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A NOTE ON THE ASYMPTOTIC STABILITY
OF FUZZY DIFFERENTIAL EQUATIONS

IIPO ACUMIITOTUYHY CTIAKICTH
HEYITKHUX JUO®EPEHIIAJIbHUX PIBHAHD

In this paper, we study the stability of solutions of fuzzy differential equations by Lyapunov’s second
method. By using scale equations and comparison principle for Lyapunov-like functions, we give some
sufficient criteria for the stability and asymptotic stability of solutions of fuzzy differential equations.

BuBueHo CTiiiKicTh po3B’s3KiB HEUITKHX JU(epeHIia/IbHUX PiBHAHb 3a JONOMOI'0IO IPYTOro MeToy
JlanyHoBa. 3a JOMOMOIOI0 MacIITaOHUX PiBHAHB Ta NMPUHLUIY MOPIBHAHHS AJIs PiBHsAHBb TUMy JlA-
MyHOBA BCTAHOBJICHO JOCTATHI YMOBH CTab1/IbHOCTI Ta ACUMIITOTUYHOI CTab1/IbHOCTI PO3B’ A3KiB HEUIT-
KUX JudepeHIiabHIX PiBHAHD.

1. Introductions. The investigation of stability of solutions is the most important
problem in the qualitative theory of differential equations. It has been widely applied
in Physics, Mechanics, Control, ... .

Recently, the industrial interest in fuzzy control and logic [1] has dramatically
increased the study of fuzzy systems. The calculus of fuzzy-valued functions has
recently developed [2 — 6] and the investigation of fuzzy differential equations has been
initiated in [7 — 11].

In this paper, we study the stability theory which corresponds to Lyapunov stability
theory for fuzzy differential equations.

2. Preliminaries. Let PK(R") denote the family of all nonempty compact,
convex subsets of R" and define the addition and scalar multiplication in PK(R”) as
usual. Let A, B be two nonempty subsets in R". The distance between A and B is
defined by Haussdorff metric:

dy(AB) = max[asgg ot la=bl sup ;nga—b}

where ||-| denotes a norm in R". Then it is clear that (PK(]R"), dH) becomes a
metric space. Moreover, the metric space (PK(R”), dH) is complete and separable
(see [12]). Let T=[a;b], a =0, be an interval in R and denote €" = {u: R" —
— [0;1] | u satisfies (i) to (iv) below } :

(i) u is normal, that is, there exists x, € R" such that u(x;) = 1;

(ii) u is fuzzy convex, thatis, for x, ye R" and 0<A < 1:

u(Ax +(1=2A)y) = minfu(x), u(y)l;
(iii) u is upper semicontinuous;

iv) [u]® = {x eR™: u(x)> 0} is a compact subset in R".

For 0 <o <1, we denote [u]* = {xeR": u(x) = o}, then from (i) to (iv) it
follows that the o-level [u]* € PK(R”) for all o €[0;1]. For later purpose, we
define 0 € " as o(x) = y(x) =1 if x =0 and o(x) =0 if x # 0. Define a
metric function d: £" x " — R" by

dlu,v] = sup dy([ul”, [v]*);
0<ac<l
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then (g",d) becomes a complete metric space (see [12]). We list here some
properties of metric d[u, v] (see [7, 10, 12]):

(1) d[u,v] = d[v,u]; d[u,v] =0 u=v;

(i) d[u,w] £ d[u,v]+d[v, w];

(iii) d[Au, A]=|\|d[u,v];

(v) dlu+w,v+w]=d[u,v], u, v, wee", AeR.

For x, yee”, if there exists ze€" suchthat x =y +z, then z is called H-
difference of x and y and is denoted by x —y.

A mapping F: T— €" is differentiable at #, € T if for small & >0, there exist

H-differences P(ty + h) — F(ty); F(ty) — P(ty —h) and there exists F’(to) e ¢
such that the limits

im Flo W= Fag) . Fg) = Flig = h)

h—0+ h h—0+ h

exist and equal F '(to).
If F,G are differentiable at 7, then (F+G)'(r) = F'(r) + G'(t) and (AF)'(¢t) =
= AF' (1), e R (see [6, 7, 10]).

If F: T— €" isstrongly measurable and integrable bounded, then it is integrable
on T and [ F()di e ",

o
|:J‘F(t)dt} = JFa(t)dt, O<o<l, En = [FO]*
T T

0
where JTFu(t)dt is an Aumann integral. It is well known that “TF(t)dt] =
= JTE)(t) dt (see [7], Remark 4.1). Also the following properties of integral are valid
(see [3,4,7,10]). If F,G:T— €" areintegrableon T and A € R, then:

@) jT (F+G)(t)dt = jTF(z)dz + jTG(t)dz;
(ii) jT(xF)(t)dt = jTF(r)dr;
(iii) d[F(-),G(-)]: T > R, is integrable;
(iv) dUTF(t)dt, jTG(r)dz] < JTd[F(t), G())dr;
b c b
V) j F()dt = j F(t)dr + j F(t)dt, a<c<b.
a a c
If F is continuous, then G(¢) = jtF(‘C)d’E is differentiable on 7 and G'(t) =
a

= F(@) Vte T. Moreover, if F is differentiable on 7 and F ,(-) is integrable on 7,
then for all reT we have F(t) = F(t,) + J: F(t)ydt, a <ty <t<b. If F is
0

continuous on 7 and G(t) = JZF(’L‘)d‘C, then for # < ¢, we have (see [7])
d[G(), G(ty)] £ (1, —tl)[sup d[F(1),0].
1,1y
3. Stability. Consider fuzzy differentiable equation:

dx

— = f(t,x), x(ty)=xp, 1

o J(, x) (1) = xg (D
where fe C[R, x S(p), €"], S(p) ={xe €": d[x,0]<p}, f(t,0)=o0.
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In this section, we shall discuss the stability, especially, asymptotically stability of
solutions of Eq. (1) by Lyapunov’s second method. First, we give some notions of
stability which are used in the sequel. Let x(¢) = x(z;7j, xo) be any solution of (1)
existing on [f, o]. Denote K ={ae C[R,,R.]}, a(0) =0, a(-) isincreasing}.

Definition 1. The trivial solution x = o of (1) is stable if for any & > 0,
to € R, there exists & = d(ty,€) >0 such that if d[xy,0] <9, then d[x(t),0]<
<e Vi1

Definition 2. The trivial solution x = 0 of (1) is uniform-stable if & in Defi-
nition 1 is independent of 1, i.e., for any € >0, there exists & = d(€) > 0 such
that if d[xy,0] <9, 1y € Ry, then d[x(t; ty, x), 0] <€ V1= 1,.

Definition 3. The trivial solution x = 0 of (1) is asymptotically stable if x = 0
is stable and for any t, € R,, there exists A= A(ty) >0 such that if d[x,,0] <
<A, then tlgrgod[x(t; fys Xg), 0] =0.

Definition 4. The trivial solution x = 0 of (1) is uniform-asymptotically stable
if for any €>0, there exist 8, = dy(¢) >0, T(e) 20 such that if d[x,,0] < J,
ty € Ry, then d[x(t; ty, xo), 0] <€ V1= 15+ T(e).

Definition 5. The trivial solution x = 0 is exponential stable if there exist & >
>0, oo>0 such that for any solution x(t) = x(t; 1y, xy) of (1) defines on 1, *):

d[x(1), 6] < B(d[xq.0])e 70, 1214,

where B(-): [0,8) >R, increasing in he [0,9).
Before discuss the stability of solutions of (1), we need the following lemma which
corresponds to Comparison Principle (see [10] for detail).

Lemma 1. Suppose that for Eq. (1) there exists a function V € C[R, x S(p),
R, ] satisfying

|V(t,x)=V(t,y)| < Ld[x,y] V(t,x), (t,y)eR, X S(p);

D'V(t,x) = lim sup%[V(t +h,x+hf(t,x)—V(,x)] £ gt V@, x)),

h—0+
g(~) e C[RL, R].
Let r(t) = r(t; 1y, wy) be the maximal solution of equation

w' = g(t,w) 2

existing on [ty, ) and x(t) = x(t;1ty, xo) be any solution of (1).

Then V(ty, xy) < wy implies V(t,x(1)) < r(t) V12 1,.

Theorem 1. Suppose that for Eq. (1) there exists a function V € C[R, x S(p),
R, ] which satisfies the following conditions:

() [V, x)- V@, y)|<Ld[x,y] V(tx), y)eR, xS(p);

(i) a(d[x,0])<V(t,x), V(t,0)=0, where o(-)eX class;

(i) D*V(t,x) < g(t. V(t. x)). geC[RI, R], g(z,0)=0.

If the solution w = 0 of (2)is stable (asymptotically stable), then the trivial
solution x= 0 of (1) is stable (asymptotically stable).

Proof. Let x(t) = x(t;ty, xy), ty € R,, be any solution of Eq. (1) existing on
[ty =) and solution w =0 of (2) be stable. Then, for any 0 <€ < p, there exists
8y = 8y(fy,€) > 0 such that if 0 < wy < 8, then |w(t;ty, wy)| < a(€) V t 2 t.
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From (ii), it follows that there exists & = &(¢y,€) > 0 such that V(zy, x) < §, if
d[x, 0] < 8. We will show that if d[x, 0] <9, then d[x(r),0] <e V2 t,.
Suppose that d[x(t), 0] 2 & for some 7, > #,; then there exists # > 7, such that

d[x(t),0] = & d[x(t),0] <& Vte[ty,1).
Let m(t) = V(t, x(¢)), t = t,, then we have

mt+h) — m@) = V(@+h xt+h) — V(E, x@) =

= V(t+h, x(t + h)) — V(t + h, x(t) + hf (1, x(2))) +

+ V(t + h, x(¢) + hf (¢, x(1))) — V(¢, x(1)) <
< Ld[x(t + h), x(t) + hf (¢, x(2))] + V(¢ + h, x(¢) + Af (¢, x(2))) — V(¢, x(2)).
For small h > 0, H-differences of x(t+h) and x(t) are assumed to exist. Let
x(t+h) = x(t) + z(r). Using the properties of metric d[x, y], we have
d[x( + h), x(t) + hf (¢, x(2))] = hd [w f@, x(t))].

Hence,

D m(t) = limsup[m(t + h) — m(t)] <
h—0+
[x(t + h) — x(t)

< Llimsupd
P h

h—0+

£, x(r))] +

+ lim sup%[V(t by x(1) + hf (s, X)) = Vi, x(0)] =

h—0+
= Ld[x'(), f(t. x@)] + D*V(t, x(t)) = D*V(t, x(t)) =
= D'm(t) < gt,m(t)), ty<t<t.
Applying Lemma 1, m(t) < r(t; 1y, wy), wo = V(tg, Xo), t € [ty,1;]. On the other
hand, V(ty, xy) < 8y, so, r(t; ty, wy) < a(€), t € [ty, 1;], and therefore
mt) < r(f;tg, wy) < a(e).

By the choice of 7, we have a(e) = a(d[x(r)),0]) £ V(1, x(1))) = m(t) < a(€).
This is a contradiction, whence

d[x(t),0] <& Vi2t,.

This shows that the trivial solution x = o of (1) is stable.

If w=0 of (2) is asymptotically stable, then it’s stable, therefore x = 0 of (1) is
stable. For 7, € R, there exist & = 8(fy) >0, A,(ty) >0 such that d[x(2),0] <
<p Vit if d[xp,0] <8 andif 0< wy < Aj(f)), then lim w(z; 1, wo) = 0.
From hypothesises of function V(z, x), we can find A, >0 such thatif d[x, 0] < A,,
then V(ty, x) < A[(ty). Put A = min[§,A,]. Let x(r) be any solution of (1),
to € R,, d[xg,0] <A. Define m(r) = V(t, x(r)), t 2 ;. By the first part of this
proof we see that DYm(r) < g(t, m(1)). Apply Lemma 1, m(r) < r(t; ty, wy), wg =
= V(ty, xg), t= 1. Since wy = V(ty, x) < A;(ty), we have tli_)n}wr(t; ty, wo) = 0.

From a(d[x(1),0]) < V(t, x(t)) = m(t) < r(t; ty, wy), a(-) € K, it follows that
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tli_)ngo d[x(t),0] = 0. This shows that x = o is asymptotically stable. The proof is
completed.

Theorem 2. Suppose that for Eq. (1) there exists a function V € C[R, x S(p),
R. ] which satisfies the following conditions:

() |V@x)-V(t, y)|<Ld[x,y] V(& x), ¢y eR, xSp);

~

(i) a(d[x,0]) < V(t, x)<b(d[x,0]), a(:), b(:)eXK;

(i) D*V(t,x) < g(t. V(t. x)). geC[RI, R], g(t,0)=0.

If the solution w = 0 of (2) is uniform-stable (uniform-asymptotically stable),
then the trivial solution x = o0 of (1) is uniform-stable (uniform-asymptotically
stable).

Proof. If solution w=0 of (2) is uniform-stable, then for any € > 0 there exists
8y >0 suchthatif 7, € R, and 0< wy < 8y, then |w(t;ty, wy)| < a(e) V12 1.
By choosing 6= 8(¢) >0 such that b(d) < a(d,) and by the same argument in the
proof of Theorem 1, it can be proved that if d[x,0] <8, then d[x(1; 1y, xy), 0] <
<&, t=ty. This shows that x = 0 is uniform-stable.

Now, we assume that w =0 is uniform-asymptotically stable, then by the first part
of this proof, the trivial solution x = ¢ is uniform-stable. Hence, there exists 5, >0
such that 7y € R,, d[x,0] < 9, implies d[x(t; 1y, xy), 0] < p Vi 2t,.
Moreover, there exists &; > 0 such that for any € >0, exists T = T(¢) = 0 such
that if +>0, 0< wy < &;, then |w(t;19,wy)| < a(e) Yi>1 +T. Put § =
= min[60, b_l(f)l)]. By the same argument in the proof of Theorem 1, it can be proved
that if d[x,, 0] <9, then d[x(t; 1y, xy), 0] <€ V= 1ty + T(¢). This shows that x =
= 0 is uniform-asymptotically stable. The proof is completed.

Example 1. Consider a fuzzy-valued function f(t, x) which satisfies

d[f0,8] < a®d[x o) [awadr < o
0

(for example, f(t, x) = ﬁx, a(t) = 0 +1t2 satisfies all the above conditions).
Then the trivial solution x= 0 of (1) is uniform-stable.
Proof. Consider a Lyapunov function V(z, x) = d[x, 0].
Then %d[x, 6] < Vi, x) <2d[x,6] and |Vt x) -Vt )| € d[x,y] V()
(t,y)e R, x¢€". For h>0, we have
V(t+h, x + hf(t,x)) = d[x+hf(t,x),0] <
< d[x, 0] + hd[f(t, ), 6] < d[x, 0] + ha(t)d[x, d].

Hence, D'V(t, x) < a(t)d[x,0] = g(t, V(t, x)), where g(t,w) = a(t)w. It’s easy to
show that the solution w =0 of (2) is uniform-stable, so by Theorem 2, the trivial
solution x= o of (1) is uniform-stable.

Theorem 3. Suppose that:

(1) f(, x) is bounded on R, x S(p);

(i) 3 Ve C[R, xSp), R]: |V(t,x)=V(t,y)| < Ld[x,y]; a(d[x,0]) < V(t,x) £
< ay(t, d[x, 0]), where a(-) € K, ay(t,-) e K;
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(i) D'V, x) + V' (t,x) < g(t, V(t, x)), where g € CI[R, xR, R], g,-) is

nondecreasing for each te€ R, and Ve C[R, x S(p), R,], Vtx =
> ¢(d[x,0]), c(-)e K.

If solution w = 0 of (2) is stable, then the trivial solution x = o0 of (1) is
asymptotically stable.

Proof. By Theorem 1, the trivial solution x = 0 1is stable. Hence, for fhe Ry,
there exists 8,(y) such that d[xy, o] < &, implies d[x(s; 1y, xo), 0] <p Vi21,.
Moreover, for t, € R, there exists 8,(fy) >0 such that if 0 < w, < 8,(¢)), then
r(t ty, wog)<p Vit t,, where r(t;ty, wy) is the maximal solution of (2). Since
ag(ty,-) € K, then there exists 03(fy) > 0 such that ay(ty, 83) < 8,(fy)). Put &=
= 3(1y) = min{d,, 8,,83}. Let x(r) = x(t;1y, xp) be any solution of (1), d[xy, 0] <
< 0. We will show that

lim d[x(r), 0] = 0.
f—>o0

Suppose that lim supd[x(7), 0] > 0. Then there exists >0 and a sequence {t,} —
f—>oc0

— oo such that d[x(z,),0]=2m, n=0,1,2,....
By the boundedness of f(f, x) and by taking a subsequence of {#,}, we can

assume that there exists M >0, {t,} — o suchthat 7,,, -1, 2 %, n=0.

For t e |:tn, t, +%:| we have x(f) = x(t,) + J: f(t, x(1))dt. Hence

— ~

d[x(1),6] = d[x(t,),0] - [d[f(r. x(¥V),6]dt > n-M-L = g

2M

~

n

Define m(r) = V(1, x(t)) + j: V(1 x(1))d1, t>1,. Then
0

D'm(t) < D'V(t, x(®) + V' (1, x(t) < g(t, V(1. x(t)) < g(t,m()), t>1,.

Applying Lemma 1, it follows that m(t) < r(z; t,, wy), where wy = V(, xp).
Since V(to, XO) < ao(to, d[XO, 5]) < ao(to, 6) < 62(t0), we have ‘r(t, to, Wo)‘ < p
V't 2 ty. Therefore,

n 2M

I ( ) )) ‘ *
t, + , x| t, + < r(tty, —E T, x(7))dt <
(” 2M g 2M 1o, wo) k=0 t{ (% x(%)

. n).n ny.n
< r —col Al P LI Ll
< 1t tg, wo) c( ) n<p c( ) n<0

for n sufficiently large. This is a contradiction and, therefore,
lim d[x(t), 6] = 0.
t—o0

The proof is completed.
Theorem 4. Let the assumptions (i), (ii) of Theorem 2 hold and

(iii’) D'V, x)+ Vi, x) < g(t, V(t, x)), g(-,-) as in Theorem 3, Ve C[R, x
x S(p), R,], V'(t,x) 2 c(d[x,0]), c(-)e K.
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If solution w =0 of (2) is uniform-stable, then the trivial solution x = 0 of (1)
is uniform-asymptotically stable.

Proof. By Theorem 2, x = 0 of (1) is uniform-stable. Hence, for € =p there
exists Oy >0 suchthatif 7, € R,, d[xy,0]< §,, then

d[x(t; 19, x0), 0] < p, 12 1g.
We can assume that 8, satisfies if 0< wy < b(8,) then |r(z;1y, wo)| < a(p) V12
> 1. By the uniform-stability of x =0, forany € >0, there exists >0 such that if
d[xg,0] <9, 1ty € R, then d[x(t; 1y, xy), 0] <& Vt=1,. Let’sput T=T(e)=
)
c(d)
show that d[xg, 0] < for some 1, € [1), to + T(€)]. Suppose that d[x(t),0] =

Vie[ty, tg + T(e)] . Define m(r) = V(1, x(1)) + f V*(r, x(t))dt, t= t,. By the
0

=1+ Let x(r) = x(t; 1y, xy) be any solution of (1), d[x,,0] < §,. We will

same argument in the proof of Theorem 3, we have m(t) < r(t; ty, wy), t 2 t,, where
wo = V(ty, xo) and r(#; 1y, wy) is the maximal solution of (2). Therefore,

0 < V(tg+T,x(tg + 7)) <
to+T
< 1ty + Tt wg) = [ V' (mx(@)dT < rltg +Titg, wy) = Te(®).
Ty
Since V(1, x9) < b(d[x, 0]) < b(8y), we have wy = V(1y, x9) < b(§,) and, hence,
r(ty + T ty, wy) < a(p). Therefore, 0< V(ty + T, x(ty + T)) < a(p) — Tc(d) <O.
This contradiction shows that there exists #, € [ 1, t, + T] such that d[x(s;), 0] <

< 8. On the other hand, x(z; 1, x (1;; ty, xy)) = x(t; 19, Xo) V12 £, hence,

d[x@®),0] < e Vt=ty+ T(e).

This shows that the trivial solution x= o of (1) is uniform-asymptotically stable. The
proof is completed.

Theorem 5. Suppose that for Eq. (1) there exists a function V € C[R, x S(p),
R] which satisfies the following conditions:

() [V, )=V, )< Ld[x, y] V(1 x), (1,y)eR, xS(p);

(i) A(d[x,0])? < V(t,x) < A(d[x,0])", p>0, A, A>0;
(i) D'V(t, x) € —c.(d[x,0])’ + Ke ™™, 20, ¢>0.
If a> i, then the trivial solution x= 0 of (1) is exponential stable.

Proof. By Theorem 1, x= ¢ is uniform-stable. Hence, there exists & such that
toe Ry, d[xy,0]<d=d[x(t;ty, xp), 0] <p Vt=1,.

Let’s put M = i, m(t) = V(t, x(t))eM([_to), t=1t,. Wehave

Dtm(t) < MV(t, x(1)e™ 70 1+ MU0 pry(s, x(t))

IN

< MV, x(t))eM0) 4 MU0 [Ke_w —c(d[x, 5])"]

IN

< MV(t, x(1)eM710) 4 K MmM=l0) _ € MU0 vy () =
A

= KeM-0i-1g)
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Apply Lemma 1, m(r) — m(ty) < K f M=0(=10) go _ ML[e(M“”“‘W ~1]. By
0

-

hypothesises, m(ty) = V(ty, x9) < A(d[xy, 0])”, we have

mt) < ML(;W*Q“’*’O) K Adx, 8])

Put oy = —(M —a) >0, then

m(t) < Ad[x. o)) + & = Koot < pafxy, 07 + K, 124,

0oy 04y 1851

Therefore, V(i x(t)) < By(d[xp.0])e ™), 121, where B,(d[x.0]) =
= A(d[xy,6])” + K. On the other hand, A(d[x(t),8])” < V(1. x(1)), 121y, s0
o

1

finally we have

, 121,

e M,
d[x(t), 6] < |:Bl(d[;f()’0]):|pe 5 (1=10)

Denote o = %, B(d[xy,0]) = |:[31(d[x0,5])]p’ then

A

d[x(0), 8] < B(d[xg. 6])e 0, 121,

This shows that the trivial solution x = 0 of (1) is exponential-stable. The proof is
completed.
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