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We introduce and study an extended stochastic integral, a Wick product and Wick versions of
holomorphic functions on the Kondratiev-type spaces of regular generalized functions. These spaces are
connected with the Gamma-measure on some generalization of the Schwartz distributions space S’. As
examples we consider stochastic equations with Wick-type nonlinearity.

BBoAMTBHCS Ta BUBYAETHCS PO3LUMPEHUI CTOXACTUYHUI iHTErpaJl, BiKiBCbKe MHOXKEHHsI Ta BiKiBCbKi
Bepcii rosiomopcHux yHKIIH Ha mpocTopax (Tuny KoHapaTbeBa) peryJ/isipHUX y3araJbHeHUX pyHK-
nit. i mpocTopu moB’sA3aHi 3 raMMa-Mipol0 Ha NMEBHOMY y3arajJbHEHHI MPOCTOPY y3araJIbHEHHX

dyukuii Msapua S’. SK npukJIaan po3riisfaloThCst CTOXACTHYHI PIBHSAHHS 3 HEJIIHIHHOCTAMU BiKiB-
CBKOI'O THITY.

Introduction. In the paper [1] the Gamma-measure L as a particular case of the
compound Poisson measure on the Schwartz distributions space S’ was considered
and elements of the corresponding white noise analysis were studied. In particular,
orthogonal polynomials in the space L2(5 ’ H) of square integrable with respect to [

functions on §’ (the so-called generalized Laguerre polynomials — a particular case
of the generalized Appell polynomials) were constructed. But it was found that as
distinguished from the Gaussian and Poisson cases the orthogonality relation contains
the special scalar product connected with a nature of |. This fact, so as an absence of
the chaotic representation property in the “Gamma-analysis” (see, e.g., [2]), led to the
situation when an extended stochastic integral connected with the Gamma-measure on
S’ can not be constructed by analogy with the Gaussian or Poisson analysis.

In the paper [3] the author offered a natural construction of an extended stochastic

integral on LZ(SC;,].L) (where S; is some generalization of S’) and on the
corresponding Kondratiev-type space of nonregular generalized functions (S’)
(more exactly, integrable functions have values in LQ(S;,LL) and in (S’

correspondingly). The space (S’) was selected because its properties are well
studied and it is very simple to introduce a Wick product and Wick versions of
holomorphic functions on this space; this is very important for construction of the

informative integral theory. But, on the other hand, (§’)" is too wide space and

kernels from the natural orthogonal decompositions of elements of (S’)" belong to the
distributions spaces without “good” properties. This is inconvenient for applications.
The main aim of this paper is to move main results of [3] on the so-called

-1
Kondratiev-type space of regular generalized functions (Lz) . This space in
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narrower than (S’)’ and here is no the mentioned problem with orthogonal

.- . -1 . . . . .
decompositions in (LZ) . At the same time some difficulties with the Wick calculus

-1
on (LZ) have a technological nature and were successfully overcame. As an
additional argument in behalf of study of an extended stochastic integral and the Wick

-1 . . . . .
calculus on (Lz) we note that solutions of many stochastic equations with Wick-

-1
type nonlinearity lie in (Lz) (as an example we consider the classical Verhulst-type

stochastic equation; its solution X,, as it well known, does not lie in L2(5 ', u) for

X, = 1, but if follows from our results that X, € (L2)71 forall X, e (Lz)fl).
2

The paper is organized in the following manner. In the first section we recall some

elements of the “Gamma-analysis”. In the second section we introduce and study an
.. -1 . . .

extended stochastic integral on (Lz) . The third section devoted to the Wick calculus

and its interconnection with a stochastic integration. In the end of the paper we

consider examples of stochastic equations with Wick-type nonlinearity.

Finally we note that some questions connected with a stochastic integration in the
“Gamma-analysis” were studied in [4].

1. Preliminaries. Let ¢ be a nonatomic positive regular ©-finite measure on
(R,B(R)) satisfying some additional condition, see Remark 1.1 for details (here and
below the symbol B denotes the Borel G-algebra). We denote # := I[*(R,0) (the
space of square integrable with respect to ¢ functions on R). Let § be the Schwartz
test functions space on supp ¢ (if, e.g., ¢ is the Lebesgue measure then S is the
usual Schwartz space of rapidly decreasing infinitely differentiable functions). As it
well known, there exist Hilbert spaces H p= H »(R) c H, peN, such that we have
the nuclear chain

S’ = indlim}[_p/D}[_pD}[E }[ODHPD prlim}[p,=5, (1.1)
p'eN p'eN
where H —p» PEN, S ” are the dual spaces to H p» S with respect to the zero space
H. Note that one can select spaces H p» P €N, such that for each p> p’ it will be
1,2
We preserve the notation || » for norms in tensor powers and complexifications of
H, pel.

Remark 1.1. Let us describe the construction of the spaces #H p»» PEN, in

details, following [5]. Let (ej);-°:0 be the system of Hermite functions on R. For

» (where || denotes the normin #{,, peZ, in particular, ||, = ||, ).

each p > 1 we denote by H »= H »(R) the Hilbert space constructed by the

orthogonal basis (e (2] + 2)7° ) o’ and assume that the measure & is such that for

j:
some €2>0 the space H |, is continuously embedded into H = [*(R, ). Further,
let O,: H » H be the embedding operator. Without loss of generality one can

suppose that for € defined above O, is the operator of Hilbert — Schmidt type (for
example, if ¢ is the Lebesgue measure then one can put € = 0). Now we can put

H =9 the Hilbert factor space).
P PYE [ kER O ( pace)

p+e
Let us denote by the subindex “C” complexifications of spaces. Let {-,-) denote
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1032 N. A. KACHANOVSKY

the generated by the scalar product in # (real) dual pairing between elements of S
and Sc (andalso #_, - and 7 , c); this notation will be preserved for pairings
in tensor powers of spaces. Let F be the c-algebra on S’ generated by cylinder sets.

Definition 1.1. The measure W on the measurable space (S’,F) with the
Laplace transform

L) = [e™Mudn) = exp{~(,log-1)}, 1>1e s, (1.2)
v
is called the Gamma-measure.

Remark 1.2. Strictly speaking, one can not apply the Minlos theorem to (1.2) in
order to prove existence and uniqueness of the measure |, because A in (1.2) is not
an arbitrary element of S. But as it was proved in [1] the Gamma-measure is the
particular case of the compound Poisson measure. So, this is the well-defined
probability measure on .S’ with the holomorphic at zero Laplace transform.

Remark 1.3. The term “Gamma-measure” is connected with the fact that W is the
measure of the so-called Gamma-white noise. Let us explain this in more details,

following [1]. If ¢ is the Lebesgue measure m, then for each > 0 the Laplace
transform

lum(M[o,z]) = exp{—tlogd-A)} = 1-N)"", 1>reR

(here 1[0’ i denotes the indicator of the set [0,7]) coincides with the Laplace
transform li(t)(k) of a random variable &(r) having the so-called Gamma-
distribution, i.e., the density of the distribution function has the form

-1 -
xXT et

—1 , t>0.
@ 0

pi(x) =

The process { &), 1 > 0; &(0) := 0} is known as the Gamma-process. Thus the
triple (5 " F, um) is a direct representation of the generalized stochastic process
{&@),t=0} thatis a distributional derivative of the Gamma-process.

Now by (LZ) =’ (5 ' u) we denote the space of square integrable with respect to

u functions on S’ and construct orthogonal polynomials in (Lz). Let a: S¢ — S¢
be the function defined on some neighbourhood of 0e€ S by the formula o}) : =
oM
=T
orthogonal polynomials)

exp(e ;. & explln o)} _ {<
exp(x; A) lu(oc(K)) expqt x

where L el cSc, xeS’, U, is some neighbourhood of 0esc.

We define the so-called Wick exponential (a generating function of the

A
}L_1>—(1,10g(1 —k))}, (1.3)

Remark 1.4. Note that (1.3) is the infinite-dimensional analogs of the generating
functions of the one-dimensional Laguerre polynomials. These polynomials are
orthogonal “with respect to the one-dimensional Gamma-measure”, see, e.g., [6].

It is clear that :exp(x;-): is a holomorphic at zero function on S for each
xXes " So, using the Cauchy inequalities (see, e.g., [7]) and the kernel theorem (see,
e.g., [8, p. 46]) one can obtain the representation

iexp(x;A): = z%<Ln(x),7u®">, Ln(x)ej(é@", AeSe,
n=0 """
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where ® denotes a symmetric tensor product, 2% =1 even for A= 0. (Note that

actually for xeS’ L,(x)esS ®")

Definition 1.2. The polynomials <Ln(x), f(")>, f(") € 5?", are called the
generalized Laguerre polynomials.

In order to formulate a statement on an orthogonality of <L,, ), f (")> we need the
following definition.

Definition 1.3. We define the scalar product (-,-)., on S g " by the formula

< £, g<n)> _ Y .

ext 51 Sk
kol s; eN:j=1. k[ >1y>. >, LU LE st s !
Lisp+...+ s =n
(n)
X j f (11,...,1:1,...,tsl,...,rsl,...,1:S|+W+Sk,...,1:S1+m+sk)><
Rsl+..,+sk A
1 ll lk
n
X 8" (s s Thoeens Tgpoonns Typsvees Toingreees Ty g, ) X
%/_/
h L Iy
x o(dty)...o(dt, ;i) (1.4)
By | denote th di e |fOf = (f®, 5@
Y |'lex We denote the corresponding norm, i.e., | f = o f .
ex ext

Example 1.1. 1t follows from (1.4) that for n =1 <f(l), g(l)>

Further, for n=2

< f(2), g(2)>

= (10, M),

ext

= (f?,¢?) + [P 1% v,
R

ext

Theorem 1.1 [1]. The generalized Laguerre polynomials are orthogonal in (Lz)
in the sense that

(L), £ ) (L0, 8™ W) = 8, n1{(f™, )

s’

ext’

By H M eN, we denote the closure of S g) " with respect to the norm ||

ext» ext

(see (1.4)), H) :=C. For fWeH!) we define (Lz) 3 <Ln, f(")> 1=

ext ext
r= klim <Ln, fk(")> in (Lz), where S2" 3 £V = f (as k—oo) in HE (the
—>oo
correctness of this definition can be proved by analogy with the classical Gaussian
case, see also [3, 9]). The following statement from results of [5] follows.
Theorem 1.2. A function fe€ (LZ) if and only if there exists a sequence of

kernels ( ey (")):_O such that f can be presented in the form

ext

f= i (L. f™). (1.5)

n=0

where the series converges in (Lz), i.e., the (LZ)-norm of f

2
< oo,
ext

Iy = Xntls®

n=0
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1034 N. A. KACHANOVSKY

Furthermore, the system {<Ln,f(”)>, e ™ neZ+} plays a role of an
orthogonal basis in (Lz) in the sense that for f, g € (LZ)

92 2 (78"

where f (m), g(") are the kernels from decompositions (1.5) for f, g.
Now let us introduce the Kondratiev-type spaces of regular test and generalized

functions. First we consider the set ? := {f = Zf:’zfo<Ln,f(”)>, fMenn),

Ny eZ +} - (Lz) of polynomials and V geN introduce on this set the scalar
; A N m\ , = TV ()

product (--),, putting for f= Zn:O<Ln,f" >, g= zniO<Ln,g">

min(Nf,Ng)

(f£r9)g = > ()27 (r™, ¢")

n=0

Let |]], be the corresponding norm: |||, = l f f \/2 2q"‘f(”)

Definition 1.4. We define the Kondratiev- type spaces of (“regular’) test

ext’

ext

1
Sfunctions (Lz)q, q€N, as the closures of P with respect to the norms ||,

(Lz) = pr hm(Lz)
geN
It is not difficult to see that f e (L2)1q if and only if f can be presented in form
(1.5) with

f(")

< oo,
ext

1715 = Z(n )72

therefore the generalized Laguerre polynomials play a role of an orthogonal basis
in (L), .
Itis obvious that V geN || 2) < |-[|,. Further, leta sequence (f; €P);_, be
a Cauchy one in (Lz); and tends to zero in (LZ), and let f:= klim fi In (LZ);. We
—oo

have

HfH(LZ) = H.f‘fk"‘ka(Lz) S Hf—ka(Lz) + kaH(LZ) <
< N f =l + 1z — 0

as k— oo, 5o || f|2)=0. Butit follows from here that all coefficients f " g
from decomposition (1.5) for f are equal to zero whence | ||, = 0. Therefore f, —
—0 (as k—>e0) in (L*),. Thus (see, e.g., [8, p. 511) (Lz) —, (I?). Moreover,
because [, is a holomorphic at zero function, this embeddmg is dense (see [10]).
Therefore one can consider the chain

(A= 1nd11m(L) Lo (D)7, o (IP) o (L), o (1Y),
geN

where (Lz)_, (LZ)_ are the spaces dual to (Lz)lq, (Lz)1 with respect to (L2)
correspondmgly
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AN EXTENDED STOCHASTIC INTEGRAL AND THE WICK CALCULLUS ... 1035

Definition 1.5. The spaces (Lz)::], (Lz)_1 are called the Kondratiev-type
spaces of regular generalized functions (cf. [11]).

It is easy to see that F e (Lz):}] if and only if F can be presented as the formal
series

F= Y (L,.F™), F"™eH{) (1.6)
m=0
with

2 < —gm | p(m) |2 oo
IFI2, = 202 F th < oo,
m=
Moreover, the generalized Laguerre polynomials play a role of an orthogonal basis in

(Lz)::] in the sense that for F, He(Lz):ll presented in form (1.6) we have

(F,H)_, = 22202_q’"<F(’"), H<m)> (here ()4 denotes the (real) scalar

ext
-1 r =
product in (Lz)_q, IFIl_, = \/(F’ F)_q )
By ({-,-)) we denote the dual pairing between elements of (Lz)ji and (Lz)}]
(correspondingly (LZ)_1 and (Lz)l), this pairing is generated by the scalar product
in (Lz). If Fe (Lz):]q and fe (Lz)ll we have

ext’

where F, "W egf ézt) are the kernels from decompositions (1.6), (1.5) for F and
f respectively.

Finally, in order to compare results of this paper with the corresponding results in a
“nonregular’ case (see [3]) we have to recall the corresponding definitions and
statements. It was proved in [3] (see also [5]) that for all p, neN the continuous

embeddings }[fé o HM, S o H

ext? (M hold. Hence one can consider the
chains

ext

SO HW ( DHGE DHIL D SE", nel,, peN, (17

where S¢" (provided by the inductive limit topology), # f’;,),ext are the spaces dual

to S g " H Sé with respect to the zero space H éﬁz correspondingly. For the (real)

dual pairings between elements of S ('C(") and S g " we preserve the notation (-, -)
Remark 1.5. Of course, for n =1 chain (1.7) has the form

ext*®

ScDH _,c DHcDH,c D Sc

i.e., this chain coincides with the complexification of chain (1.1). But for n > 1 chain
(1.7) is not a tensor power of a chain of type (1.1).

Remark 1.6. 1t was proved in [4] that the space H M n > 1, is the orthogonal

ext >

sum of }[g" and some another Hilbert spaces. In this sense ﬂg" can be

considered as a subspace of # (.
Let P(S’) be the set of all continuous polynomials on §’. It follows from results

of [12 — 14] that any element of P(S”) can be presented in the form
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1036 N. A. KACHANOVSKY

Wi .
@) = AL, 7). " esg". (1.8)

n=0

We define on  P(S’) a family of the scalar products, putting for f, geP(S’)
presented in form (1.8), p, geN

min(Nf,Ng)
2
(f+&pq = Z (n!)? 29" <f(n)’ g(n)>p’
n=0
where by (-,-) » the scalar productin A [(?" denoted. The corresponding norms are
denoted by |||, ;. i.e., for feP(S’) of form (1.8) we have

_ Ny
115, = (£.7),, = Za(n!)zf’"\f(”)

2
b

Definition 1.6. We define the Kondratiev-type test functions spaces (ﬂ P)q’ D,

geN, as the closures of P(S’) with respect to the norms H~Hp’q; S) :=
c=prlim(H ) .
priim(7,),
Itis clear that f € (}[ P)q if and only if f can be presented in the form
f= Z <Ln’ f(n)>, f(n) ES%", (1.9)
n=0
where the series converges in the sense that
2 — N '22qn (n) | < oo 1.10
1f1g = X @) 27| FPf < e (1.10)

n=0

Further, it follows from Definition 1.6 that f €(S) if and only if f can be presented
in form (1.9) and norm (1.10) is finite for all p, g e N.

Remark 1.7. Let f, g€ (}[ I’)q and presented in form (1.9). Then

G0y = 300725,
n=0

so the system of the generalized Laguerre polynomials plays the role of an orthogonal
basis in (}[p)q.

Proposition 1.1 [3]. There exists py €N such that for each p = p, there
exists qo(p) such that for each q > qy(p) the dense and continuous embedding

(#,), = (L) holds.

So, for p, g € N sufficiently large we can consider the following chain:

) = indlimf ;) > (), 2 () 2 (), 2 ©) =

p
= prlim(# -)_,
Bie N( P)q
where (.‘7-[ _ p)_q, (S’)" are the dual with respect to (Lz) spaces to (.‘7-[ p)q, $)
correspondingly.
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Definition 1.7. The spaces (% _,)_ .

spaces of nonregular generalized functions.
Note that Kondratiev-type spaces of regular and nonregular functions are connected
as follows:

(S’) are called the Kondratiev-type

-1

57 > ), > ()

) (LZ) ) (Lz); ) (.‘}[p)q o (S),

, -1 1
&y 5 (B 5 ()5 () 5 ©.
Unfortunately, the spaces (ﬂ{ P)q and (I*)! (so as (.‘7{ _p)iq and (I)7!) do
not included one to another. (More exactly there exists f e (Lz)1 such that the

coefficients from decomposition (1.5) f (m) ES?: " so fe (}[ p)q; and there exists

231
g+1 = To°, SO ge (L) )

ge(}[p)q such that | g||
Now let us construct an orthogonal basis in (}[ _ P)—q and introduce some another
notions which will be necessary below.
First we note that because in the complexification of tensor power n of chain (1.1)

and in chain (1.7) the test functions spaces are the same, the spaces S ('C(”) and S (/ch)(n)’

neZ, areisomorphic (we remind that S(E:(O) = 5&:®(0) =C, Sél) = S(E:@(l) = S¢).

So, there exists the family of bijective operators U,,: S(gn) - 5('C®(n), neZ, such
that for any nel,, foreach FS e 5(&(")
= ®
(R, r™) = (UER, f7) ¥ ™ esg (1.11)

Remark 1.8. Unfortunately, the restriction of U,,n > 1, on H) is not an

isomorphism between H ") and H g " (see [3] for details).

ext

Further, let us define on P(S’) the operator <F(m) :D:®m>ex[ with constant

ext »
coefficients Fe()f'f) ES('C(m) , putting on the “monomials” <Ln, f (")>, f mes g "

(D) () = 2 e (B2 57),)

and continue by linearity. Here <F (m ¢ (")>ext €S g) (=m) with n>m is defined for

ext »
F™ = 2®" by the formula

<F(m) 7\‘®n>exl - <F(m) 7\’®m>eXt x@(n—m)

ext > ext >

and for a general f Wes ((E) " by the corresponding limit ({l®": reS C} is a total
setin 58(")).
It follows from results of [3] (see also [12]) that the operator <Fé{'f), :D:®m>ext can

be continued to the linear continuous operator on (S).

Now let us consider the dual to <I’é$), :D:®m>ext with respect to %) operator

<1’}($), 2D1®m>;t: (S”) — (S’) defined by the formula
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1038 N. A. KACHANOVSKY

((r:p2m) . g)) = (. (r:02m) 7))

VHe(S), Vfe(S).

Definition 1.8. For cach F 65(2:(’") we define the generalized function
<Lm’ E:(>:'11)> €(S"), putting

(L B2 = (FG,:D®m) 1,

Theorem 1.3 [3]. The generalized functions <L F. (’”)>, FMes ('C(m), meZ,,

m> ~ext ext
are orthogonal to the generalized Laguerre polynomials in the sense that

(Lo BSOW (L F70)) = 8 n(ESL f®) o neZy, fMesE". (112)
Remark 1.9. It follows from (1.12) and Theorem 1.1 that for a “regular”

ext m> ©ext
accepted in Definition 1.8 is natural.

Theorem 1.4 [3]. Fe(.‘l-[_p)_q if and only if there exists a sequence of

Fm g g@m <L F, ('”)> is the generalized Laguerre polynomial. So, the designation

generalized kernels (Fe(ff) €S (E:(m) ) such that F can be presented in the form
m=0

F= Y (L, F) (1.13)
m=0
and
- 2
IFI2, -y = 2 27U < o
m=0

Moreover, for F, He(}[_p)_q presented in form (1.13) the scalar product in
(5-[ _ P)—q has the form

(Fs H)—p,—q = z 2_(1’"<UmFé(:t1), UmHéth)>_p’
m=0

where {-, -)_p denotes the (real) scalar product in tensor powers of }[_p,(c. So,

the generalized functions <Lm, I%(;f)>, o e S8™ play the role of an orthogonal
basis in (}[_p)_q.

It is easy to see that F €(S’)” if and only if F can be presented in form (1.13) and
there exist py, ¢y €N suchthatforall p, geN, p> py, g=q, | FH_,,,

2. An extended stochastic integral on spaces of regular generalized functions.
The natural extended stochastic integral on the square integrable functions space

q<°°.

LZ(S, u = (I?) and on the corresponding Kondratiev-type space of nonregular

generalized functions (S’)° was introduced and studied in [3]. In this section we
consider this integral on the spaces of regular generalized functions.

First, let us recall the classical definition of the extended stochastic integral. Let 7y
be the Gaussian measure on the usual Schwartz distributions space S’, i.e., the
probability measure with the Laplace transform
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AN EXTENDED STOCHASTIC INTEGRAL AND THE WICK CALCULUS ... 1039
1
L) = [expllx Wv(dn) = exp {5 0, x>},
2

where the dual pairing (-, -) is generated by the scalar productin I*(R, dr).
By the Wiener — 1t6 chaos decomposition theorem (see, e.g., [15, 16]) we can write

any function f € I?(S’y) in the form

f=X[fawe", @.1)
n=0

where f, € I (Rﬁ, m) (m is the Lebesgue measure), i.e., f, € Lz(Rﬁ) and f, isa
symmetric function (in the sense that fn('n(l),...,~n(n)) = f.(4p.evsy) for all

permutations © of {l,...,n} ), and

[faw®" = [ faaw?" =
R!
Uz Uy

= n']ojj [ £ w)aw, aw,, ... dw,  aw,
00 00

for n=1, while n=0 termin (2.1)is just a constant f,. Here W,. is the standard
Wiener process.
Now suppose that f € I2(§% u) ® I*(R,) is F x B(R,)-measurable stochastic

process. Then for almost all s = 0 there exist f,(s;-) € I (Rf_) neN, fys)eC
such that

F0 = Y [ flswdw,eo®". 2.2)

n=0 R”

Fix 1€[0, +eo]. Let fn,, be the symmetrization of  f,(s;-)1i5cqo, With respect to
n+ 1 variables. Suppose

< oo,

Tnt

i (n+1)!
n=0

LZ (er +1 )
Then the extended stochastic integral of F. is defined by

1 oo
[Faw, =Y [ f.(swdwSe. (2.3)
0 n=0Rn+l

+

Proposition 2.1 [17, 16]. Extended stochastic integral (2.3) is an extension of the
Ito integral in the following sense: if F, is adapted with respect to the flow of ©-

t
algebras generated by the Wiener process and E[-[O‘E‘st] < oo (here E
denotes the expectation ) then F is integrable in the extended sense and by Ito

( we denote the corresponding Ité integral by J; F, dW, ) and
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1040 N. A. KACHANOVSKY

JFdW = jf;dws.

On the other hand, it is well known (see, e.g., [16]) that one can complete a
definition of f, from (2.2) for negative arguments, putting f, = 0 if at least one its
argument is negative, and identify the multiple stochastic integral with the
corresponding generalized Hermite polynomial, i.e.,

[ Fus:wdW, (0" = (H,(0), f,(s:),
R’

where H,(x) 65C®", neZ,, is the kernel of the Hermite polynomial of power n

from the decomposition

(H,(0,0%"), heSc.

1
n!

cexp(x;A): = exp{(x, 7»)‘%(7», 7»)} 2::

1 ~
Thus one can write the integrand F; and the stochastic integral J.o F,dW;, in the form

oo

2 s fa(539)

and

o'—'w
Q..)

§< Hyors o)

correspondingly.
If instead of the space r (5 ’, y) with the Gaussian measure Yy we use the space

(%) = LZ(S ’, u) with the Gamma-measure [ (the main probability space now is

(S", F, u)) then the full analog of the construction of the extended stochastic integral
recalled above can not be obtained. In the first place, as it well known (see, e.g., [2]),
the Gamma-measure has no the chaotic representation property (CRP), i.e., there is no
a full analog of the Wiener — It6 chaos decomposition theorem, and therefore we can
not present any element f e (I?) in form (2.1) with the corresponding stochastic
process. In the second place, an attempt to “go around” the absence of the CRP leads

to use of H ") instead of }[®", see [5] (we recall that #H = LA(R, 6)c). But

ext

because the spaces H éxt) , n > 1, are not tensor powers of some Hilbert spaces, it is

impossible to construct the kernels  f;, , (see above) by analogy with the Gaussian
case. So, in order to construct a natural extended stochastic integral connected with
the Gamma-measure, we need a modification of the classical scheme described above.
The idea of such modification is very simple: in order to construct f,, eqf (13D

ext
starting from  f,(s)e H ) we “exclude a diagonal of fn’,”, i.e., (nonstrictly

speaking) we symmetrize the function

Ju (Tl ooy T s)l[o,l)(s), if s#7T,....5%7,,

fn,(rl,... WnS) = {

0, in other cases

(see Lemma 2.1 bellow).
Now let us pass to construction of an extended stochastic integral. By analogy with
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the classical Gaussian analysis one can consider the compensated Gamma-process
G, = < Ly, 1, S)> e(l?), seR +» on the probability space (S’, F, 1) (from this point
of view L is the measure of the Gamma-white noise G/, formally G, = (L;,3,),
where §; is the delta-function ) Let Fe (LZ):; ® H {, where H (:= LZ(RJr)(C c
c H ¢, qeN. Then (see (1.6))

ext

i < F(m) >, Fm < gy (m) ®5_[ + (2.4)

Lemma 2.1 [3]. For given F™ e (™ ®H . and te0,+w] we construct

ext
the element [E)mz)) eH "V by the following way. Let us consider a sequence

{fif{")esg’”(@%} such that E™ = lim f(m) in ﬂ-[(m)®.‘7-[((+3 and put

ext
i=1 [ —>o0 b

f('") e C o f(m)(rl,...,tm)l[o’t)(r), if T#T,...,T#T,,
1ooves Yy .

10 0, in other cases

]A‘[(()ml))l = Pf[g’"t))’i, where 1[0’,)(1:) denotes the indicator of {t€[0,1)}, P is the

symmetrization operator. Then F[o j o= lim J;[E)mt))i in HD This limit does
i— oo LU 1)s

not depend on the sequence { fl.ff”)}i_l and the estimate

‘ £-(m)
[0.)

< ‘ (m)

ext

H ) ®H &
holds.

Definition 2.1. Let Fe (Lz)j] ®H{, geN. For each tel0,+w] we define
the extended stochastic integral '[(; F, d G, e (Lz)jj, putting

g (L1 ), 2.5)

ot_,N

where the kernels I:Eg)mt)) are defined as in Lemma 2.1 starting from the kernels

F"™ from decomposition (2.4) for F.

Because
2
= 2 [ t) ext
-q m=0
q qm | p(m) = 274
< 2 Z 2 ‘F ‘H(nﬁ@}[ - HFH ®}[+ < oo,

m=0
[\ F,dG, is well-defined.
0

Note that our definition of j(;Fs d G, formally coincides with the definition of the

extended stochastic integral on (LZ) H <E given in [3].
Letnow Fe(S’) ® H (. Then (see (1.13)) F can be presented in the form
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Fo= (L ), FW esi™ @3¢,

m=0

2 _ 5 |y, B 2
HFH(%—;)),‘I®}[<E mz:‘()z UmFé:xt,- ]{Ei)pr,n(c®}[£ < oo

for some p, g €N (see (1.11) for the definition of U,,).

Definition 2.2 [3]. For a generalized function Fe(S’Y ® H{ and t e
€ [0, +oo] we define an analog of an extended stochastic integral, putting

O —_

ES ‘}Gv = 2 <Lm+1’ U}’:ll-l—l F;A(m)>’
m=0

where FN™ ejéjé(mﬂ) is the “symmetrization of (Um Féﬁ").)l[o, t)(-)e.S('Cé(m) ®
® }[(E with respect to m + 1 variables”.

It was proved in [3] that for Fopr. e HUW @ H & and 1€[0,+] U\, F™
coincides with I:E%mt)) constructed in Lemma 2.1. Therefore we have the following
statement.

Proposition 2.2. The restriction of the analog of an extended stochastic integral

t oA 2\-1 + L . roa . 2\l +
Jo 0odG on (L )7q ®H ¢ coincides with J.o odG,, i.e., for FE(L )7(] ®H ¢
J(;Fs c}GS = J};FS C,I\Gs (thus below we will denote all stochastic integrals by

t ~
[, 246, ).

The following statement (the “Gamma-analog” of Proposition 2.1) explains that our
generalization of the stochastic integral is natural.

Theorem 2.1. Let Fe (LZ) ®HE be an F x B(R,)-measurable stochastic
process adapted with respect to the flow of G-algebras generated by the
compensated Gamma-process G, and E J-:\ F, \2 o(ds) < oo (here as above E

denotes the expectation). Then for each t€[0,+e] F is integrable on the interval
[0,7) in the extended sense and by Ité with respect to G, (in the sense of the so-

called I* -theory) and

stc?Gs = stdGs,
0 0

where by J; F,dG, the It6 integral denoted.

Proof. 1t follows directly from Definition 2.1 that the restriction of I; ° QG‘Y on

(L2)®5{E coincides with the extended stochastic integral on (L2)®5{(+:

constructed in [3]. But for the last integral the statement of the theorem was proved
in [3, 9].

Finally, let us explain that the extended stochastic integral j(; oc?GX can be

described as the operator dual to the stochastic differentiation operator (see, e.g., [16]
for a detailed description of such approach in the Gaussian analysis).
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For neN, f™e#H ") and geH . we define <f("),g> te}[ézt_l) by the

(.4
formula

(7. 8)o h ), = (0 U (b)) v HD ea G

ex
The well-definiteness of < f (”), g>ext was proved in [9], see also [3].
Proposition 2.3 [9]. Let f™eH éﬁg ,
M eH D ® H o such that
[r®gsos) = (1™, ¢).

R

neN. Then there exists a unique

VgeH (2.6)

Xt

and
‘f(”)(')‘y{g;”@ﬂc < ‘ (n)

ext’

Here the integral in the left-hand side of (2.6) is understanding in the sense that for
each h™Y e.’l-[gt_l)

<f S 6 85)0s), h("_l)> = [P0 00w,
ext R

R
1
Definition 2.3. Let fe(Lz)q, qeN. We define the stochastic derivative
d.f € (Lz); ® H - putting

oo

of = (L, f70)),

n=1

where the kernels f™()eH "~V ® H - are defined as in Proposition 2.3

ext
starting from the kernels ™ e H ") from decomposition (1.5) for f.
It is easy to see that

2

2 _ - ,2 qn 2| p(n+D)
Ha'fH(LZ);M@ = Zo(n.) 29" (n+ | f ()\H&)M(C <

<27 i ((n+ D227+ D] pD 2

n=0

therefore d. is well-defined. Note that formally 9. = {3.,:D:)
the d-function.

Theorem 2.2. Let f e (Lz)lq, Fe (Lz):; ®}[E, qgeN. Then

< 274 2
S <2 fR < o,

o> Where 0. denotes

<<deGf>> = [ oo Vel se)
0 0

Proof. First we note that

.

0 n=0
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ext

where FE) A eH Y are from decomposition (2.5) for J.(;FS dG,, fo*Degf (1D

are from decomposition (1.5) for f. Further, d.f= Z::O(n + 1)<Ln, f("+1)(~)>, SO we
have

(F.o.f) = Y+ DF™, D)

n=0

ext

(here F™ eﬂézt)@}[Jr are the kernels from decomposition (2.4) for F.,

FUCyeH W @9 L are defined in Proposition 2.3). Therefore in order to finish
the proof it is sufficient to show that

~

< E)n)t)’ f(n+1)> _ j<FT(n)’f(n+l)(T)>extG(dT)' 2.7

0

ext

Let F™ ed th) ®#H { be the kernels from decomposition (2.4) for F. We consider
asequence Sg" ® S¢ 3 F(f’) — F™ (as i—o0) in HI) ®H{ and construct as

in Lemma 2.1 58(”+])3F(") - F[g')[) (as i— o) in HPV  Let also

[0 ext
5:?(””) 3 £ 5 D (a5 i —e0) in H UHD. Now we have (see (1.4))
Fom) (n+1) _ (n+1!
(B K0) = > e o1

k1, s;eNj=l. .kl >h>. >, B sy
Lisy+...+ sy =n+1

(n)
X '[ K ,)l(rl,...,rl,...,rsl+m+sk,...,1Sl+m+sk)><
R.3'1+...+sk ll

Iy

(n+1) _
X fi (’51,-..,’51,---, Ts1+...+sk’""Tsl+...+sk)6(d11)"'G(drs1+...+sk) -
I
1 Iy

n!
- ) e
. !
klj,s;eNj=lo ki >h> >, L. lk spl...s!
Lisy+...+ s =n+1

X j [Ot)l(rl,...,rl,...,rsﬁ_._ﬂk,...,Tsﬁ_uﬂk)><
v1+ Sk ll

Iy

(n+1)
X (T ey Tyeves Ty g ooes Ty ) 0T 0 0(d Ty ) +
\ﬁ/_—d

ll lk
+ J [0 Tloeees Tpseees T ces T ) X
t) 1 s1+.“+s,‘,’ Iocoeo Vlooees Vgt ot Vst
31+ Sk ll I 1
s

(n+1)
X ST (T s Ty eves Ty g ees Tobg ) 0@ T) . 0(d Ty 4 ) + o
[

Iy
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r~(n)
-t [o,z),i(Tl»---’ Tiseees Tt Usph sy Tl) x
N R g 2 1, -1
R 1 Iy
% (n+l)( ) d d
L Tpseees Tpaees Tt ggr oo T by, o(drty)...o( Ts1+...+sk)

Iy I

k

- ) . x
B B s (s = D)!
kiljos; €N j=lok=L > >0 > 0 L2y silesg (s = D!
hsy+o .+l 1S +(sp=D=n

r(n)
X J. [(),[),i(ﬂtl"”’rl"“’ TS]+‘.‘+Sk_1”"’TS1+‘.‘+Sk_1 ’ TS|+.‘.+Sk_1+1’
RJ]+..,+A‘k I
! L1
(n+1)
Tt TS]+...+Sk—1’T)ﬁ (Tl"“’Tl""’ TS]+,..+Sk_1""’TS]+...+Sk_1 ’

h L

Tyt +lo e Ts]+..‘+sk—17’c) G(dﬂcl)'”G(drs]+..‘+sk—1)6(dﬂc) =

(ED, (V@) o(dr)

€X

I
o — =~

(a nonatomicity of ¢ used). Approaching the limit as i — oo we obtain (2.7).
The theorem is proved.
3. Elements of the Wick calculus and stochastic equations. In this section we
introduce a Wick product and Wick versions of holomorphic functions on the
-1
Kondratiev-type space of regular generalized functions (Lz) . Then we study the

interconnection of these objects with an extended stochastic integral and consider some
stochastic equations with Wick-type nonlinearity.

First we recall elements of the Wick calculus on the space (S’)" of nonregular
generalized functions.

Definition 3.1. For Fe(S’) we define an integral S-transform (SF)(A), A
belongs to some neighbourhood of zero in S, putting (see (1.3))

(SFY(A) := ((F,:exp(-,\)).

This definition is correct because for each F e(S’)" there exist p, geN such
that Fe(ﬂ-[_p)_q; and for A €S such that Zq\Mi <1 we have :exp(-,A): €

€ (5-[ p)q.
Remark 3.1. We note thatif Fe(S’)" is presented in form (1.6) then (SF)(A) =
=Y (F™. %™ . In particular, (SF)(0)= F”, SI=1.
Theorem 3.1 [18, 12, 13]. An S-transform is a topological isomorphism between

the space (S’) and the algebra Hol, of germs of holomorphic at zero functions
on Sc.
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Definition 3.2. For F, He(S’) we define the Wick product F O He(S’),
putting

FOH := SY(SFSH).
Remark 3.2. 1f generalized functions F, H €(S’)" presented in form (1.13) then
Pou = (1 T o),
k=0 n=0

where for F) € S¢™, HU e SE™ the element ) 0 HIW € S{"*™ is defined
by (see (1.11)) %) 0 HYY = U, L, (U, R ® U, HSY) (see (3.13) below).

Definition 3.3. For Fe(S’) and a function h: C — C holomorphic at
(SF)(0) we define the Wick version hO(F) e(S’) putting

W(F) = STh(SF).
The correctness of Definitions 3.2, 3.3 from Theorem 3.1 follows.
Remark 3.3. 1t is easy to see that if /& from Definition 3.3 presented in the form

huw) = 3" h,(u=(SF)(0))" then W(F) = Z::Oh,,(F—(SF)(O))O", where
F":=F0..0F.
rv..vr

n times

Because the space (Lz)_1 of regular generalized functions in a subspace of (S’)’,

the Wick product F ¢ H and the Wick versions of a holomorphic function hO(F ) are
well-defined for F, H e (L2)_1; but as elements of (S’)". In order to prove that

actually now F O H, hO(F ) e (Lz)_l we need the following statement (in a sense this
is a generalization of Lemma 2.1).
Lemma 3.1. Let FPeH ™) H™ eH ™. Then one can extend F™ ¢

ext ext °
O H™ = U;}rm(UnF(”) ® UmH(m))GS('C(”+m) (see (1.11)) to a linear continuous

ext

functional on  H {1F™ (more exactly, ~IFWH™ e "*™ such  that

ext

v gltm 658(“"’) <F(”)H(’"), g("+m)> = <F(”) O H™, g("+m)> ) Identifying

ext

F™ O H™ \with this functional one can reckon that F™ o g™

= FWHEM™ e gf PFM g this case

ext
|[F™ o B Hm™ (3.1)

< ‘ F(")

ext ext ext’

o —

One can construct the element F'WH"™ as follows. Let 58” 3™ 5 F (s

vooo) in HM ngahff")e H'™ (as v—>o0) in H™. We put

ext >

(f(")h(”’)) (oo tus tuste oo tpm) = F et ) (e ty) 1=
v

{ (et )AS (liteos tyg)s Bf Vie Lo, nh Vjeln+l.. n+mh 21,

0, in other cases
(3.2)
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(f(")h(m)) = P(f(")h(m)) , where P is the symmetrization operator. Then

v v

FOH™ = lim (f(")h(m)) in o {1+ (this limit does not depend on a choice
UV —> oo v

of sequences ( U(n))pzl’ (hf;m))u 21)‘

Remark 3.4. Note that nonstrictly speaking F'H"™ is the symmetrization of
the functions

F(n)H(m)(tl, ceey tn;tn+l’ ceey tn+m) L=

FOxp oot ) H (s ooty ), iE Vie{l o n}, YV je{n+1,.. ntm}, 121,

0, in other cases
with respect to n + m variables.

Proof of the lemma. First we prove that F™WH"™ is well-defined in # (7™,

independent on a choice of approximating sequences ( U("))U> . (hém))wl’ and

‘ FO ™ H™

< |F™
Xt

(3.3)

ext ext’

€.

Let us consider sequences ( ("))U>], (h(’"))U>l introduced in the lemma. We may

v v
assume, without loss of generality, that m > n. It follows from the symmetry of fv(”)
and h{™ that

(f(")h(”’)) (oo byttt b)) =

v

n!m! z

_ ' (
(n+m). 1<py,..., aS<n,n+l1<q,..., g <Sn+m,0<r<n
P1<e-<Pps Pra1 <o <Pps 1 <---<qp_ps Gn—r4+1<---<qpy

(n) (m)
F™h )(tpl,...,tpr,
v

tql O tqnfr ; tpr+l O tpn ’ tqnfwrl e tqm) (34)

(here for r = n the argument in the right-hand side of (3.4) is (tpl""’tpr;

tql,...,tqm); for r=0 this argument is (tql,...,tqn; Ppseeesty s tq,m""’tqm))' To

put it in another way, arguments of ( f (”)h(m)) in this sum are 7; withall je {1,...
v

..., n+m}, but subindexes of first n arguments and last m arguments (“before” and

99 ¢,

“after” ‘;’) must be (independently) arranged in an ascending order.

. In accordance with the definition of | we

"ext

Let us estimate (f(")h(m))
v

ext
have
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2

— '
f(")h(m) (n+m)!
L. Lk syl sy
vlext  kiljsjeNj=lo ikl >h> >0, ol St Sk
hsi+... s =n+m
2
—
(n),(m)
x SO (ot by gt s )| X
S| H.+ —
Rl w8k v ll /
k
x o(dny)...odty i) (3.5)

We say that collections of equal arguments (like 17,...,7) are called processions
l
1
(we need this term below).

Now we can substitute expression (3.4) for ( f (")h(m)) in (3.5) and use the well-

v
2
known estimate ‘Zleal‘ <p zlp:]\al . Because, as it is easy to see, the right-

(n+m)!

hand side of (3.4) contains
n'm!

terms, we have the estimate

2

(n) g (m) n+m-.
(fnhm) < 2 S P g 'X
v lext koljs; €N j=lo ki >hL>. >0, 1l Ste-Sgt
Lsi+... s =n+m
2
(n) g, (m)
X J‘ (f h ) (tl’--wtl’-"’ ts1+...+xk""’ts]+...+xk) x
%/_/
Rs1+“.+sk v 11 lk
xodn)...oldty o)+ | (3.6)

The terms in the “interior” sum with processions “separated by °;’ (see (3.4)) are equal

to zero by the definition of ( f (")h(’")) . The rest terms (if exist for given k,j, [;, s;)
v

fall into groups of equal summands. These equal summands are obtained by
rearrangements of processions of equal length “before” *;> and “after” ‘;’. (Note that
because the subindexes of arguments in sums (3.4) and (3.5) are ordered, the

99 <. LI

processions “before” ‘;’ (so as “after” ;’ ) in (3.6) do not fail and do not rearrange,

and elements inside of processions do not rearrange.) Furthermore, if “before” °;’
3%

there are s’ processions of length [ and “after” ‘;” there are s” processions of
’ ”
(5" +s7)!

/I!

length [ then by means of rearrangements of these processions one obtains r

s’ls
equal summands (here s’, s”€Z,, s"+s”€N). Thus the nonzero terms in the full
sum in the right-hand side of (3.6) are “connected” with the expression

llsl ++lksk =n+m (37)
that can be presented in the form

l” ”

s r ” v _
llsl +...+ lk'sk' = n, 151 +...+ lk”sk” = m,
KoK Lo L S S W s sl sl €N, (3.8)

U>..>0, I'>.>0.

ISSN 1027-3190. Ykp. mam. sxypn., 2005, m. 57, N° 8



AN EXTENDED STOCHASTIC INTEGRAL AND THE WICK CALCULLUS ... 1049

” ”

Now for every s; from (3.7) either Is/=s; (/=1;) or As/=s; (I'=1;) or I,
s, suchthat s + 57, = s; (ll- =1 —lj). Inequalities for ", ” in (3.8) from the
inequalities [; >...>/, and from the ordering of subindexes of arguments in (3.4)

follow (most “long” processions have least subindexes of arguments). Let us replace
every group of equal terms in the right-hand side of (3.6) by a one representative
multiplied by the quantity of terms in the group. It is easy to see that summands in the

obtained sum depend on a structure of processions “before” ‘;> and “after” °;” but
independend on subindexes of arguments (note that now processions are invariant with

r”

respect to all rearrangements). Therefore taking into account that ***" =1*1*" one
can rewrite the sum in the right-hand side of (3.6) in the form

nlm!
’ Yl , S ns! ” s7, X
k ’ 7 2 ”
1151"' +Ik5k _nlls1+ +lk L =m, l l "Sk'!lll"'lk"l‘sl!"'sk"!
KLk e sy sp s L ,sl, LspreN,
> >, > >0
(n) g (m) .
X j (f h ) (s eeestysenns Bggotspr o L by
Rs,’+“.+sk"+s1”+“,+s£'/' v 4
1 Iy
2
tn+l""’tn+l""’tn+sl”+...+s;'~’""tn+sl”+.‘.+s,'('~) X
i I
x o(dy)... G(dtsl,{“”;, )c(dtn+1) G(dtn+s|",+...+s,:~ ) 3.9

Because the measure G is nonatomic, one can replace ( f (")h(m)) in this sum by the
v

product of £ and A . Therefore sum (3.9) is equal to | £ 2 zxt, whence
) () | |pm
(f h ) N < | ext\hv \ext. (3.10)
Actually, we proved that V 0™ € $2", ¥V y'™ e 52"
(1) () = ()3, (m) (n) (m)
\ (e"v™)] = \m th < o v (3.11)

(here P is a symmetrization operator).
Further, V v, w e N we have

(W)) _(ﬁh(\m) _ (fm)h(m) f(mh(m)) _
v w

— P(f(n)h(m) f(n)h(m)) — P(fu(n)h(um)_fu(n)hv(vm) +fu(n)hv(vm) f(n)h(m)) —
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« He ) o )

——— —

lfn)(hf)m) _ h‘i}m)) + ( D(n) _ vﬁn))hv(vm)

whence using (3.11) we obtain

‘(W)) _(W))
v w

—

<

ext

< A =nm)| e |- pne|
ext ext
(n) (m) _ 7 (m) (n) _ r(n) (m)
< | ext hy hy, ‘ext+ v w ext‘hw ‘ext U’y:oo 0.

—_—

So, the sequence (( Fpm ) ) is a Cauchy one in H 7™ and therefore there
v v>1

ext

—_— _—
exists FUWH™ := lLim (f(")h(m)) e H ™ This limit is independent on a
V—>oo
v
; (n) (m) ;
choice of sequences ( ) )uzl’ (hu )UZI’ this can be proved by a standard way.
Namely, let us consider another sequences Sg "3 U’ N A . ] éﬁt) ,
V—>o0
~ _— -
S&myp ™ — H™ in HW and put FWH™ = lim (f’(")h'(m)) €
V—>o0 V—> oo
v

e H™  Then for “mixed” sequences fl("),fll("), fz("),fz'("),...) and

ext

(hl(m), hf (m), hém), hz’(m), ) the corresponding “final result” coincides with F () gy (m)
and with FWH"™ | therefore FWH"™ = F®WH™  Estimate (3.3) follows from
(3.10) by passing to a limit.

—_—
Let us prove now that F™ 0 H'™ can be identified with F™H"™  First we
establish that VA €S

(3.12)

ext’

—_—
<F(n)H(m)’7\’®(n+m)> = (FO o gom 3@0em)

ext

It follows directly from the definition of F'™ ¢ H'™ that (see (1.11))

(F o H™ A0 = Uy Unt U, F™ @ U, H™ ) AET) =

n+m>~n+m

= (U FO ") (U, H ™) = (FO28")  (H™, 0™ . (3.13)

ext

On the other hand, let us consider the scalar product

(FTNA = B

51 Sk
ext kol s;eN:j=l k. >h>. >, LYo BE syl !
Lisi+...+ sy =n+m
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—_—

(n)7,(m)
X j (f h )(tl""’tl""’tsl+...+sk’""ts1+...+sk)X
Rs1+ + Sk v !

Iy
X N1t Nk (1 4y Jotdn) oo(dty o L) =
_ Z (n+ m)! y

. !
kol s;eNj=lo ki >h> >, BB sy
hisi+...+ sy =n+m

—_—
(), (m)
x J. (fxn m" ) (t,ntyseen, ts]+...+sk’---’ts]+...+sk)0(d[1)'”G(dts1+‘..+sk)

Rx1+m+sk v Zl

Iy

(3.14)

(we used the previous notation), where ( f{")h;(»m)) is obtained by formulas (3.2),

v

(3.4) starting from  £")(t1,....1,) = £t t) M) AG), K@ t,) =
=h('")(tl,...,tm)l(tl)...k(tm). Substituting in (3.14) expression (3.4) for

( fi")h(m)) , by analogy with the proof that the sum in the right-hand side of (3.6) has

form (3.9) we can transform the last sum in (3.14) to the form

Z n!m! y

st
Hst+.. .+l sy =n s{+. 10 s =m, l T, l, Sk Sf' Skr'l” st .lk,;sk Sl”' S]'('»!
Kk L sy s s L st st €N,
> > > >0
(n) g, (m)
X J (fx W) (st By e b g
" o o ” v M
]RA]+..4+3A7+31+4..+31(" ll/ I
v
Ippls oo Ingts o tn+s1"+...+v,'g v tn+x1"+‘,.+sj{’,,) x
i i
X o(dn) .. (dtr'+ ESsp )G(dtnﬂ) ( tn+s{'+...+s,;’») =
_ n!m! %
’s{
st tlsp =mlisie st =m, LV LS s 1SS!

Kk e s, Sp s U st s €N,
0> >l > >0

(n)
X J. fu (tl""’tl"“’ tsf+‘,‘+s,’{/""’ S{+.. ) )X
. , —
RIS I

Y
1

! L,
x ). (o) .o, )X

Sk

()
X J‘ fu (tn+1""7tn+1""’ tn+s1”+...+s,:’n n+v|+ Asp )X
S —

Rs,”+...+s,’(’”

I I
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I I _
XA (tn+1)'”7" (tn+sl"+...+s,'€'»)G(dtn+1)"'G(dtn+s1"+4..+s,’('») -

— <fu(n)’ k®n>eXt <h1()m), 7\'®m>

ext

(here a nonatomicity of ¢ wused). By passing to a limit as v — o we obtain

<F(")H(m), X®(”+m)> = (F("), X®”) (H(m), 7»®m) - From here taking into account

ext ext ex

(3.13) we obtain (3.12).

—_— A
Further, the restriction of F™H" (as a linear functional) on S g) (tm) s a

This functional coincides with

linear continuous functional on Sg("“”).

F™ ¢ H™ on the total in Sg(”m) set {l®("+m): ke.SC}, therefore ‘v’g(”+m) €

o —

e §Em) [ pn pm Goem) ) _ (F™ 0 H™, g™ Thus F™ 0 H™ can
C ext
ext

be extended to a linear continuous functional on # ('™ by the formula

F™ o H™ .= FWH™ (it is natural to preserve the old notation for F™ ¢ H™),
The lemma is proved.

Remark 3.5. Note thatfor m=0 (or n=0) F® O H® = F.HO (because
H? ¢ C) and estimate (3.1) is obvious.

Theorem 3.2. For F, He(Lz)_l and a holomorphic at (SF)(0) function h:

C—C wehave FOHEe (Lz)_1 and hO(F) € (Lz)_1
Proof. Actually, we shall prove somewhat more than we need for the present.

-1
First, we establish that for £,..., F,, € (Lz) and g e N sufficiently large

IF 0.0k, |, < Con=DIR|_yy - B llgo>

where C(m) : = \/ma§ {2_"(11 + 1)'"}. Let Fj(k) eH X be the kernels from
ne
decomposition (1.6) for Fj, je{l,...,m}. It follows directly from Definition 3.2 that

oo

FiOOFm = 2 L, z Fi(kl)OOF’;km)

n
n=0 Kpvoooskyy €22 30 ky=n

therefore using (3.1) one can estimate as follows:

2
|F0...0F, qu = Yo ¥ F& o0 Flkn)
n=0 Kysooorkyy € Zy: 3L Ky =n ext
oo n n—k n—ky—...—ky_» & ) -k k) 2
— ZZ_qn z Z z Fi(kl) OOFm_m{l 0 F;/nn 17" Rm—-1 <
n=0 k1 =0 ky=0 ky,_1=0 ext

< Y 27 "(n+1) x
n=0
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n n—k; n—kj—...—ky_, ) (n—k “k )2
DA DI F("1><> 0 Famt) o gm0
k=01 ky=0 Kyp_1=0 ext
LS Y2+ D)"Y x
n=0
n n_kl nfklf"'fkm 2 2
xY Y. XY RWo oRm R T o
k=0 ky=0 Ky_1=0
= i(Z_"(n + ) D)amambn
n=0
n n-k n—ky—...=k,_» ) (m—k y
x>y S \F("“o <>F'”‘<>Fm' ""‘\t_
X
k=0 k=0 Kp_1=0 ¢
@Dk | 2P N TR k] k)
2 q—Dk 1 q—Dk, 2
< _
< [Cm-1)] 22 \F \ext D 2 y o2 \F \ext..
l’l—l 2—0 kmfl:0
~(@=Dky 1| kD) P A=(@=D =Ky ==k )| o=k ==Ky 1) [2
.2 F 2 F
m=1 ext mn ext
0o n n—ky—...=k,,_»
_ 20 |12 (q-Dky | pky) 2
= [Con-DPIR Py Y, X - Y 27 ek|gh e
n=0 k=0 Kpy_1=0
(g— 2 (— e e 2
. 2 (q l)km—l Fn(,lk_ml_l) 2 (q D(n k2 kmfl) F’iln k2 kmfl)
ext

ext

= [Con=DPIF oy I Py
It follows directly from here that F 0...0 F, € (Lz)_1 and in particular for F,
He(?) ' FOHe(?)'
Further, let F e(L2)71 and h: C— C be a holomorphic at (SF)(0) function.
Let F™e# ™  be the kernels from decomposition (1.6) for ~ F, h(u) =

ext

= me hn(u— F(O)) . Because SFeHol, and S1=1 we have
n=0

hF) = 57 [ho + ihn(SF— F<°>)”} -

n=1

et ga{g e |-

m=1

=5 [ho+ihn ) ) (F™ 0. 0 F"™), .®<'"1+---+mn>ext} =

= S hy + ihni< S F™ .. 0 F™), ~®S>
-

n
my,eomy €NCY ) my = ext
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=5 ho+i<ihn S F(m')O...OF('""),-®S>

- n
n=l my,..,m, eN:Y, _ my=s ext

= By + i<LS, ihn S Fm <>...<>F(’"")>.

n=1m,..., mneszzzlmk =s

1 o 2
Because Fe(Lz) for some geN, we have HFH%q = zm OZ“”"‘F('")‘ < oo,
q -

ext
whence ‘F (m) ‘ext <292 |l ;> and because of holomorphy of / there exists g €N

such that |h,| < 2% for all neZ,. So, taking into account that
Y 1= " <2°7", using (3.1) we obtain

2

O , S
W, =SS 5 eeomm)
4 s=1 n=b m, eN: Y my=s ext
2
oo S n
<l + X2 Xinl X TIF™)| <
s=1 n=1 Myyeens nzneN:27=lml—sl=1
2
oo R} -
Slfs 22| X7 % 2| -
s=1 n=1 ml,,..,mneN:z]":lm,:s
2 Nl <& (@ +1og (IIFI, ))n N
= [P+ Y, 20| Y 2RI en <
s=1 n=1
2 )52 <o H(@tloga(IF ))n2
SCIRDYEARRE DI
s=1 n=1
2, 2 amgmea( < i os(IFL ) |
< [hg [P+ Y 2l et Dsm2 N TR <
s=1 n=1
< P+ Ci2(q—q'+2+2c}+2‘logz(HF\Lq)‘)s—Z < o,
s=1
H2a+2flogs (I FIL, )| )
if ¢’ eN is sufficiently large | here C := So, h'(F) e

(251+logz(F_q) ~ 1)2 '
e (Lz)_l.

The theorem is proved.
Let us define a space B (a characterization space of (Lz)_1 in terms of an S-
transform) putting B : = S((Lz)_l) ={JeHol,|3Fe (Lz)_l: J =SF} < Hol,.

Corollary 3.1. The space B is an algebra with respect to the usual (pointwise)
multiplication of functions. Moreover, if Je€ B, FO e C is the kernel from
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decomposition (1.6) for S and h:C—>C isa holomorphic at FO

function, then J(-) := h(J(-)) € B. In particular, for each entire h: C— C and

JeB h(J(-))eB.
Remark 3.6. As it follows from Corollary 3.1, the space B has properties similar

N -1 .. .
to properties of Hol,. A characterization of (Lz) “in terms of B” will be very

. .. -1 . . . . .
useful for study of a stochastic derivative on (Lz) , we’ll discuss this derivative in a

forthcoming paper.
There is a simple interconnection between the Wick calculus and a stochastic

integration. More exactly, for r€[0,+c]| and F e(LZ)71 ®H - we define

JA(;FS 0 G;o(ds) (where G’ = <L1, 8,> is the Gamma-white noise) as a unique element

of (.5 ’)/ such that
<<J1%<>G;o<ds), f>> = [UF 0G. fhotds) Y fes)
0 0

( S0, I(;FS 0 G,o(ds) is the integral defined in a Pettis sense )
Theorem 3.3. For all 1€[0,+e] and Fe() ®#} j(;F 0 Glo(ds) can

. . . 1 - .
be extended to a linear continuous functional on (Lz) that coinsides with

j;FS&GS, ie.,
£ ’ £ - -1
[F0Gods) = [FdG, e(?) (3.15)
0 0
Proof. We have to prove that

<<jﬁ<>c;;c(ds),f>> = <<stc?GS,f>> VfeS).
0 0

It is easy to calculate that

t R A
(([rde.s)) = Smlfgsosm),. o est
0 n=
(we use the notation of (1.5) and (2.5)).

On the other hand, F0G = 2::1 <Lm, Fm=D ¢ 8_> (we use the notation of

(2.4), see also Remark 3.2), whence

(FoaG.f) = in!<F.("‘l) 05, /™)

n=1

ext’

So, in order to finish the proof we have to prove that for all neN

(3.16)

ext’

L A
J(Rr 208, 0@ = (it 1)

; : (n) _ 4®n L/ (n=1) ®n _
First, let us consider f = A°", AeSc. Now .[0<FS 00, A >ext0(ds) =

= J.(; <FS("_1), l®('1_l)>ext A(s)o(ds). But it was established in the proof of Theorem 2.2
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in [3] that j; <FX("_1), 7u®(”_1)>m A(s)o(ds) = <1:“[§f[_)1), k®"> .- Because the set {k®":

€X
kej(c} is total in 58" and j(;<]§.(”_l) 085’°>ext o(ds), <1:"[§)’?[_)1),o>ext are
continuous functionals on S g ", we can conclude that (3.16) holds true.

Property (3.15) and Corollary 3.1 give us a possibility to consider so-called
stochastic differential equations wit Wick-type nonlinearity and solve such equations
using an S-transform. Let us consider corresponding examples.

Example 3.1 (a linear equation). Let us consider the stochastic equation

t 1
X, = Xo + [X, 0F 0.0 F,0(ds) + [X, 0 H 0.0 H,dG,,  (3.17)
0 0

-1
where X, e(Lz) ; n,meN; F, = <Ll,]7,§1)>, Ec(l)e}[é}()t =He, ke{l,... n};
H, = <L1, H,El)>, HP eH ), kell,...,m}. Applying to (3.17) the S-transform

(with regard to (3.15)), solving the obtained algebraic equation and applying the
inverse S-transform (see Corollary 3.1 and Remark 3.6) we obtain the solution

X, = Xo 0exp’{F 0...0 F,0([0.0) + H, 0...0 H, 0 G} e (L) .

By analogy one can solve the more general equation

t t
X, = Xo + [X, 0 Fo(ds) + [ X, 0 HdG,,
0 0

-1
where X, F, He (LZ) , the solution has the form

X, = Xo Oexp’{Fo((0.0) + HOG}e(L) .

Example 3.2 (the Verhulst-type equation). Let us consider integral stochastic
equation

t t
X, = Xo +r [ X, 0 (N =X,)o(ds) + o [ X, 0 (N - X,)dG,, (3.18)
0 0

where X, € (Lz)_l, N, r,aeR, N>0, r>0, (5SX,)(0) >0. Applying to (3.18) the

S-transform (with regard to (3.15)), solving the obtained algebraic equation and
applying the inverse S-transform, one can show by the full analogy with [19] that the
solution of (3.18) has the form

X, = N[1+(v x5 —1)Oexpo{—N(rG([O,t))+0cGt)}]O(_l) e(Lz)_l,

where YOH) 1= Sili.
SY
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