]
o(z) N

for n > 1, n # 2, then the sequence of correlation functions (3.1) satisfies the following

hierarchy:

n

Div(t, ()x) = fiv(X(—t, <x>N>‘ [ (3.9)

o)
Mt x,...  x4) = —Zpijpgm(t,xl,... L) +

. Ps
o 2.5
+G2Z/dps+1/d77<777 (pz ps+1)> X
i=1 S-2¢-

N
Pg+i(t»$1a v 7Qi7p;,'ka qi — anvp:Jrl) -

d

1
+§a2/dﬂfs+1/dps+1/d77<77a (Pst1 — Pst2)) X
51

(1—2e)"

N
—p:(;_i_%(t,ﬂfl,... s Qis Piy v v - aQi+an7ps+1) +

N
ngr;(taxla s 7‘]s+17p:+17QS+1 - aTIaP:+2) -

d
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N
_pi+%(t7 T1yevv y4s+15Ps+15Gs+1 + Cl'l’],ps+2) . (310)

The third term in the right-hand side of (3.10) is different from zero, because the
calculation used in the case n = 2 is not true for n # 2. After the change of integration
variables from (ps41,pst2) to (pi,i,ph o) in the first term with p, o there will be

left the multiplier W , and this term does not cancel with the second term.

For the probability density Dy (t, (z)n) (3.9) with n # 2 the law of conserva-
tion of full probability (3.8) is not true. This means that for the system of hard spheres
with inelastic collisions the unique “candidate” for the probability density is function
Dn(t, (x)n) (3.9 with n =2, i.e, Dy(t,(x)n) defined according to (2.5).

3.3. Boundary conditions for correlation functions. According to boundary con-
ditions for function Dy (¢, (z)x) and for Liouville equation (2.11), we have boundary
conditions (3.4) for correlation functions and the following boundary conditions for the
BBGKY hierarchy (3.6): in expression

59
,E ) (N)
Z.leza%'ps (taxlw'- ,l’s)

for ¢; —q; —an =0, n € S3, (i,5) C (1,...,s), momenta p; and p; should be

* * N
replaced by p;, p; (1.3) and pg ) by (1——26)2’)9)
At first sight momenta p;, psy1, i =1,...,s, in (n, (p; — Ps+1)) in the first term

of the integral in the right-hand side of equation (3.6) should be also replaced by p},
piy1- Itis not true. The reason is that under integral sign in (3.2) behavior of integrand
on hypersurfaces of lower dimension can be neglected. But we prefer to explain this
assertion on a very simple example of system of two spheres (rods) in one-dimensional
case.

We have Liouville equation

8D2(t7x17x2) _ a 6
T - _<p13_(]1 +p28_q2)D2(t7m17x2)

with boundary condition: for ¢; — g2 — an =0, (n,(p1 —p2)) >0

1
Ds(t. q1,p1,92,p2) = mDQ(t,maPTaQQaP;)a

0 0
15— —P2r— | D2(t,q1,p1,q2,02) =
< p1aq1 P26q2> 2(t, q1, 01,92, D2)

S =222\ " 5 P20 Ds(t, q1, 01 42, P3)-

0
We have, following [3] and taking into account that e Dy(t,x1,x2) is different from

zero on admissible configurations |¢1 —g¢2| > a and continuous with respect to (x1, z2),
0
/ EDz(ﬂ z1, x2)dgadps =

0 0
= —p1—=— —pa— | Dao(t dgadps =
/( pl(‘)ql p28q2> 2( aq17p17q27p2) q20ap2

q1—a—e [e%e)
= lim {( / dgs + / dq2> X
e—0

—00 q1+ta+te
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0 0
X<p18_ql p28_q2>DQ(taQIaplanaPQ)}dPQ' (3.11)
Now calculate the following integrals:

q1—a—¢ e3¢}
0

</ dgs + / dQ2><_p26_D2(t>Q17p17QQ7p2)):
q2

—0o0 q1t+a+e
= —p2Da(t,q1,p1,q1 — a — &,p2) + p2Da(t, q1,p1,q1 + a +€,p2),

q1—a—¢ 00
0

</dCI2+ / d(J2><pla—Dz(EQhPthPz))—
q1

—00 q1ta+te
a q1—a—¢ o0
= —plw < / dgs + / dqQ) Dy(t,q1,p1,q2,p2) +
1
—00 q1ta+te

+p1D2(t, q1,1,q1 — a —€,p2) — p1Da2(t,q1,p1,q1 + a+€,p2).

Tend ¢ — 0 in (3.11) using above obtained formulas, continuity of function
Ds(t,x1,22) on admissible configurations and take into account that pq,ps are fixed
and independent on £. One obtains

OFy(t,q1,p1) _

ot
q1—a—¢ o0
= 1111(1) {( / dqo + / dq2> X
—00 q1ta+te
0 0
—p1—=— —pa— | Do(t dpy =
><< plaql p2aq2) 2( 51117]?17(]2,172)} D2

0
= —P1a—qu1(t7Q17p1) +

+/dp2{(p1 —p2)[D2(t,Q17p17Q1 —a,p2) — Da(t,q1,p1, ¢ +a7p2)}}~

Consider the following two cases: 1) p1 — p2 > 0; 2) p1 — p2 < 0. In the first case
one has, according to the boundary condition,

Do(t, q1,p1,¢1 — a,p2) = sz(t,Q1aPT>Q1 —a,p3),

DQ(tathlvql + a7p2> = DQ(taqlaplaql + a7p2)'
In the second case one has

DQ(t7q17p17Q1 - aap2) = D2(t7Q1»P17(]1 - a7p2)v

1
T@QD2(t7Q1vp>{7ql+aap;)'

DQ(ta q1,P1, 1 + a7p2) = (1

Denote by 7 unit inner vector of sphere (rod) |g2—¢q1| = a withcenterin g1, n = +1
in point ¢ = ¢q; —a, n = —1 inpoint g3 = q; + a.
We have in the first case (p1 — p2) = (1, (p1 —p2)) >0, n = +1

(p1 — p2)|D2(t,q1,01, 01 — a,p2) — Da(t, q1,p1, @1 +a,p2)} =
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1 * *
=1n(p1 — p2) {ng(t,thl,cn —an,py) — Da(t, q1,p1,q1 + an,pz)]

n=1

and in the second case —(p1 — p2) = (p1 —p2)n, (M, (p1 —p2)) >0, n=—1

(p1 — p2) {Dz(t,lh,plvfh —a,p2) — Da(t,qi,p1,q1 + avpz)} =
1 " *
= (p1 — p2) [DQ(t7Q1aplaq1 + an,p2) — sz(t7Q1,p1aQ1 - C”?apg)} =
1 * *

=n(p1 — p2) sz(t @1, p1, @1 — an, p3) — Da(t, q1,p1, g1 + an, p2)

n=-—1

Denote by S1 vector n for which (n, (p1 — p2)) > 0. For (p1 —p2) > 0, S
consists of vector n = +1, for (p; — p2) < 0, Si consists of vector n = —1. Denote
Do (t,q1,p1,q2,p2) = Fo(t,q1,p1,q2, p2)- Finally one obtains equations

OF (t, q1, b
% = —pla—qul(t,(h,pl) + /dpz CZSI (n, (p1 — p2)) X
neey

1 * *
X mFQ(tyqlap17q1 - C”]aPQ) - FQ(t7qlaplaql + a777p2):|7
(3.12)

Oq 9q2
and boundary condition for the second equation is the same as for Ds(¢, q1,p1, G2, D2)-

Equations (3.12) is the hierarchy (3.6) for N = 2.

Analogous calculation has been performed for one-dimensional point-wise particles
in [4] on formal level.

3.4. Grand canonical ensemble. As known [1, 2], in grand canonical ensemble one
has a sequence of nonnormalized distribution functions Dy (¢, (z)n), N >0, Doy =1,
that satisfy Liouville equation (2.13) with boundary condition (2.12). The sequence of
correlation functions is defined as follows:

I [1
Ps(ty (I)G) == Z/EDS'HL(t’xl’ cee 3 Lsy, Tsg1ye-- 7xs+n)dxs+1 ce dzs-&-na s>1,
== !

OF5(t,q1,p1,qo, 0 0
2( Q181:1 e pz) = <—P1— —pz—)F2(t7Q1,p1,LI27p2)

(3.13)
where = is the grand partition function
== 1—|—Z/Dn(t,x1,... X )day . dr, =
n=1
= [ 1
=1+ Zl/ED"(O’”“"“ cxn)day ... dxy,. (3.14)

In (3.14) we used the law of conservation of full probability (3.8).
By repeating the derivation of hierarchy (3.6) for canonical ensemble [1, 2], one ob-
tains the hierarchy for grand canonical ensemble

Ops(t,x1,...,Ts) u 0
- — i S stv yereyds
En ;P 8qiﬂ (t, 1 zs) +

+ a2 Z/dps‘f‘l /d77<77a (pz _ps+1)> X
i=1 $2
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X ép‘%%l(t; Tiy--- 7qi7p;<a sy Qi — anap:+1) -
(1—2¢)?

_P5+1(t,x1, oo s qiyDiy oo r Q5 — anvps+l):|a S 2 ]-a (315)

with the same boundary conditions as for canonical ensemble.
Appendix A. In this appendix we present two very simple examples that explains the

reason why
[rex oy ?EtDas [ g

Consider interval [0, 00) and on this interval define the following map T

Tx)==2, if 0<z<1,

(A1)
T(z) =2z, if z>1.
T
Show that the Jacobian 4T (z) is defined as follows:
dT—(x):l, if 0<z<1,
dz
ar
d(xx) =5z —1), if z=1, (A2)
dT
(2) =2, if 1<z<oo.
dz
Calculate as distribution (generalized function). Let ¢(xz) be a test function,
then

/OOdZ;x)‘p(x)dx = —/OOT(w)sO’(w)dx = —jxw'(x)dx - 72:590/(13)dx -
0 2 J /

1 e} 1 00
+/<p Ydx + 2¢(1 +2/<p )+/<p(a:)dx—|—2/ga(x)dx:
0 1 0 1
0o 1 00
/63&—1 dw—i—/l oz x—l—/? o(x)dx (A.3)
0 0 1

) as stated before in (A.2).

x
Now consider the following integral with arbitrary smooth function f(z) defined on
[0, c0):

This formula gives us
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7f(T(z))dZ(:) dr = /11 - flx)dz + f(1) + 72 - f(2x)dz =
0
+0/f dx+2/f (A4)

From (A.4) one can see that there is finite contribution from “hypersurface” = = 1
where the map 7'(z) is discontinuous and the interval 1 < z < 2 is absent, i.e., is lost
in the map T'(x). Let us suppose that f(1) = 0. Then (A.4) is reduced to the following
final formula:

(fﬂﬂwfgfhx:/fwmx+7}wmx=7}( jf (A5
0 0 2 0 1

It follows from (A.5) that

/f(T(x))%;x)da:</f(x)dx (A.6)
0

0

for positive “distribution” f(x) > 0, different from zero on interval (1, 2].
Consider second example with map

1
T(x)=2,0<x<1, T(x):§m7 x> 1.
dr dr
For T'(x) one obtains (=) =1 0<z<1, (z) =—-0(z—-1), z =1,
T ) dx dx
(z) = —, x > 1. If is easy to check that
dx 2

d:c———f( )+jf(m)dx+/f(x)da;.

!f

If f(x)>0 and f(1) =0 then

1/f(T(x) O/f dx+!f dx>0/f(x)dx. (A7)

This two examples show that for discontinuous map there may be “loss” or “gain” of
domains.
This simple examples can help us to understand why

[ txxet @) LD ) 2 [ a4

It is because the map X(—t,(x)y) is discontinuous and after collisions
I(X(=t, (x)n))
O(x)n
collisions occur, may be finite, and some domains in the phase space may be “lost” in the
map induced by shift along trajectories X (—t, (z)n), or may be “gained” in the map

induced by shift along trajectories X (¢, (z)n).

= 1, in the left hand side contributions from the hypersurfaces, where
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‘We have shown in Section III that

[ stxc, <x>N>>(W> = [ Is(@wite)s

O(X(~t, (x)n))
8(1‘)]\[

from 1 after collisions compensates “loss” of domains in the phase space. Note that
In((z)n) € LY is equal to zero on hypersurfaces where collisions occur and, therefore,
contributions from these hypersurfaces are equal to zero.

Appendix B. In deriving formulae (2.11) we did not take into account that for some
0X (+0, (z)n)
—_— =1

A(x)n
For example, if (1, (p; — p;)) = 0. These momenta belong to hypersurfaces of lower
dimension and one can neglect them because Dy (¢, (z)y) C Ly for fy((z)n) C LY.

If one considers generalized functions fy((x)y) concentrated, for example, on hy-

for fx((z)n) C LY and it means that additional multiplier , different

pi,p; momenta after collisions p;, p; are equal to p;,p; and

persurfaces p; = ... = py = p and with compact support with respect to (q)n then
6X —t, (x N .
W =1 and in DN(t7x17"' 7q1',7p;<7"' » 4 7@77,]7;,-.- ,IN)7 <777 (pz -

—pj)) >0 momenta p; = p;,p} = p;.
For such initial distribution functions fx((x)y) hierarchy for correlation functions
(3.15) is reduced to the following one

0 > 0
aps(tvxla cee 7xs) = _;pia_qips(tvxh S 71'5)7 s> 1. (Bl)

The second and third term in the right-hand side of (3.3) is equal to zero because p; —

—Ps+1 =0, pst1 —psy2 =0.
Hierarchy (B.1) has stationary solution

S

ps(tvxla"'vxs):H(pi_p) H @(|qi_qj|:a)'

i=1 i<j=1
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