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We introduce and study an extended stochastic integral, a Wick product and Wick versions of
holomorphic functions on the Kondratiev-type spaces of regular generalized functions.  These spaces are
connected with the Gamma-measure on some generalization of the Schwartz distributions space  S  ′.  As
examples we consider stochastic equations with Wick-type nonlinearity.

Vvodyt\sq ta vyvça[t\sq rozßyrenyj stoxastyçnyj intehral, vikivs\ke mnoΩennq ta vikivs\ki

versi] holomorfnyx funkcij na prostorax (typu Kondrat\[va) rehulqrnyx uzahal\nenyx funk-

cij.  Ci prostory pov’qzani z hamma-mirog na pevnomu uzahal\nenni prostoru uzahal\nenyx

funkcij Ívarca  S  ′.  Qk pryklady rozhlqdagt\sq stoxastyçni rivnqnnq z nelinijnostqmy vikiv-

s\koho typu.

Introduction.  In the paper [1] the Gamma-measure  µ  as a particular case of the
compound Poisson measure on the Schwartz distributions space  S ′  was considered
and elements of the corresponding white noise analysis were studied.  In particular,

orthogonal polynomials in the space  L2 ′( )S , µ   of square integrable with respect to  µ
functions on  S  ′  (the so-called generalized Laguerre polynomials — a particular case
of the generalized Appell polynomials) were constructed.  But it was found that as
distinguished from the Gaussian and Poisson cases the orthogonality relation contains
the special scalar product connected with a nature of  µ.  This fact, so as an absence of
the chaotic representation property in the “Gamma-analysis” (see, e.g., [2]), led to the
situation when an extended stochastic integral connected with the Gamma-measure on
S ′  can not be constructed by analogy with the Gaussian or Poisson analysis.

In the paper [3] the author offered a natural construction of an extended stochastic

integral on    L
2 ′( )Sσ µ,   ( where  ′Sσ   is some generalization of   ′S )  and on the

corresponding Kondratiev-type space of nonregular generalized functions  ′( )′S
(more exactly, integrable functions have values in    L

2 ′( )Sσ µ,   and in  ′( )′S

correspondingly).  The space  ′( )′S   was selected because its properties are well
studied and it is very simple to introduce a Wick product and Wick versions of
holomorphic functions on this space; this is very important for construction of the

informative integral theory.  But, on the other hand,  ′( )′S   is too wide space and

kernels from the natural orthogonal decompositions of elements of  ′( )′S   belong to the
distributions spaces without “good” properties.  This is inconvenient for applications.

The main aim of this paper is to move main results of [3] on the so-called

Kondratiev-type space of regular generalized functions  L2 1( )−
.  This space in
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narrower than  ′( )′S   and here is no the mentioned problem with orthogonal

decompositions in   L2 1( )−
.   At the same time some difficulties with the Wick calculus

on  L2 1( )−
  have a technological nature and were successfully overcame.  As an

additional argument in behalf of study of an extended stochastic integral and the Wick

calculus on  L2 1( )−
  we note that solutions of many stochastic equations with Wick-

type nonlinearity lie in  L2 1( )−
  (as an example we consider the classical Verhulst-type

stochastic equation; its solution  Xt ,  as it well known, does not lie in    L
2 ′( )S , µ   for

X0  = 1
2

,  but if follows from our results that  X Lt ∈( )−2 1
  for all  X L0

2 1∈( ) )−
.

The paper is organized in the following manner.  In the first section we recall some
elements of the “Gamma-analysis”.  In the second section we introduce and study an

extended stochastic integral on  L2 1( )−
.  The third section devoted to the Wick calculus

and its interconnection with a stochastic integration.  In the end of the paper we
consider examples of stochastic equations with Wick-type nonlinearity.

Finally we note that some questions connected with a stochastic integration in the
“Gamma-analysis” were studied in [4].

1.  Preliminaries.  Let  σ  be a nonatomic positive regular  σ-finite measure on
R R, ( )B( )   satisfying some additional condition, see Remark 1.1 for details (here and

below the symbol  B  denotes the Borel  σ-algebra).  We denote  H : = L2
R, σ( )  (the

space of square integrable with respect to  σ  functions on  R).  Let  S  be the Schwartz

test functions space on  supp σ  (if, e.g.,  σ  is the Lebesgue measure then  S  is the
usual Schwartz space of rapidly decreasing infinitely differentiable functions).  As it
well known, there exist Hilbert spaces  H p  ≡ H p R( ) ⊂ H,  p ∈N , such that we have
the nuclear chain

S ′  =  ind lim
′ ∈

− ′
p

p
N

H  ⊃ H −p  ⊃ H  ≡  H 0  ⊃ H p ⊃ pr lim
′ ∈

′
p

p
N

H   =  S, (1.1)

where  H −p ,  p ∈N,  S ′  are the dual spaces to  H p,  S  with respect to the zero space

H.  Note that one can select spaces  H p,  p ∈N ,  such that for each  p p> ′   it will be

⋅ p  ≥ ⋅ ′p   (where  ⋅ p   denotes the norm in   H p,  p ∈Z ,  in particular,  ⋅ 0 = ⋅ H ).

We preserve the notation  ⋅ p   for norms in tensor powers and complexifications of

H p,  p ∈Z .

Remark 1.1.  Let us describe the construction of the spaces   H p,  p ∈N ,  in

details, following [5].  Let  ( )ej j =
∞

0   be the system of Hermite functions on  R .  For

each  p  ≥ 1  we denote by  H̃ p ≡  H̃ p R( )  the Hilbert space constructed by the

orthogonal basis  e jj
p

j
( )2 2

0
+( )−

=
∞

,  and assume that the measure  σ  is such that for

some  ε ≥ 0  the space  H̃ 1+ ε   is continuously embedded into  H = L2
R, σ( ).  Further,

let  Op : H̃ p → H   be the embedding operator.  Without loss of generality one can
suppose that for  ε  defined above  O1+ ε   is the operator of Hilbert – Schmidt type (for
example, if  σ  is the Lebesgue measure then one can put  ε = 0).  Now we can put

H p : = H̃ p
KER Op

+
+

ε
ε
  (the Hilbert factor space).

Let us denote by the subindex  “C”  complexifications of spaces.  Let  ⋅ ⋅,   denote
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the generated by the scalar product in  H  (real) dual pairing between elements of  ′S
C

and  S
C

  (and also  H −p,C   and  H p,C);  this notation will be preserved for pairings

in tensor powers of spaces.  Let  F  be the  σ-algebra on  S ′  generated by cylinder sets.
Definition 1.1.  The measure  µ   on the measurable space   ′( )S , F   with the

Laplace transform

l e dxx
µ

λλ µ λ( ) ( ) exp , log( ),= = − −{ }
′
∫
S

1 1 ,    1 > λ ∈ S, (1.2)

is called the Gamma-measure.
Remark 1.2.  Strictly speaking, one can not apply the Minlos theorem to (1.2) in

order to prove existence and uniqueness of the measure  µ ,  because  λ  in (1.2) is not
an arbitrary element of  S

C
.  But as it was proved in [1] the Gamma-measure is the

particular case of the compound Poisson measure.  So, this is the well-defined
probability measure on  S ′  with the holomorphic at zero Laplace transform.

Remark 1.3.  The term “Gamma-measure” is connected with the fact that  µ  is the
measure of the so-called Gamma-white noise.  Let us explain this in more details,
following [1].  If  σ  is the Lebesgue measure  m,  then for each  t > 0  the Laplace
transform

l tm t
t

µ λ λ λ1 1 10, exp log( ) ( )[ ]
−( ) = − −{ } = − ,    1 > λ ∈ R

(here  1 0, t[ ]  denotes the indicator of the set  0, t[ ])  coincides with the Laplace

transform  l tξ λ( )( )  of a random variable  ξ( )t   having the so-called Gamma-
distribution, i.e., the density of the distribution function has the form

p x
x e

tt

t x

x( )
( ) { }=

− −

>

1

01
Γ

,    t > 0.

The process  { ξ( )t , t > 0;  ξ( )0  : = 0}  is known as the Gamma-process.  Thus the

triple  ′( )S , F m, µ   is a direct representation of the generalized stochastic process

{ ξ( )t , t ≥ 0}  that is a distributional derivative of the Gamma-process.

Now by  L2( ) ≡  L
2 ′( )S , µ   we denote the space of square integrable with respect to

µ  functions on  S ′  and construct orthogonal polynomials in  L2( ).  Let  α  :  S
C

 →  S
C

be the function defined on some neighbourhood of  0 ∈S
C

  by the formula  α λ( ) : =

: = λ
λ − 1

.  We define the so-called Wick exponential (a generating function of the

orthogonal polynomials)

:exp( ; ):x λ   =df
  

exp , ( )
( )

x
l

α λ
α λµ

{ }
( )

  =  exp , , log( )x λ
λ

λ
−

− −





1

1 1 , (1.3)

where  λ ∈ ⊂U S0 C
,  x ∈ ′S ,  U 0  is some neighbourhood of  0 ∈S

C
.

Remark 1.4.  Note that (1.3) is the infinite-dimensional analogs of the generating
functions of the one-dimensional Laguerre polynomials.  These polynomials are
orthogonal “with respect to the one-dimensional Gamma-measure”, see, e.g., [6].

It is clear that  :exp( ; ):x ⋅   is a holomorphic at zero function on  S
C

  for each

x ∈ ′S .  So, using the Cauchy inequalities (see, e.g., [7]) and the kernel theorem (see,
e.g., [8, p. 46]) one can obtain the representation

:exp( ; ):x λ   =  
n

n
n

n
L x

=

∞
⊗∑

0

1
!

( ), λ ,      L xn
n( )

ˆ
∈ ′ ⊗S

C
,    λ ∈S

C
,
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where  ⊗̂   denotes a symmetric tensor product,  λ⊗0  = 1  even for  λ ≡  0.  (Note that

actually for  x ∈ ′S      L xn
n( )

ˆ
∈ ′ ⊗S .)

Definition 1.2.  The polynomials  L x fn
n( ), ( ) ,   f

n n( ) ˆ
∈ ⊗S

C
,  a r e called the

generalized Laguerre polynomials.

In order to formulate a statement on an orthogonality of  L x fn
n( ), ( )   we need the

following definition.

Definition 1.3.  We define the scalar product  ⋅ ⋅, ext   on  S
C

⊗̂n  by the formula

f gn n( ) ( ),
ext

  =  
k l s j k l l l

l s l s n
j j k

k k

, , : , , , ,∈ = … > >…>
+…+ =

∑
N 1 1 2

1 1

n

l l s ss
k
s

k
k

!

! !1 1
1 … …

 ×

× 
R

s sk1 +…+
∫

  

f n

l

s s

l

s s s s

l

k k

k

( ) , , , , , , , , , ,( )… … … … …+…+ +…+τ τ τ τ τ τ1 1

1

1 1

1

1 1� �� �� � �� �� � ����� �����
 ×

× 

  

gn

l

s s

l

s s s s

l

k k

k

( )… … … … …+…+ +…+τ τ τ τ τ τ1 1

1

1 1

1

1 1
, , , , , , , , , ,� �� �� � �� �� � ����� �����

 ×

× σ τ σ τ( ) ( )d d s sk1 1
… +…+ . (1.4)

By  ⋅ ext   we denote the corresponding norm, i.e.,  f n( )
ext

2
 = f fn n( ) ( ),

ext
.

Example 1.1.  It follows from (1.4) that for  n  = 1   f g( ) ( ),1 1
ext

 = f g( ) ( ),1 1 .

Further, for  n = 2

f g( ) ( ),2 2
ext

  =  f g( ) ( ),2 2   +  
R

∫ f g d( ) ( )( , ) ( , ) ( )2 2τ τ τ τ σ τ .

Theorem 1.1 [1].  The generalized Laguerre polynomials are orthogonal in  L2( )
in the sense that

′
∫
S

L x f L x g d xn
n

m
m( ), ( ), ( )( ) ( ) µ   =  δmn

n nn f g! ,( ) ( )
ext

.

By  H ext
( )n ,  n ∈N ,  we denote the closure of    SC

⊗̂n  with respect to the norm  ⋅ ext

(see (1.4)),  H ext
( )0  : = C.  For  f n n( ) ∈H ext

( )   we define  L2( ) ∋  L fn
n, ( )  : =

: = lim , ( )

k
n k

nL f
→∞

  in  L2( ),  where   SC

⊗̂n ∋  fk
n( ) →  f n( )  (as  k → ∞)  in  H ext

( )n   (the

correctness of this definition can be proved by analogy with the classical Gaussian
case, see also [3, 9]).  The following statement from results of [5] follows.

Theorem 1.2.  A function  f L∈( )2   i f and only if there exists a sequence of

kernels  f n n
n

( ) ∈( )∞H
=ext

( )
0
  such that  f  can be presented in the form

f  =  
n

n
nL f

=

∞

∑
0

, ( ) , (1.5)

where the series converges in  L2( ),  i.e., the  L2( )-norm of  f

f
L2

2
( )   =  

n

nn f
=

∞
∑

0
! ( )

ext

2
  <  ∞.
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1034 N. A. KACHANOVSKY

Furthermore, the system  L fn
n, ( ){ , f n n( ) ∈H ext

( ) , n ∈ }+Z   plays a role of an

orthogonal basis in  L2( )  in the sense that for  f, g L∈( )2

( , ) ,! ( ) ( )f g n f g
L

n

n n
2

0
( )

=

∞
= ∑ ext

,

where  f n( ), g n( )   are the kernels from decompositions (1.5) for  f, g.
Now let us introduce the Kondratiev-type spaces of regular test and generalized

functions.  First we consider the set  P  : = f{  = 
n

N
n

nf L f=∑ 0
, ( ) , f n n( ) ∈H ext

( ) ,

Nf ∈ }+Z  ⊂  L2( )  of polynomials and  ∀ ∈q N   introduce on this set the scalar

product  ( , )⋅ ⋅ q ,  putting for  f = 
n

N
n

nf L f=∑ 0
, ( ) ,  g = 

n

N
n

ng L g=∑ 0
, ( )

( , ) : ,
min( , )

( ) ( )!f g n f gq
n

N N
qn n n

f g

= ( )
=
∑

0

2 2
ext

.

Let  ⋅ q   be the corresponding norm:  f q  = f f
q

,( )  = 
n

N qn nf n f=∑ ( )
0

2 2
2! ( )

ext
.

Definition 1.4.  We define the Kondratiev-type spaces of (“regular”)  test

functions  L
q

2 1( ) ,  q ∈N ,  as the closures of  P   with respect to the norms  ⋅ q ,

L2 1( )  : = pr lim
q q

L
∈

( )
N

2 1
.

It is not difficult to see that  f L
q

∈( )2 1
  if and only if  f  can be presented in form

(1.5) with

f n fq
n

qn n2

0

2 2= ( )
=

∞
∑ ! ( )

ext

2
  <  ∞,

therefore the generalized Laguerre polynomials play a role of an orthogonal basis

in  ( )L q
2 1 .

It is obvious that  ∀ ∈q N   ⋅ ( )L2  ≤ ⋅ q .  Further, let a sequence  fk k∈( ) =
∞P 0   be

a Cauchy one in  ( )L q
2 1   and tends to zero in  ( )L2 ,  and let  f : = lim

k
kf→∞
  in  ( )L q

2 1 .  We

have

f L( )2   =  f f fk k L− + ( )2   ≤  f fk L− ( )2  + fk L( )2   ≤

≤  f fk q−  + fk L( )2   →  0

as  k → ∞,  so  f L( )2  = 0.  But it follows from here that all coefficients  f n n( ) ∈H ext
( )

from decomposition (1.5) for  f  are equal to zero whence  f q  = 0.  Therefore  fk  →

→ 0  (as  k → ∞)  in  ( )L q
2 1 .  Thus (see, e.g., [8, p. 51])  ( )L q

2 1  ⊂→  ( )L2 .  Moreover,
because  lµ   is a holomorphic at zero function, this embedding is dense (see [10]).
Therefore one can consider the chain

( ) : ( ) ( ) ( ) ( ) ( )
˜

˜L L L L L L
q

q q q
2 1 2 1 2 1 2 2 1 2 1−

∈
−
−

−
−= ⊃ ⊃ ⊃ ⊃ind lim

N

,

where  ( )L q
2 1

−
− ,  ( )L2 1−   are the spaces dual to  ( )L q

2 1 ,  ( )L2 1  with respect to  ( )L2

correspondingly.
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Definition 1.5.  The spaces  ( )L q
2 1

−
− ,  ( )L2 1−   are called the Kondratiev-type

spaces of regular generalized functions (cf. [11]).

It is easy to see that  F L q∈ −
−( )2 1   if and only if  F  can be presented as the formal

series

F  =  
m

m
mL F

=

∞

∑
0

, ( ) ,    F m m( ) ( )∈H ext (1.6)

with

F Fq
m

qm m
−

=

∞
−= < ∞∑2

0

2
2: ( )

ext
.

Moreover, the generalized Laguerre polynomials play a role of an orthogonal basis in

( )L q
2 1

−
−   in the sense that for  F ,  H L q∈ −

−( )2 1   presented in form (1.6) we have

( , )F H q−  = 
m

qm m mF H=
∞ −∑ 0

2 ( ) ( ),
ext

  here(   ( , )⋅ ⋅ −q   denotes the (real) scalar

product in  L
q

2 1( )−
−

,  F q−  = F F
q

,( ) )− .

By  ⋅ ⋅,   we denote the dual pairing between elements of  ( )L q
2 1

−
−   and  ( )L q

2 1

(correspondingly  ( )L2 1−   and  ( )L2 1),  this pairing is generated by the scalar product

in  L2( ).  If  F L q∈ −
−( )2 1   and  f L q∈( )2 1   we have

F f,   =  
n

n nn F f
=

∞
∑

0
! ,( ) ( )

ext
,

where  F n( ) ,  f n n( ) ∈H ext
( )   are the kernels from decompositions (1.6), (1.5) for  F  and

f  respectively.
Finally, in order to compare results of this paper with the corresponding results in a

“nonregular” case (see [3]) we have to recall the corresponding definitions and
statements.  It was proved in [3] (see also [5]) that for all  p , n ∈N   the continuous

embeddings    H p
n

,
ˆ

C

⊗  ⊂→    H ext
( )n ,  S

C

⊗̂n ⊂→    H ext
( )n   hold.  Hence one can consider the

chains

S H H H S
C C C
′ ⊃ ⊃ ⊃ ⊃⊗ ⊗( )

,
ˆ ˆn

p
n n

p
n n

– ,ext
( )

ext
( ) ,      n ∈ +Z ,    p ∈N , (1.7)

where  S
C
′( )n   (provided by the inductive limit topology),  H – ,ext

( )
p

n   are the spaces dual

to  S
C

⊗̂n,  H p
n

,
ˆ

C

⊗   with respect to the zero space  H ext
( )n   correspondingly.  For the (real)

dual pairings between elements of  S
C
′( )n   and  S

C

⊗̂n  we preserve the notation  ⋅ ⋅, ext .
Remark 1.5.  Of course, for  n = 1  chain (1.7) has the form

S H H H S
C C C C C
′ ⊃ ⊃ ⊃ ⊃– , ,p p ,

i.e., this chain coincides with the complexification of chain (1.1).  But for  n > 1  chain
(1.7) is not a tensor power of a chain of type (1.1).

Remark 1.6.  It was proved in [4] that the space  H ext
( )n ,  n > 1,  is the orthogonal

sum of  H
C

⊗̂n  and some another Hilbert spaces.  In this sense  H
C

⊗̂n  can be

considered as a subspace of  H ext
( )n .

Let  P S ′( )  be the set of all continuous polynomials on  ′S .  It follows from results
of [12 – 14] that any element of  P S ′( )  can be presented in the form
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1036 N. A. KACHANOVSKY

f x( )  =  
n

N

n
n

f

L x f
=
∑

0

( ), ( ) ,    f n n( ) ˆ
∈ ⊗S

C
. (1.8)

We define on  P S ′( )  a family of the scalar products, putting for  f , g ∈ ′( )P S
presented in form (1.8),  p, q ∈N

( , ) ,,

min( , )
( ) ( )!f g n f gp q

n

N N
qn n n

p

f g

= ( )
=
∑

0

2 2 ,

where by  ⋅ ⋅, p   the scalar product in  H p
n⊗̂   denoted.  The corresponding norms are

denoted by  ⋅ p q, ,  i.e., for  f ∈ ′( )P S   of form (1.8) we have

f f f n fp q p q
n

qn n
p

f

, ,
( ), !2

0

2 2
2= ( ) = ( )

=
∑
N

.

Definition 1.6.  We define the Kondratiev-type test functions spaces  H p q( ) ,  p ,

q ∈N ,  as the closures of  P S ′( )  with respect to the norms  ⋅ p q, ;    S( ) : =

: = pr lim
p q

p q
, ∈

( )
N

H .

It is clear that  f p q
∈( )H   if and only if  f  can be presented in the form

f  =  
n

n
nL f

=

∞

∑
0

, ( ) ,    f n n( ) ˆ
∈ ⊗S

C
, (1.9)

where the series converges in the sense that

f n fp q
n

qn n
p,

( )!2

0

2 2
2= ( ) < ∞

=

∞

∑ . (1.10)

Further, it follows from Definition 1.6 that  f ∈( )S   if and only if  f  can be presented
in form (1.9) and norm (1.10) is finite for all  p, q ∈N .

Remark 1.7.  Let  f, g p q
∈( )H   and presented in form (1.9).  Then

( , ) ,,
( ) ( )!f g n f gp q

n

qn n n
p

= ( )
=

∞

∑
0

2 2 ,

so the system of the generalized Laguerre polynomials plays the role of an orthogonal
basis in  H p q( ) .

Proposition 1.1 [3].  There exists  p0 ∈N   such that for each  p ≥ p0  there
exists  q p0( )  such that for each  q  > q p0( )  the dense and continuous embedding

H p q( )  ⊂→  L2( )  holds.

So, for  p, q ∈N   sufficiently large we can consider the following chain:

′( )′S   =  ind lim
˜, ˜

˜ ˜
p q

p q∈
− −( )

N

H   ⊃  H − −( )p q
  ⊃  L2( )  ⊃  H p q( )   ⊃  S( )  =

=  pr lim
˜, ˜

˜ ˜
p q

p q∈
( )

N

H ,

where  H − −( )p q
,  ′( )′S   are the dual with respect to  L2( )  spaces to  H p q( ) ,  S( )

correspondingly.
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Definition 1.7.  The spaces  H − −( )p q
,  ′( )′S   are called the Kondratiev-type

spaces of nonregular generalized functions.
Note that Kondratiev-type spaces of regular and nonregular functions are connected

as follows:

′( )′S   ⊃  H − −( )p q
  ⊃  L

q
2 1( )−

−
  ⊃  L2( )  ⊃  L

q
2 1( )   ⊃  H p q( )   ⊃  S( ),

′( )′S   ⊃  L2 1( )−
  ⊃  L2( )  ⊃  L2 1( )   ⊃  S( ).

Unfortunately, the spaces  H p q( )   and  ( )L2 1  (so as  H − −( )p q
  and  ( )L2 1− )  do

not included one to another.  ( More exactly there exists  f L∈( )2 1
  such that the

coefficients from decomposition (1.5)  f n n( ) ˆ
∉ ⊗S

C
,  so  f p q

∉( )H ;  and there exists

  
g p q

∈( )H   such that  g q + = +∞1 ,  so  g L∉( )2 1. )
Now let us construct an orthogonal basis in  H − −( )p q

  and introduce some another

notions which will be necessary below.
First we note that because in the complexification of tensor power  n  of chain (1.1)

and in chain (1.7) the test functions spaces are the same, the spaces  S
C
′( )n   and  S

C
′ ⊗̂( )n ,

n ∈ +Z   are isomorphic (we remind that  S
C
′( )0  = S

C
′ ⊗̂( )0  = C,  S

C
′( )1  = S

C
′ ⊗̂( )1  = ′S

C
).

So, there exists the family of bijective operators  Un :  S
C
′( )n  →  S

C
′ ⊗̂( )n ,  n ∈ +Z   such

that for any  n ∈ +Z ,  for each  F n n
ext
( ) ( )∈ ′S

C

F fn n
ext ext
( ) ( ),   ≡  U F fn

n n
ext
( ) ( ),      ∀ ∈ ⊗f n n( ) ˆ

S
C

. (1.11)

Remark 1.8.  Unfortunately, the restriction of  Un , n  > 1,  o n   H ext
( )n   is not an

isomorphism between  H ext
( )n   and    H C

⊗̂n  (see [3] for details).

Further, let us define on  P S ′( )  the operator  F Dm m
ext ext
( ), : :⊗   with constant

coefficients  F m m
ext
( ) ( )∈ ′S

C
,  putting on the “monomials”  L fn

n, ( ) ,  f n n( ) ˆ
∈ ⊗S

C

F Dm m
ext ext
( ) ( ), : :⊗ L fn

n, ( )   : =  1{ }
( ) ( )!

( )!
, ,n m n m

m nn
n m

L F f≥ −− ext ext

and continue by linearity.  Here  F fm n
ext ext
( ) ( ),  ∈   SC

ˆ ( )⊗ −n m   with  n > m   is defined for

f n( ) = λ⊗n   by the formula

F m n
ext ext
( ), λ⊗   : =  F m m n m

ext ext
( ) ( ), λ λ⊗ ⊗ −

and for a general  f n n( ) ˆ
∈ ⊗S

C
  by the corresponding limit  λ⊗{( n : λ ∈ }S

C
  is a total

set in    SC

ˆ ( )⊗ )n .

It follows from results of [3] (see also [12]) that the operator  F Dm m
ext ext
( ), : :⊗   can

be continued to the linear continuous operator on  S( ).

Now let us consider the dual to  F Dm m
ext ext
( ), : :⊗   with respect to  ( )L2   operator

F Dm m
ext ext

*( ), : :⊗ :  ′( )′S  → ′( )′S   defined by the formula
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F D H fm m
ext ext

*( ), : : ,⊗   ≡  H F D fm m, , : :( )
ext ext

⊗

∀ ∈ ′( )′H S ,    ∀ ∈( )f S .

Definition 1.8.  For each  F m m
ext
( ) ( )∈ ′S

C
  we define the generalized function

L Fm
m, ( )

ext ∈ ′( )′S ,  putting

L Fm
m, ( )

ext   : =  F Dm m
ext ext

*( ), : :⊗ 1.

Theorem 1.3 [3].  The generalized functions  L Fm
m, ( )

ext ,  F m m
ext
( ) ( )∈ ′S

C
,  m ∈ +Z ,

are orthogonal to the generalized Laguerre polynomials in the sense that

L F L fm
m

n
n, , ,( ) ( )

ext   =  δmn
n nn F f! ,( ) ( )

ext ext
,    n ∈ +Z ,    f n n( ) ˆ

∈ ⊗S
C

. (1.12)

Remark  1.9.  It follows from (1.12) and Theorem 1.1 that for a “regular”

F m m
ext
( ) ˆ

∈ ⊗SC   L Fm
m, ( )

ext   is the generalized Laguerre polynomial.  So, the designation
accepted in Definition 1.8 is natural.

Theorem 1.4 [3].  F p q
∈( )− −H   if and only if there exists a sequence of

generalized kernels  F m m

m
ext
( ) ( )∈ ′( )

=

∞
S

C
0
  such that  F  can be presented in the form

F  =  
m

m
mL F

=

∞

∑
0

, ( )
ext (1.13)

and

F U Fp q
m

qm
m

m
p− −

=

∞
−

−
= < ∞∑,

( ):2

0

2
2 ext .

Moreover, for  F ,  H p q
∈( )− −H   presented in form (1.13) the scalar product in

H − −( )p q
  has the form

( , ) ,,
( ) ( )F H U F U Hp q

m

qm
m

m
m

m
p− −

=

∞
−

−
= ∑

0

2 ext ext ,

where  ⋅ ⋅ −, p   denotes the (real) scalar product in tensor powers of  H – ,p C
.  So,

the generalized functions  L Fm
m, ( )

ext ,  F m m
ext
( ) ( )∈ ′S

C
  play the role of an orthogonal

basis in  H − −( )p q
.

It is easy to see that  F ∈ ′( )′S   if and only if  F  can be presented in form (1.13) and
there exist  p0,  q0 ∈N   such that for all  p, q ∈N ,  p ≥ p0,  q ≥ q0   F p q− −,  < ∞.

2.  An extended stochastic integral on spaces of regular generalized functions.
The natural extended stochastic integral on the square integrable functions space

L2 S, µ( )  = ( )L2   and on the corresponding Kondratiev-type space of nonregular

generalized functions  ′( )′S   was introduced and studied in [3].  In this section we
consider this integral on the spaces of regular generalized functions.

First, let us recall the classical definition of the extended stochastic integral.  Let  γ
be the Gaussian measure on the usual Schwartz distributions space  ′S ,  i.e., the
probability measure with the Laplace transform
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l x dxγ λ λ γ λ λ( ) exp , ( ) exp ,= { } = { }

′
∫
S

1
2

,

where the dual pairing  ⋅ ⋅,   is generated by the scalar product in  L dt2
R,( ) .

By the Wiener – Itô chaos decomposition theorem (see, e.g., [15, 16]) we can write

any function  f L∈ ′( )2 S , γ   in the form

f f dW
n

n
n=

=

∞
⊗∑ ∫

0

, (2.1)

where  
  
f L mn

n∈ ( )+
2

$

R ,   (m  is the Lebesgue measure), i.e.,  f Ln
n∈ ( )+

2
R   and  fn   is a

symmetric function ( in the sense that  fn n⋅ … ⋅( )π π( ) ( ), ,1  = fn n⋅ … ⋅( )1, ,   for all

permutations  π  of  { , , }1 … n ),  and

f dWn
n⊗∫   =  

R+
n

f u dWn n
n∫ ⊗( )   =

=  n f u u dW dW dW dW
u u u

n n u u u u

n

n n
! ( , , )

0 0 0 0
1

3 2

1 2 1

∞

∫ ∫ ∫ ∫… … …
−

for  n ≥ 1,  while  n = 0  term in (2.1) is just a constant  f0 .  Here  Wu⋅   is the standard
Wiener process.

Now suppose that  f L∈ ′( )2 S , µ  ⊗ L2
R+( )  is  F ×    B R+( )  -measurable stochastic

process.  Then for almost all  s  ≥ 0  there exist  f s Ln
n( ; )⋅ ∈ ( )+

2
$

R ,  n ∈N ,  f s0( ) ∈C

such that

F x f s u dW xs
n

n u
n

n

( ) ( ; ) ( )=
=

∞
⊗∑ ∫

0
R+

. (2.2)

Fix  t ∈ +∞[ ]0, .  Let  ˆ
,fn t   be the symmetrization of  f sn s t( ; ) ,⋅ ∈[ ){ }1 0   with respect to

n + 1  variables.  Suppose

n
n t L

n f n

=

∞

( )∑ + < ∞
+

+
0

1 2 1( )! ˆ
,

R
.

Then the extended stochastic integral of  F.  is defined by

0 0

1

1

t

s s
n

n t s u
nF dW f s u dW

n
∫ ∑ ∫=

=

∞
⊗ +

+

ˆ : ˆ ( ; ), ( ; )
( )

R+

. (2.3)

Proposition 2.1 [17, 16].  Extended stochastic integral (2.3) is an extension of the
Itô integral in the following sense: if  Fs   is adapted with respect to the flow of  σ-

algebras generated by the Wiener process and  E
0

2t
sF ds∫[ ] < ∞  ( here   E

denotes the expectation ) then  F   is integrable in the extended sense and by Itô

( we denote the corresponding Itô integral by  
0

t
s sF dW∫ )  and
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0 0

t

s s

t

s sF dW F dW∫ ∫=ˆ .

On the other hand, it is well known (see, e.g., [16]) that one can complete a
definition of  fn   from (2.2) for negative arguments, putting  fn  = 0  if at least one its
argument is negative, and identify the multiple stochastic integral with the
corresponding generalized Hermite polynomial, i.e.,

R+
n

f s u dW x H x f sn u
n

n n∫ ⊗ = ⋅( ; ) ( ) ( ), ( ; ) ,

where    H xn
n( )

ˆ
∈ ′ ⊗S

C
,  n ∈ +Z ,  is the kernel of the Hermite polynomial of power  n

from the decomposition

:exp ; : exp , ,
!

( ),x x
n

H x
n

n
nλ λ λ λ λ( ) = −{ } =

=

∞
⊗∑1

2
1

0
,    λ ∈S

C
.

Thus one can write the integrand  Fs   and the stochastic integral  
0

t
s sF dW∫ ˆ   in the form

F H f ss
n

n n= ⋅
=

∞

∑
0

, ( ; )

and

0 0
1

t

s s
n

n n tF dW H f∫ ∑=
=

∞

+
ˆ , ˆ

,

correspondingly.

If instead of the space   L
2 ′( )S , γ   with the Gaussian measure  γ  we use the space

( )L2  =   L
2 ′( )S , µ   with the Gamma-measure  µ  ( the main probability space now is

  ′( ))S , ,F µ ,  then the full analog of the construction of the extended stochastic integral
recalled above can not be obtained.  In the first place, as it well known (see, e.g., [2]),
the Gamma-measure has no the chaotic representation property (CRP), i.e., there is no
a full analog of the Wiener – Itô chaos decomposition theorem, and therefore we can

not present any element  f L∈( )2   in form (2.1) with the corresponding stochastic
process.  In the second place, an attempt to “go around” the absence of the CRP leads

to use of  H ext
( )n   instead of  H

C

⊗̂n,  see [5] (we recall that  H
C

 = L2
R

C
, σ( ) ).  But

because the spaces  H ext
( )n ,  n > 1,  are not tensor powers of some Hilbert spaces, it is

impossible to construct the kernels  ˆ
,fn t   (see above) by analogy with the Gaussian

case.  So, in order to construct a natural extended stochastic integral connected with
the Gamma-measure, we need a modification of the classical scheme described above.

The idea of such modification is very simple: in order to construct  ˆ
,fn t

n∈ +H ext
( )1

starting from  f sn
n( ) ∈H ext

( )   we “exclude a diagonal of  ˆ
,fn t”,  i.e., (nonstrictly

speaking) we symmetrize the function

˜ ( , , ; ),f sn t nτ τ1 …   : =  
f s s s sn n t n( , , ; ) ( ), , , ,

,

,τ τ τ τ1 0 11

0

… ≠ … ≠



[ ) if

in other cases

(see Lemma 2.1 bellow).
Now let us pass to construction of an extended stochastic integral.  By analogy with
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the classical Gaussian analysis one can consider the compensated Gamma-process

Gs  = L Ls1 0
21, ( ),[ ) ∈ ,  s ∈ +R ,  on the probability space   ′( )S , ,F µ   ( from this point

of view  µ  is the measure of the Gamma-white noise  ′Gs ,  formally  ′Gs  = L s1, δ ,

where  δs   is the delta-function ).  Let  F L q∈ −
−( )2 1  ⊗ H

C

+ ,  where  H
C

+  : = L2
R

C+( )  ⊂
⊂ H

C
,  q ∈N .  Then (see (1.6))

F.  =  
m

m
mL F

=

∞

∑
0

, .( ) ,      F
m m.( ) ( )∈ ⊗ +H Hext C

. (2.4)

Lemma 2.1 [3].  For given    F
m m.( ) ( )∈ ⊗ +H Hext C

  and   t ∈ +∞[ ]0,   we construct

the element  ˆ
,

( ) ( )F t
m m

0
1

[ )
+∈H ext   by the following way.  Let us consider a sequence

  
fi

m m

i
,
( ) ˆ
⋅ ∈ ⊗{ }⊗

=

∞
S S

C C
1
  such that  F m

⋅
( ) = lim ,

( )

i
i

mf
→∞ ⋅   in  H Hext

( )m ⊗ +
C

  and put

˜ ( , , , ), ,
( )f t i
m

m0 1[ ) …τ τ τ   : =  
fi

m
m t m,

( )
,( , , ) ( ), , , ,

,

τ τ τ τ τ τ τ τ1 0 11

0

… ≠ … ≠




[ ) if

in other cases

ˆ
, ,

( )f t i
m

0[ )  : = P f t i
m˜
, ,

( )
0[ ) ,  where  1 0, ( )t[ ) τ   denotes the indicator of  τ ∈[ ){ }0, t ,  P   is the

symmetrization operator.  Then  ˆ
,

( )F t
m

0[ )  : = lim ˆ
, ,

( )

i t i
mf

→∞ [ )0   i n   H ext
( )m +1 .  This limit does

not depend on the sequence  fi
m

i,
( )
⋅ =

∞{ } 1
  and the estimate

  
ˆ

,
( ) ( )

( )F Ft
m m

m0[ ) ⋅ ⊗
≤ +ext extH H C

holds.

Definition 2.1.  Let   F L q∈ ⊗−
− +( )2 1 H

C
,  q ∈N .  For each  t ∈ +∞[ ]0,   we define

the extended stochastic integral  
0

2 1t
s s qF dG L∫ ∈ −

−ˆ ( ) ,  putting

0 0
1 0

t

s s
m

m t
mF dG L F∫ ∑=

=

∞

+ [ )
ˆ : , ˆ

,
( ) , (2.5)

where the kernels  ˆ
,

( )F t
m

0[ )   are defined as in Lemma 2.1 starting from the kernels

F m( )  from decomposition (2.4) for  F.
Because

0

2t

s s
q

F dG∫
−

ˆ   =  
m

q m
t

mF
=

∞
− +

[ )∑
0

1
0

2
2 ( )

,
( )ˆ

ext
  ≤

≤  2 2
0

2−

=

∞
−

⊗∑ +
q

m

qm mF m
( )

( )H Hext C

  =  2
2 1

2−
( ) ⊗−

− +
q

L
F

q H C

  <  ∞,

0

t
s sF dG∫ ˆ   is well-defined.

Note that our definition of  
0

t
s sF dG∫ ˆ   formally coincides with the definition of the

extended stochastic integral on    ( )L2 ⊗ +H
C

  given in [3].

Let now  F ∈ ′( )′ ⊗ +S H
C

.  Then (see (1.13))  F  can be presented in the form
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F.  =  
m

m
mL F

=

∞

∑ ⋅
0

, ( )
ext, ,      F

m m
ext, ⋅ ∈ ′ ⊗ +( ) ( )S H

C C
,

F
p q

H H− −
+( ) ⊗ C

2   =  
m

qm
m

mU F
p
m

=

∞
−

⊗∑ ⋅
−
⊗ +

0

2
2 ext,

( )

,

ˆ
H H

C C

  <  ∞

for some  p, q ∈N   (see (1.11) for the definition of  Um ).

Definition 2.2 [3].  For a generalized function  F ∈ ′( )′ ⊗ +S H
C

  and   t  ∈
∈ [ 0, + ∞ ]  we define an analog of an extended stochastic integral, putting

0 0
1 1

1
t

s s
m

m m t
mF dG L U F∫ ∑=

=

∞

+ +
− ∧ˆ̂ : , ( ) ,

where    Ft
m m∧ ⊗ +∈ ′( ) ˆ ( )S

C

1   is the “symmetrization of  
  
U Fm

m
t

m
ext, ⋅( ) ⋅ ∈ ′[ )

⊗( )
,

ˆ ( )( )1 0 S
C

 ⊗

⊗ H
C

+  with respect to  m + 1  variables”.

It was proved in [3] that for    F
m m

ext, ext⋅ ∈ ⊗ +( ) ( )H H
C

  and  t ∈ +∞[ ]0,    U Fm t
m

+
− ∧

1
1 ( )

coincides with  ˆ
,

( )F t
m

0[ )   constructed in Lemma 2.1.  Therefore we have the following
statement.

Proposition 2.2.  The restriction of the analog of an extended stochastic integral

  0
t

sdG∫ � ˆ̂   o n   L
q

2 1( ) ⊗
−
− +H

C
  coincides with  

 0
t

sdG∫ � ˆ ,  i.e., for   F L
q

∈( ) ⊗
−
− +2 1 H

C

0

t
s sF dG∫ ˆ̂  = 

0

t
s sF dG∫ ˆ   ( thus below we will denote all stochastic integrals by

0

t
sdG∫ � ˆ ).

The following statement (the “Gamma-analog” of Proposition 2.1) explains that our
generalization of the stochastic integral is natural.

Theorem 2.1.  Let   F L∈( ) ⊗ +2 H
C

  be an  F  ×  B R+( )  -measurable stochastic

process  adapted  with  respect  to  the  flow  of   σ -algebras  generated  by  the

compensated Gamma-process  Gs ,  and   E
0

2∞
∫ F dss σ( ) < ∞  (here as above  E

denotes the expectation).  Then for each  t ∈ +∞[ ]0,    F  is integrable on the interval
0, t[ )   in the extended sense and by Itô with respect to  Gs   (in the sense of the so-

called  L2 -theory) and

0

t

s sF dG∫ ˆ   =  
0

t

s sF dG∫ ,

where by  
0

t
s sF dG∫   the Itô integral denoted.

Proof.  It follows directly from Definition 2.1 that the restriction of  
0

t
sdG∫ � ˆ   on

L2( ) ⊗ +H
C

  coincides with the extended stochastic integral on  L2( ) ⊗ +H
C

constructed in [3].  But for the last integral the statement of the theorem was proved
in [3, 9].

Finally, let us explain that the extended stochastic integral  
 0
t

sdG∫ � ˆ   can be

described as the operator dual to the stochastic differentiation operator (see, e.g., [16]
for a detailed description of such approach in the Gaussian analysis).
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For  n ∈N ,  f n n( ) ( )∈H ext   and  g ∈H
C

  we define  f gn n( ) ( ),
ext ext∈ −H 1   by the

formula

f g h f U U h gn n n
n n

n( ) ( ) ( ) ( ), , , ˆ
ext ext ext

− −
−

−≡ ( ) ⊗( )1 1
1

1     ∀ ∈− −h n n( ) ( )1 1H ext .

The well-definiteness of  f gn( ),
ext

  was proved in [9], see also [3].

Proposition 2.3 [9].  Let   f n n( ) ( )∈H ext ,  n ∈N .  Then there exists a unique

  f
n n( ) ( )( )⋅ ∈ −H ext

1  ⊗ H
C

  such that

R

∫ =f s g s ds f gn n( ) ( )( ) ( ) ( ) ,σ
ext

    ∀ ∈g H
C

(2.6)

and

f n
n

( )( ) ( )⋅ − ⊗H Hext
1

C

  ≤  f n( )
ext

.

Here the integral in the left-hand side of (2.6) is understanding in the sense that for

each  h n n( ) ( )− −∈1 1H ext

R

∫ −f s g s ds hn n( ) ( )( ) ( ) ( ),σ 1

ext

  ≡  
R

∫ −f s h g s dsn n( ) ( )( ), ( ) ( )1
ext

σ .

Definition 2.3.  Let  f L
q

∈( )2 1
,  q ∈N .  We define the stochastic derivative

∂ ∈( ). f L
q

2 1
 ⊗ H

C
  putting

∂ = ⋅
=

∞

−∑. : , ( )( )f n L f
n

n
n

1
1 ,

where the kernels  f n n( ) ( )( )⋅ ∈ −H ext
1  ⊗  H

C
  are defined as in Proposition 2.3

starting from the kernels  f n n( ) ( )∈H ext   from decomposition (1.5) for  f.
It is easy to see that

∂
( ) ⊗

. f
L q

2 1
2

H C

  =  
n

qn nn n f n

=

∞
+

⊗∑ + ⋅
0

2 2 1 2
2 1( !) ( ) ( ) ( )

( )

extH H C

  ≤

≤  2 1 2
0

2 1 1 2−

=

∞
+ +∑ +( ) ⋅q

n

q n nn f( )! ( )( ) ( )
ext

  ≤  2 2−q
qf   <  ∞,

therefore  ∂.  is well-defined.  Note that formally  ∂. = δ., : :D ext ,  where  δ.  denotes
the  δ-function.

Theorem 2.2.  Let  f L
q

∈( )2 1
,  F L

q
∈( ) ⊗

−
− +2 1 H

C
,  q ∈N .  Then

0

t

s sF dG f∫ ˆ ,   =  
0

t

s sF f ds∫ ∂, ( )σ     ∀ ∈ +∞[ ]t 0, .

Proof.  First we note that

0

t

s sF dG f∫ ˆ ,   =  
n

t
n nn F f

=

∞

[ )
+∑ +

0
0

11( )! ˆ ,,
( ) ( )

ext
,
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1044 N. A. KACHANOVSKY

where  ˆ
,

( )F t
n n

0
1

[ )
+∈H ext

( )   are from decomposition (2.5) for  
0

t
s sF dG∫ ˆ ,  f n n( )

ext
( )+ +∈1 1H

are from decomposition (1.5) for  f.  Further,  ∂. f = 
n n

nn L f=
∞ +∑ + ⋅

0
11( ) , ( )( ) ,  so we

have

F f., .∂   =  
n

n nn F f
=

∞
+∑ + ⋅

0

11( )! . , ( )( ) ( )
ext

(here    F
n n.( ) ( )∈ ⊗ +H Hext C

  are the kernels from decomposition (2.4) for  F.,

  f
n n( ) ( )( )+ +⋅ ∈ ⊗1 H Hext C

  are defined in Proposition 2.3).  Therefore in order to finish
the proof it is sufficient to show that

ˆ ,,
( )F ft
n n

0
1

[ )
+( )

ext
  =  

0

1
t

n nF f d∫ +
τ τ σ τ( ), ( ) ( )( )

ext
. (2.7)

Let    F
n n.( ) ( )∈ ⊗ +H Hext C

  be the kernels from decomposition (2.4) for  F.  We consider

a sequence  S
C

⊗̂n ⊗ S
C

∋ F i
n

.,
( )  → F n.( )    (as  i → ∞)  in  H Hext

( )n ⊗ +
C

  and construct as

in Lemma 2.1  S
C

ˆ ( )
, ,

( )ˆ⊗ +
[ )∋n

t i
nF1

0  →  ˆ
,

( )F t
n

0[ )   (as  i →  ∞ )  in   H ext
( )n +1 .  Let also

S
C

ˆ ( ) ( )⊗ + +∋n
i

nf1 1  → f n( )+1   (as  i → ∞)  in  H ext
( )n +1 .  Now we have (see (1.4))

ˆ ,, ,
( ) ( )F ft i
n

i
n

0
1

[ )
+

ext
  =  

k l s j k l l l

l s l s n
j j k

k k

, , : , , , ,∈ = … > >…>
+…+ = +

∑
N 1

1
1 2

1 1

( )!

! !

n

l l s ss
k
s

k
k

+
… …

1

1 1
1

 × 

× 
R

s sk1 +…+
∫ ˆ , , , , , ,, ,

( )F t i
n

l

s s s s

l

k k

k

0 1 1

1

1 1[ ) +…+ +…+( )… … …τ τ τ τ� �� �� � ����� �����
 ×

× 

  

fi
n

l

s s s s

l

k k

k

( ) , , , , , ,+
+…+ +…+( )… … …1

1 1

1

1 1
τ τ τ τ� �� �� � ����� �����

σ τ σ τ( ) ( )d d s sk1 1
… +…+   =

=  
k l s j k l l l

l s l s n
j j k

k k

, , : , , , ,∈ = … > >…>
+…+ = +

∑
N 1

1
1 2

1 1

n

l l s ss
k
s

k
k

!

! !1 1
1 … …

 × 

× 

  R
s sk

k k

k

F t i
n

l

s s s s

l1
1

1 10 1 1
+…+
∫







… … …[ ) +…+ +…+( )˜ , , , , , ,, ,
( ) τ τ τ τ� �� �� � ����� �����

 ×

× 

  

fi
n

l

s s s s

l

k k

k

( ) , , , , , ,+
+…+ +…+( )… … …1

1 1

1

1 1
τ τ τ τ� �� �� � ����� �����

σ τ σ τ( ) ( )d d s sk1 1
… +…+  +

+ 
R

s sk
k k k

k

F t i
n

s s

l

s s s s

l1
1

1

1 10 1 1

1
+…+
∫ [ ) +…+ +…+ +…+

−

( )… … …˜ , , , , , , ,, ,
( ) τ τ τ τ τ� �� �� � ����� �����

 ×

× fi
n

l

s s s s

l

k k

k

( ) , , , , , ,+
+…+ +…+( )… … …1

1 1

1

1 1
τ τ τ τ� �� �� � ����� �����

σ τ σ τ( ) ( )d d s sk1 1
… +…+  + …
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… + 

  R
s sk

k k

k

F t i
n

l

s s s s

l1
1

1 10 1 1

1

1
+…+
∫ [ )

−
+…+ +…+( )… … …˜ , , , , , , ,, ,

( ) τ τ τ τ τ� �� �� � ����� �����
 ×

× fi
n

l

s s s s

l

k k

k

( ) , , , , , ,+
+…+ +…+( )… … …1

1 1

1

1 1
τ τ τ τ� �� �� � ����� �����

σ τ σ τ( ) ( )d d s sk1 1
…







+…+   =

=  
k l s j k l l

l s l s s n
j j k

k k k

, , : , , , ,

( )

∈ = … − >…> >
+…+ + − =

−

− −

∑
N 1 1 1

1
1 1

1 1 1 1

n

l l s s ss
k
s

k k
k

!

! !( )!1 1 1 1
1 1 1… … −− −

−
 ×

× 
R

s sk1 +…+
∫

  

˜ , , , , , , ,, ,
( )F t i
n

l

s s s s

l

s sk k

k

k0 1 1 1

1

1 1 1 1

1

1 1[ ) +…+ +…+ +…+ +( … … …
− −

−

−
τ τ τ τ τ� �� �� � ������ ������

, … 

… ,  

  

τ τ τ τ τ τs s i
n

l

s s s s

l

k k k

k

f
1

1

1 1 1 1

1

1
1

1 1+…+ −
+

+…+ +…+) ( … … …
− −

−

, , , , , , ,( )
� �� �� � ������ ������

,

τ τ τs s s sk k1 1 11 1+…+ + +…+ −−
… ), , σ τ σ τ σ τ( ) ( ) ( )d d ds sk1 11

… +…+ −   =

=  
0

1
t

i
n

i
nF f d∫ +

τ τ σ τ,
( ) ( ), ( ) ( )

ext

(a nonatomicity of  σ  used).  Approaching the limit as  i → ∞  we obtain (2.7).
The theorem is proved.
3.  Elements of the Wick calculus and stochastic equations.  In this section we

introduce a Wick product and Wick versions of holomorphic functions on the

Kondratiev-type space of regular generalized functions  L2 1( )−
.  Then we study the

interconnection of these objects with an extended stochastic integral and consider some
stochastic equations with Wick-type nonlinearity.

First we recall elements of the Wick calculus on the space  ′( )′S   of nonregular
generalized functions.

Definition 3.1.  For  F ∈ ′( )′S   we define an integral  S - transform  ( )( )SF λ ,  λ
belongs to some neighbourhood of zero in  S

C
,  putting (see (1.3))

( )( )SF λ   : =  F, :exp( , ):⋅ λ .

This definition is correct because for each  F ∈ ′( )′S   there exist  p , q ∈N   such

that  F p q
∈( )− −

H ;  and for  λ ∈S
C

  such that  2 12q
pλ <   we have  :exp( , ):⋅ λ  ∈

∈ H p q( ) .

Remark 3.1.  We note that if  F ∈ ′( )′S   is presented in form (1.6) then  ( )( )SF λ  =

= 
m

m mF=
∞ ⊗∑ 0

( ), λ
ext

.  In particular,  ( )( )SF 0  = F( )0 ,  S1 1= .

Theorem 3.1 [18, 12, 13].  An  S-transform is a topological isomorphism between

the space  ′( )′S   and the algebra  Hol0   of germs of holomorphic at zero functions
on  S

C
.
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1046 N. A. KACHANOVSKY

Definition 3.2.  For   F , H ∈ ′( )′S    we define the Wick product   F  ◊  H ∈ ′( )′S ,
putting

F ◊  H  : =  S SFSH− ( )1 .

Remark 3.2.  If generalized functions  F, H ∈ ′( )′S   presented in form (1.13) then

F ♦ H  =  
k

k
n

k
n k nL F H

=

∞

=

−∑ ∑ ◊
0 0

, ( ) ( )
ext ext ,

where for    F
n n

ext
( ) ( )∈ ′S

C
,  H m m

ext
( ) ( )∈ ′S

C
  the element  F Hn m n m

ext ext
( ) ( ) ( )◊ ∈ ′ +S

C
  is defined

by (see (1.11))  F Hn m
ext ext
( ) ( )◊  : = U U F U Hn m n

n
m

m
+

− ⊗( )1
ext ext
( ) ( )ˆ   (see (3.13) below).

Definition 3.3.  For   F ∈ ′( )′S    and a function   h :   C →  C    holomorphic at

( )( )SF 0   we define the Wick version  h F◊ ∈ ′( )′( ) S   putting

h F S h SF◊ −=( ) : ( )1 .
The correctness of Definitions 3.2, 3.3 from Theorem 3.1 follows.
Remark 3.3.  It is easy to see that if  h  from Definition 3.3 presented in the form

h u( )  = 
n n

nh u SF=
∞∑ −( )

0
0( )( )   then  h F◊( )  = 

n n
nh F SF=

∞ ◊∑ −( )
0

0( )( ) ,  where

F n◊  : = 

  

F F
n

◊ … ◊
times

� �� �� .

Because the space  L2 1( )−   of regular generalized functions in a subspace of  ′( )′S ,

the Wick product  F H◊   and the Wick versions of a holomorphic function  h F◊( )   are

well-defined for  F , H L∈( )−2 1;  but as elements of  ′( )′S .  In order to prove that

actually now  F H◊ ,  h F L◊ −∈( )( ) 2 1  we need the following statement (in a sense this
is a generalization of Lemma 2.1).

Lemma 3.1.  Let  F n n( ) ( )∈H ext , H m m( ) ( )∈H ext .  Then one can extend F n( )  ◊

◊  H m( )  = U U F U Hn m n
n

m
m n m

+
− +⊗( ) ′∈1 ( ) ( ) ( )ˆ S

C
  (see (1.11)) to a linear continuous

functional on  H ext
( )n m+   more




 exactly,  ∃ ∈ +F Hn m n m( ) ( ) ( )
%

H ext   such that

∀ ∈+ ⊗ +g n m n m( ) ˆ ( )S
C

   
  

F H gn m n m( ) ( ) ( ),
%

+

ext

 = F H gn m n m( ) ( ) ( ),◊ 


+
ext

.  Identifying

F Hn m( ) ( )◊   with this functional one can reckon that  F Hn m( ) ( )◊  =

=     
F Hn m n m( ) ( ) ( )

%

∈ +H ext ,  in this case

F H F Hn m n m( ) ( ) ( ) ( )◊ ≤
ext ext ext

. (3.1)

One can construct the element    F Hn m( ) ( )
%

  as follows.  Let    SC

ˆ ( )⊗ ∋n nfv  →  F n( )   (as

  v → ∞ )  in  H ext
( )n ,    SC

ˆ ( )⊗ ∋m mhv  → H m( )   (as    v → ∞ )  in  H ext
( )m .  We put

    

f h t t t tn m
n n n m

( ) ( ) , , ; , ,
!







… …( )+ +
v

1 1   ≡  f t t h t tn
n

m
n n mv v

( ) ( ), , , ,1 1…( ) …( )+ +

!

  : =

: =  
f t t h t t i n j n n m t tn

n
m

n n m i jv v

  

( ) ( ), , , , , , , , , , , ,1 1 1 1…( ) …( ) ∀ ∈ …{ } ∀ ∈ + … +{ } ≠




+ + if

in other cases0,
(3.2)
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f hn m( ) ( )

%( )
v
 := 

    
P f hn m( ) ( )

!( )
v
,  where   P   is the symmetrization operator.  Then

  F Hn m( ) ( )
%

 = 
    

lim ( ) ( )

v v→ ∞( )f hn m
%

  in  H ext
( )n m+   this(  limit does not depend on a choice

of sequences  
  

f n
v v

( )( ) ≥ 1
,  

  
h m

v v

( )( ) )≥ 1
.

Remark 3.4.  Note that nonstrictly speaking    F Hn m( ) ( )
%

  is the symmetrization of
the functions

F H t t t tn m
n n n m

( ) ( ) , , ; , ,
!

1 1… …( )+ +   : = 

: = 
F t t H t t i n j n n m t tn

n
m

n n m i j
( ) ( ), , , , , , , , , , , ,1 1 1 1…( ) …( ) ∀ ∈ …{ } ∀ ∈ + … +{ } ≠





+ + if

0, in other cases  

with respect to  n + m  variables.

Proof of the lemma.  First we prove that   F Hn m( ) ( )
%

  is well-defined in  H ext
( )n m+ ,

independent on a choice of approximating sequences  f n
v v

( )( ) ≥ 1
,  h m

v v

( )( ) ≥ 1
,  and

F H F Hn m n m( ) ( ) ( ) ( )
%

ext ext ext
≤ . (3.3)

Let us consider sequences  
  

f n
v v

( )( ) ≥ 1
,  

 
h m

v v

( )( ) ≥ 1
  introduced in the lemma.  We may

assume, without loss of generality, that  m ≥ n.  It follows from the symmetry of  f n
v
( )

and  h m
v
( )   that

f h t t t tn m
n n n m

( ) ( ) , , ; , ,
$







… …( )+ +
v

1 1   =

=  
n m

n m
! !

( )!+ 1 1 01 1

1 1 1 1

≤ … ≤ + ≤ … ≤ + ≤ ≤
<…< <…< <…< <…<+ − − +

∑
p p n n q q n m r n

p p p p q q q q
n m

r r n n r n r m

, , , , , ,
, , ,

    

f hn m( ) ( )
!







v

t tp pr1
, , ,…(

t t t t t tq q p p q qn r r n n r m1 1 1
, , ; , , , , ,… … … )− + − +

(3.4)

( here for  r = n   the argument in the right-hand side of (3.4) is  t tp pr1
, ,…( ;

t tq qm1
, ,… ) ;  for  r = 0  this argument is  t tq qn1

, ,…( ; t tp pn1
, ,… , t tq qn m+

… ))1
, , .  To

put it in another way, arguments of  
    

f hn m( ) ( )
!







v

  in this sum are  t j   with all  j ∈  {1, …

… , n + m},  but subindexes of first  n  arguments and last  m  arguments (“before” and
“after”  ‘;’ )  must be (independently) arranged in an ascending order.

Let us estimate  

    

f hn m( ) ( )
$







v ext

.  In accordance with the definition of  ⋅ ext   we

have
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f hn m( ) ( )
$







v ext

2

  =  
k l s j k l l l

l s l s n m
j j k

k k

, , : , , , ,∈ = … > >…>
+…+ = +

∑
N 1 1 2

1 1

( )!

! !

n m

l l s ss
k
s

k
k

+
… …1 1

1
 × 

× 
R

s sk1 +…+
∫

      

f h t t t tn m

l

s s s s

l

k k

k

( ) ( ) , , , , , ,
$







… … …( )+…+ +…+
v

1 1

2

1

1 1��� �� � ����� �����
 × 

× σ σ( ) ( )dt dts sk1 1
… +…+ . (3.5)

We say that collections of equal arguments (like  

  

t t
l

1 1

1

, ,… )��� ��   are called processions

(we need this term below).

Now we can substitute expression (3.4) for  
    

f hn m( ) ( )
$







v

  in (3.5) and use the well-

known estimate  
l

p
la=∑ 1

2
 ≤ p a

l

p
l=∑ 1

2.  Because, as it is easy to see, the right-

hand side of (3.4) contains  
( )!

! !
n m
n m
+

  terms, we have the estimate

  

f hn m( ) ( )
$







v ext

2

  ≤  
k l s j k l l l

l s l s n m
j j k

k k

, , : , , , ,∈ = … > >…>
+…+ = +

∑
N 1 1 2

1 1

( )!

! !

n m

l l s ss
k
s

k
k

+
… …1 1

1
 × 

× 
R

s sk1 +…+
∫







      

f h t t t tn m

l

s s s s

l

k k

k

( ) ( ) , , , , , ,
!







… … …( )+…+ +…+
v

1 1

2

1

1 1��� �� � ����� �����
 × 

× σ σ( ) ( )dt dts sk1 1
… + …







+…+ . (3.6)

The terms in the “interior” sum with processions “separated by ‘;’ (see (3.4)) are equal

to zero by the definition of  f hn m( ) ( )
!







v

.  The rest terms (if exist for given  k, j, lj , sj )

fall into groups of equal summands.  These equal summands are obtained by
rearrangements of processions of equal length “before”  ‘;’  and “after”  ‘;’.  (Note that
because the subindexes of arguments in sums (3.4) and (3.5) are ordered, the
processions “before”  ‘;’  (so as “after”  ‘;’  ) in (3.6) do not fail and do not rearrange,
and elements inside of processions do not rearrange.)  Furthermore, if “before”  ‘;’
there are  ′s   processions of length  l  and “after”  ‘;’  there are  ′′s   processions of

length  l  then by means of rearrangements of these processions one obtains  
( )!

! !
′ + ′′
′ ′′

s s
s s

equal summands (here  ′s ,  ′′ ∈ +s Z ,  ′ + ′′ ∈s s N ).  Thus the nonzero terms in the full
sum in the right-hand side of (3.6) are “connected” with the expression

l s l s n mk k1 1 + … + = + (3.7)

that can be presented in the form

′ ′ + … + ′ ′ =′ ′l s l s nk k1 1 ,      ′′ ′′ + … + ′′ ′′ =′′ ′′l s l s mk k1 1 ,

′k ,  ′′k ,  ′ … ′′l lk1, , ,  ′ … ′ ′s sk1, , ,  ′′ … ′′′′l lk1, , ,  ′′ … ′′ ∈′′s sk1, , N , (3.8)

′ > … > ′′l lk1 ,    ′′> … > ′′′′l lk1 .
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Now for every  sj   from (3.7) either  ∃ ′ =s si j   ′ =( )l li j   or  ∃ ′′=s si j   ′′=( )l li j   or  ∃ ′si ,

′′sw   such that  ′si  + ′′sw  = sj   ′ = ′′ =( )l l li w j .  Inequalities for  ′l ,  ′′l   in (3.8) from the
inequalities  l lk1 > … >   and from the ordering of subindexes of arguments in (3.4)
follow (most “long” processions have least subindexes of arguments).  Let us replace
every group of equal terms in the right-hand side of (3.6) by a one representative
multiplied by the quantity of terms in the group.  It is easy to see that summands in the
obtained sum depend on a structure of processions “before”  ‘;’  and “after”  ‘;’  but
independend on subindexes of arguments (note that now processions are invariant with

respect to all rearrangements).  Therefore taking into account that  l l ls s s s′ + ′′ ′ ′′=   one
can rewrite the sum in the right-hand side of (3.6) in the form

′ ′ +…+ ′ ′ = ′′ ′′+…+ ′′ ′′ =
′ ′′ ′ … ′ ′ … ′ ′′ … ′′ ′′ … ′′ ∈

′ >…> ′ ′

′ ′ ′′ ′′

′ ′ ′′ ′′

′

l s l s n l s l s m
k k l l s s l l s s

l l

k k k k

k k k k

k

1 1 1 1

1 1 1 1

1

, ,
, , , , , , , , , , , , , ,

,
N

′′>…> ′′′′

∑

l lk1

n m

l l s s l l s ss
k

s
k

s
k

s
k

k k

! !

! ! ! !′ … ′ ′ … ′ ′′ … ′′ ′′ … ′′′
′

′
′

′′
′′

′′
′′

′ ′′
1 1 1 1

1 1
 ×

× 
R

′ +…+ ′ + ′′+…+ ′′′ ′′

∫
s s s sk k1 1

f h t t t tn m

l

s s s s

l

k k

k

( ) ( ) , , , , , ,
!







… … …(
′

′ +…+ ′ ′ +…+ ′

′
′ ′

′
v

1 1

1

1 1��� �� � ����� �����
; 

t t t tn n

l

n s s n s s

l

k k

k

+ +

′′

+ ′′+…+ ′′ + ′′+…+ ′′

′′

… … …
′′ ′′

′′

)1 1

2

1

1 1
, , , , , ,

� ��� ��� � ������ ������
 × 

× σ σ σ σ( ) ( )
,

dt dt dt dt
s s n n s s

k k
1 1

1 1
… 



 … 



′ +…+ ′ + + ′′ +…+ ′′′ ′′

. (3.9)

Because the measure  σ  is nonatomic, one can replace  
    

f hn m( ) ( )
!







v
  in this sum by the

product of    f
n

v
( )  and   h

m
v
( ) .  Therefore sum (3.9) is equal to  

  
f n
v
( )

ext

2

 
h m

v
( )

ext

2
,  whence

  
f hn m( ) ( )
%







v ext
  ≤  

 
f n
v
( )

ext   
h m

v
( )

ext
. (3.10)

Actually, we proved that    ∀ ∈ ⊗ϕ( ) ˆn nSC ,    ∀ ∈ ⊗ψ( ) ˆm mS
C

 

P n mϕ ψ( ) ( )( )
!

ext
  ≡  

  

ϕ ψ( ) ( )n m
%

ext
  ≤  ϕ( )n

ext
ψ( )m

ext
(3.11)

(here  P  is a symmetrization operator).
Further,  ∀ v, w ∈N  we have

f hn m( ) ( )
%







v

 – f hn m

w

( ) ( )
%







  =  
  
P f h f hn m

w
n

w
m

v v
( ) ( ) ( ) ( )
! !

−





  =

=  P f h f hn m
w

n
w
m

v v
( ) ( ) ( ) ( )−





#

  =  P f h f h f h f hn m n
w
m n

w
m

w
n

w
m

v v v v
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )− + −





#

  =
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=  
    

P f h hn m
w
m

v v
( ) ( ) ( )−( )





#

 + 
  
P f f hn

w
n

w
m

v
( ) ( ) ( )−( )





#

  =

=  
    
f h hn m

w
m

v v
( ) ( ) ( )−( )

^

 + 
    

f f hn
w

n
w
m

v
( ) ( ) ( )−( )

^

whence using (3.11) we obtain

    

f h f hn m n m

w

( ) ( ) ( ) ( )
% %





 − 



v ext

  ≤

≤  f h hn m
w
m

v v
( ) ( ) ( )−( )

^

ext
 + f f hn

w
n

w
m

v
( ) ( ) ( )−( )

%

ext
  ≤

≤  
  

f n
v
( )

ext   
h hm

w
m

v
( ) ( )−

ext
 + 

 
f fn

w
n

v
( ) ( )−

ext
hw

m( )
ext

  →
→∞v,w

  0.

So, the sequence  

    

f hn m( ) ( )
%












 ≥v v 1

  is a Cauchy one in    H ext
( )n m+   and therefore there

exists    F Hn m( ) ( )
%

 : = 
  
lim
v→∞

    

f hn m( ) ( )
%







v

 ∈   H ext
( )n m+ .  This limit is independent on a

choice of sequences  
  

f n
v v

( )( ) ≥1
,  

  
h m

v v

( )( ) ≥1
,  this can be proved by a standard way.

Namely, let us consider another sequences  S
C

ˆ ( )⊗ ∋ ′n nfv  →
→∞v

 F n( )   in  H ext
( )n ,

S
C

ˆ ( )⊗ ∋ ′m mhv  →
→∞v

 H m( )   in  H ext
( )n ,  and put  F Hn m( ) ( )

% ′
 : = lim

v→∞
f hn m′ ′







( ) ( )

%

v

 ∈

∈   H ext
( )n m+ .  Then for “mixed” sequences  f f f fn n n n

1 1 2 2
( ) ( ) ( ) ( ), , , ,′ ′ …( )   and

h h h hm m m m
1 1 2 2
( ) ( ) ( ) ( ), , , ,′ ′ …( )   the corresponding “final result” coincides with    F Hn m( ) ( )

%

and with  
  
F Hn m( ) ( )

% ′
,  therefore  F Hn m( ) ( )

%

 = 
  
F Hn m( ) ( )

% ′
.  Estimate (3.3) follows from

(3.10) by passing to a limit.

Let us prove now that  F Hn m( ) ( )◊   can be identified with   F Hn m( ) ( )
%

.  First we
establish that  ∀ ∈λ S

C

 

F Hn m n m( ) ( ) ( ),
%

λ⊗ +

ext
  =  F Hn m n m( ) ( ) ( ),◊ ⊗ +λ

ext
. (3.12)

It follows directly from the definition of  F Hn m( ) ( )◊   that (see (1.11))

F Hn m n m( ) ( ) ( ),◊ ⊗ +λ
ext

  =  U U U F U Hn m n m n
n

m
m n m

+ +
− ⊗ +⊗( )1 ( ) ( ) ( )ˆ , λ   =

=  U Fn
n n( ), λ⊗ U Hm

m m( ), λ⊗   =  F n n( ), λ⊗
ext

H m m( ), λ⊗
ext

. (3.13)

On the other hand, let us consider the scalar product

    

f hn m n m( ) ( ) ( ),
%







⊗ +

v
λ

ext
  =  

k l s j k l l l

l s l s n m
j j k

k k

, , : , , , ,∈ = … > >…>
+…+ = +

∑
N 1 1 2

1 1

( )!

! !

n m

l l s ss
k
s

k
k

+
… …1 1

1
 × 
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× 
R

s sk1 +…+
∫ f h t t t tn m

l

s s s s

l

k k

k

( ) ( ) , , , , , ,
%







… … …( )+…+ +…+
v

1 1

1

1 1��� �� � ����� �����
 × 

× λ λ σ σl l
s s s st t dt dtk

k k
1

1 11 1( ) ( ) ( )… ( ) …+…+ +…+   =

=  
k l s j k l l l

l s l s n m
j j k

k k

, , : , , , ,∈ = … > >…>
+…+ = +

∑
N 1 1 2

1 1

( )!

! !

n m

l l s ss
k
s

k
k

+
… …1 1

1
 × 

× 
R

s sk1 +…+
∫

      

f h t t t tn m

l

s s s s

l

k k

k

λ λ
( ) ( ) , , , , , ,

%






… … …( )+…+ +…+
v

1 1

1

1 1��� �� � ����� �����
σ σ( ) ( )dt dts sk1 1

… +…+

(3.14)

(we used the previous notation), where  f hn m
λ λ
( ) ( )

%






v
  is obtained by formulas (3.2),

(3.4) starting from  f t tn
nλ,

( )( , , )v 1 …  =   f t tn
nv

( )( , , )1 … λ λ( ) ( )t tn1 … ,  h t tm
mλ,

( )( , , )v 1 …  =

= h t tm
mv

( )( , , )1 … λ λ( ) ( )t tm1 … .  Substituting in (3.14) expression (3.4) for

    

f hn m
λ λ
( ) ( )

%






v
,  by analogy with the proof that the sum in the right-hand side of (3.6) has

form (3.9) we can transform the last sum in (3.14) to the form

′ ′ +…+ ′ ′ = ′′ ′′+…+ ′′ ′′ =
′ ′′ ′ … ′ ′ … ′ ′′ … ′′ ′′ … ′′ ∈

′ >…> ′ ′

′ ′ ′′ ′′

′ ′ ′′ ′′

′

l s l s n l s l s m
k k l l s s l l s s

l l

k k k k

k k k k

k

1 1 1 1

1 1 1 1

1

, ,
, , , , , , , , , , , , , ,

,
N

′′>…> ′′′′

∑

l lk1

n m

l l s s l l s ss
k

s
k

s
k

s
k

k k

! !

! ! ! !1 1 1 1
1 1′ … ′ ′ … ′ ′′ … ′′ ′′ … ′′′

′
′

′
′′

′′
′′

′′′ ′′
 × 

× 

R
′ +…+ ′ ′ + ′′+…+ ′′′′

∫
s s s sk k1 1

f hn m
λ λ
( ) ( )
!







v

 

( … … …
′

′ +…+ ′ ′ +…+ ′

′
′ ′

′

t t t t
l

s s s s

l

k k

k

1 1

1

1 1
, , , , , ,��� �� � ����� �����

; 

t t t tn n

l

n s s n s s

l

k k

k

+ +

′′

+ ′′+…+ ′′ + ′′+…+ ′′
′′

… … …
′′ ′′

′′

)1 1

1

1 1
, , , , , ,

� ��� ��� � ������ ������
 × 

× σ σ σ σ( ) ( )dt dt dt dts s n n s sk k1 11 1
… ( ) … ( )′ +…+ ′ + + ′′+…+ ′′′ ′′

  =

=  
′ ′ +…+ ′ ′ = ′′ ′′+…+ ′′ ′′ =

′ ′′ ′ … ′ ′ … ′ ′′ … ′′ ′′ … ′′ ∈
′ >…> ′ ′

′ ′ ′′ ′′

′ ′ ′′ ′′

′

l s l s n l s l s m
k k l l s s l l s s

l l

k k k k

k k k k

k

1 1 1 1

1 1 1 1

1

, ,
, , , , , , , , , , , , , ,

,
N

′′>…> ′′′′

∑

l lk1

n m

l l s s l l s ss
k

s
k

s
k

s
k

k k

! !

! ! ! !1 1 1 1
1 1′ … ′ ′ … ′ ′′ … ′′ ′′ … ′′′

′
′

′
′′

′′
′′

′′′ ′′
 × 

× 

R
′ +…+ ′ ′
∫

s sk1

  f
n

v
( ) ( )… … …

′
′ +…+ ′ ′ +…+ ′

′
′ ′

′

t t t t
l

s s s s

l

k k

k

1 1

1

1 1
, , , , , ,��� �� � ����� �����

 × 

× λ λ σ σ′ ′
′ +…+ ′ ′ +…+ ′… ( ) …′l l

s s s s
t t dt dtk

k k

1

1 1
1 1( ) ( ) ( ) × 

× 

R
′′+…+ ′′′′
∫

s sk1

  f
n

v
( )

  

( )+ +

′′

+ ′′+…+ ′′ + ′′+…+ ′′

′′

… … …
′′ ′′

′′

t t t tn n

l

n s s n s s

l

k k

k

1 1

1

1 1
, , , , , ,

� ��� ��� � ������ ������
 × 
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× λ λ σ σ′′
+

′′
+ ′′+…+ ′′ + + ′′+…+ ′′… ( ) … ( )′′

′′ ′′

l
n

l
n s s n n s st t dt dtk

k k
1

1 11 1( ) ( )   =

=  
  

f n n
v
( ), λ⊗

ext  
h m m

v
( ), λ⊗

ext

(here a nonatomicity of  σ  used).  By passing to a limit as  v  →  ∞   we obtain

  

F Hn m n m( ) ( ) ( ),
%

λ⊗ +

ext
 = F n n( ), λ⊗( )ext

H m m( ), λ⊗( )ext
.  From here taking into account

(3.13) we obtain (3.12).

Further, the restriction of   F Hn m( ) ( )
%

  (as a linear functional) on    SC

ˆ ( )⊗ +n m   is a

linear continuous functional on  S
C

ˆ ( )⊗ +n m .  This functional coincides with

F Hn m( ) ( )◊   on the total in    SC

ˆ ( )⊗ +n m   set  λ⊗ +{ ( )n m :   λ ∈ }S
C

,  therefore  ∀ +g n m( ) ∈

∈   SC

ˆ ( )⊗ +n m F H gn m n m( ) ( ) ( ),
%

+

ext

 = F H gn m n m( ) ( ) ( ),◊ +
ext

.  Thus  F Hn m( ) ( )◊   can

be extended to a linear continuous functional on  H ext
( )n m+   by the formula

F Hn m( ) ( )◊  : =   F Hn m( ) ( )
%

  (it is natural to preserve the old notation for  F Hn m( ) ( )◊ ).
The lemma is proved.

Remark 3.5.  Note that for  m = 0  (or  n = 0)  F Hn( ) ( )◊ 0  = F Hn( ) ( )⋅ 0   (because

H( )0 ∈C)  and estimate (3.1) is obvious.

Theorem 3.2.  For  F ,  H L∈( )−2 1
  and a holomorphic at  SF( )( )0   function  h : 

C → C  we have  F H L◊ ∈( )−2 1
  and  h F L◊ −

∈( )( ) 2 1
.

Proof.  Actually, we shall prove somewhat more than we need for the present.

First, we establish that for  F F Lm1
2 1

, ,… ∈( )−
  and  q ∈N   sufficiently large

F F C m F Fm q q m q1 1 1 11◊ … ◊ ≤ − …− − − − −( ) ( ) ( ) ,

where  C m( ) : = max ( )
n

n mn
∈

− +{ }
N

2 1 .  Let  Fj
k k( ) ( )∈H ext   be the kernels from

decomposition (1.6) for  Fj , j m∈ …{ , , }1 .  It follows directly from Definition 3.2 that

F Fm1 ◊ … ◊   =  
n

n
k k k n

k
m

kL F F

m l
m

m

=

∞

… ∈ =
∑ ∑

+ =∑
◊ … ◊

0
1

1 1 1

1,
, , :

( ) ( )

Z

,

therefore using (3.1) one can estimate as follows:

F Fm q1
2◊ … ◊ −   =  

n

qn

k k k n

k
m

k

m l
m

l

mF F
=

∞
−

… ∈ =
∑ ∑

+ =∑
◊ … ◊

0
12

1 1

1

, , :

( ) ( )

Z ext

2

  =

=  
n

qn

k

n

k

n k

k

n k k
k

m
k

m
n k k

m

m
m mF F F

=

∞
−

= =

−

=

− …−

−
− …−∑ ∑ ∑ ∑… ◊ … ◊ ◊

−

−
− −

0 0 0 0
1 12

1 2

1

1

1 2
1 1 1 1

–
( ) ( ) ( – )

ext

2

  ≤

≤ 
n

qn n
=

∞
−∑ +

0
2 1( )  ×
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 × 
k

n

k

n k

k

n k k
k

m
k

m
n k k

m

m
m mF F F

1 2

1

1

1 2
1 1 1 1

0 0 0
1 1

= =

−

=

− …−

−
− …−∑ ∑ ∑… ◊ … ◊ ◊

−

−
− −

–
( ) ( ) ( – )

ext

2

  ≤ …

 … ≤  
n

qn mn
=

∞
− −∑ +

0

12 1( )( ) ×

× 
k

n

k

n k

k

n k k
k

m
k

m
m k k

m

m
m mF F F

1 2

1

1

1 2
1 1 1 1

0 0 0
1 1

2

= =

−

=

− …−

−
− …−∑ ∑ ∑… ◊ … ◊ ◊

−

−
− −

–
( ) ( ) ( – )

ext
  =

=  
n

n m q nn
=

∞
− − − −∑ +( )

0

1 12 1 2( )( ) ( )  ×

× 
k

n

k

n k

k

n k k
k

m
k

m
m k k

m

m
m mF F F

1 2

1

1

1 2
1 1 1 1

0 0 0
1 1

2

= =

−

=

− …−

−
− …−∑ ∑ ∑… ◊ … ◊ ◊

−

−
− −

–
( ) ( ) ( – )

ext
  ≤

≤  C m F
k

q k k

n k k

n k

( ) ( ) ( )−[ ]
=

∞
−

=

∞

=

−

∑ ∑ ∑1 22

0

1
1

01

1 1

1 2

1

ext

2
 … 

k

n k k
q k k

m

m

F
−

−

=

− …−
− −∑

1

1 2

2 2

0

1
22

–
( ) ( )

ext

2
 …

… 2 2
1

1
11 1 1 1 1 1− −

−
− − − …− − …−− − − −( ) ( ) ( )( – ) ( – )q k

m
k q n k k

m
n k km m m mF F

ext

2

ext

2
  =

=  C m F Fq
n k

n

k

n k k
q k k

m

m

( ) ( )

–
( ) ( )−[ ] …− −

=

∞

= =

− …−
− −∑ ∑ ∑

−

−

1 22
1 1

2

0 0 0

1
2

2 1

2 2

2 2

ext

2
 …

… 2 2
1

1
11 1 2 1 2 1− −

−
− − − …− − …−− − − −( ) ( ) ( )( – ) ( – )q k

m
k q n k k

m
n k km m m mF F

ext

2

ext

2
  = …

… =  C m F Fq m q( ) ( ) ( )−[ ] …− − − −1 2
1 1

2
1

2 .

It follows directly from here that  F F Lm1
2 1

◊ … ◊ ∈( )−
  and in particular for  F,

H L∈( )−2 1
F H L◊ ∈( )−2 1

.

Further, let  F L∈( )−2 1
  and  h :  C →  C  be a holomorphic at  SF( )( )0   function.

Let      F
m m( ) ( )∈H ext     be the kernels from decomposition (1.6) for    F ,   h u( )  =

= 
n n

n
h u F=

∞∑ −( )0
0( ) .  Because  SF ∈Hol0   and  S1 1=   we have

h F◊( )   =  S h h SF F
n

n
n−

=

∞
+ −( )







∑1

0
1

0( )   =

=  S h h F
n

n
m

m m
n

−

=

∞

=

∞
⊗+ ⋅



















∑ ∑1
0

1 1

( ),
ext

  =

=  S h h F F
n

n
m m

m m m m

n

n n−

=

∞

… =

∞
⊗ +…++ ◊ … ◊ ⋅









∑ ∑1

0
1 11

1 1

, ,

( ) ( ) (,
ext

  =

=  S h h F F
n

n
s n m m m s

m m s

n k
n

k

n−

=

∞

=

∞

… ∈ =

⊗+
∑

◊ … ◊ ⋅












∑ ∑ ∑

=

1
0

1 1 1

1

, , :

( ) ( ),
N ext

  =
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=  S h h F F
s n

s

n
m m m s

m m s

n k
n

k

n−

=

∞

= … ∈ =

⊗+
∑

◊ … ◊ ⋅












∑ ∑ ∑

=

1
0

1 1 1 1

1

, , :

( ) ( ),
N ext

  =

=  h L h F F
s

s
n

s

n
m m m s

m m

n k
n

k

n
0

1 1 1 1

1+
∑

◊ … ◊
=

∞

= … ∈ =
∑ ∑ ∑

=

,
, , :

( ) ( )

N

.

Because  F L
q

∈( )−
2 1

  for some  q ∈N ,  we have  F q−
2  = 

m
qm mF=

∞ −∑ 0
2 ( )

ext

2
 < ∞,

whence  F m( )
ext

 ≤ 2 2qm
qF/

− ; and because of holomorphy of  h  there exists  q̃ ∈N

such that  hn  < 2q̃n  for all  n ∈ +Z .  So, taking into account that

m m m sn l
n

l1 1

1
, , :… ∈ ==∑

∑
N

 = Cs
n
−
−
1
1 ≤ 2 1s − ,  using (3.1) we obtain

h F
q

◊
− ′

( )
2

  =  h0
2 + 

s

q s

n

s

n
m m m s

m mh F F

n l
n

l

n

=

∞
− ′

= … ∈ =
∑ ∑ ∑

=∑
◊ … ◊

1 1
2

1 1

1

, , :

( ) ( )

N ext

2

  ≤

≤  h0
2 + 

s

q s

n

s

n
m m m sl

n
mh F

n l
n

l

l

=

∞
− ′

= … ∈ = =
∑ ∑ ∑ ∏

=∑











1 1 1

2

2

1 1, , :

( )

N

ext   ≤

≤  h0
2 + 

s

q s

n

s
qn

m m m s

qs
q

n

n l
n

l

F
=

∞
− ′

= … ∈ =
−∑ ∑ ∑

=∑











1 1

2

2

2 2 2

1 1

˜

, , :

/

N

  =

=  h0
2 + 

s

q q s

n

s q F n
s
nq C

=

∞
− ′

=

+ ( )( )
−
−∑ ∑ −



1 1

1
1

2

2 2 2( ) ˜ log
  ≤

≤  h0
2 + 

s

q q s

n

s q F nq

=

∞
− ′ + −

=

+ ( )( )∑ ∑ −



1

2 2

1

2

2 2 2( ) ˜ log
  ≤

≤  h0
2 + 

s

q q s

n

s q F nq

=

∞
− ′ + −

=

+ ( )( )∑ ∑ −



1

2 2

1

2

2 2 2( ) ˜ log
  ≤

≤  h0
2 + C

s

q q q F sq

=

∞ − ′ + + + ( )( ) −∑ −

1

2 2 2 2
2 2˜ log

  <  ∞,

if  ′ ∈q N   is sufficiently large 










here   C  : = 2

2 1

2 2

2

2

2

˜ log

˜ log

q F

q F

q

q

+ ( )
+ ( )

−

− −













.  So,  h F◊( )  ∈

∈ L2 1( )−
.

The theorem is proved.

Let us define a space  B  (a characterization space of  L2 1( )−
  in terms of an  S-

transform) putting  B : = S L2 1( )( )−
 ≡ J ∈{ Hol0  ∃ ∈( )−

F L2 1
: J SF= } ⊂ Hol0 .

Corollary 3.1.  The space  B  is an algebra with respect to the usual (pointwise)

multiplication of functions.  Moreover, if  J B∈ ,  F( )0 ∈ C   is the kernel from
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decomposition (1.6) for    S J−1    a n d    h  :   C →  C    is a holomorphic at   F( )0

function, then  ˜( )J ⋅  : = h J B( )⋅( ) ∈ .  In particular, for each entire  h :  C →  C   and

J B∈   h J B( )⋅( ) ∈ .
Remark 3.6.  As it follows from Corollary 3.1, the space  B  has properties similar

to properties of  Hol0 .  A characterization of  L2 1( )−
  “in terms of  B” will be very

useful for study of a stochastic derivative on  L2 1( )−
,  we’ll discuss this derivative in a

forthcoming paper.
There is a simple interconnection between the Wick calculus and a stochastic

integration.  More exactly, for  t ∈ + ∞[ ]0,   and   F L∈( ) ⊗
− +2 1 H

C
  we define

0

t
s sF G ds∫ ◊ ′σ( )  (where  ′G.  = L1, δ⋅   is the Gamma-white noise) as a unique element

of  
  

′( )′S   such that

0

t

s sF G ds f∫ ◊ ′ σ( ),   ≡  
0

t

s sF G f ds∫ ◊ ′, ( )σ       ∀ ∈( )f S

( so,  
0

t
s sF G ds∫ ◊ ′σ( )  is the integral defined in a Pettis sense ).

Theorem 3.3.  For all  t ∈ + ∞[ ]0,   and  F L∈( ) ⊗
− +2 1 H

C
   

0

t
s sF G ds∫ ◊ ′σ( )  can

be extended to a linear continuous functional on  L2 1( )   that coinsides with

0

t
s sF dG∫ ˆ ,  i.e.,

0

t

s sF G ds∫ ◊ ′ σ( )   =  
0

2 1
t

s sF dG L∫ ∈( )−ˆ . (3.15)

Proof.  We have to prove that

0

t

s sF G ds f∫ ◊ ′ σ( ),   =  
0

t

s sF dG f∫ ˆ ,     ∀ ∈( )f S .

It is easy to calculate that

0

t

s sF dG f∫ ˆ ,   =  
n

t
n nn F f

=

∞

[ )
−∑

1
0

1! ˆ ,,
( ) ( )

ext
,      f

n n( ) ˆ
∈ ⊗S

C

(we use the notation of (1.5) and (2.5)).

On the other hand,  F G⋅ ⋅◊ ′  = 
m m

mL F=
∞ −∑ ◊

1
1, . .( ) δ   (we use the notation of

(2.4), see also Remark 3.2), whence

F G f. .◊ ′,   =  
n

n nn F f
=

∞
−∑ ◊

1

1! . .,( ) ( )δ
ext

.

So, in order to finish the proof we have to prove that for all  n ∈N

0

1
t

s
n

s
nF f ds∫ − ◊( ) ( ), ( )δ σ

ext
  =  ˆ ,,

( ) ( )F ft
n n

0
1

[ )
−

ext
. (3.16)

First, let us consider  f n( ) = λ⊗n ,    λ ∈S
C

.  Now  
0

1t
s

n
s

nF ds∫ − ⊗◊( ) , ( )δ λ σ
ext

 =

= 
0

1 1t
s

n nF s ds∫ − ⊗ −( ) ( ), ( ) ( )λ λ σ
ext

.   But it was established in the proof of Theorem 2.2

ISSN  1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 8



1056 N. A. KACHANOVSKY

in [3] that  
0

1 1t
s

n nF s ds∫ − ⊗ −( ) ( ), ( ) ( )λ λ σ
ext

 = ˆ ,,
( )F t
n n

0
1

[ )
− ⊗λ

ext
.  Because the set  λ⊗{ n :

  λ ∈ }S
C

  is total in   SC

⊗̂n  and  
0

1t
s

n
sF ds∫ − ◊ °

( ) , ( )δ σ
ext

,  ˆ ,,
( )F t
n

0
1

[ )
−

° ext
  are

continuous functionals on    SC

⊗̂n,  we can conclude that (3.16) holds true.
Property (3.15) and Corollary 3.1 give us a possibility to consider so-called

stochastic differential equations wit Wick-type nonlinearity and solve such equations
using an  S-transform.  Let us consider corresponding examples.

Example 3.1 (a linear equation).  Let us consider the stochastic equation

X X X F F ds X H H dGt

t

s n

t

s m s= + ◊ ◊ … ◊ + ◊ ◊ … ◊∫ ∫0
0

1
0

1σ( ) ˆ , (3.17)

where  X L0
2 1

∈( )−
;  n, m ∈N ;  Fk  = L Fk1

1, ( ) ,  Fk
( ) ( )1 1∈H ext  =   H C

,  k n∈ …{ , , }1 ;

Hk  = L Hk1
1, ( ) ,  Hk

( ) ( )1 1∈H ext ,  k m∈ …{ , , }1 .  Applying to (3.17) the  S-transform

(with regard to (3.15)), solving the obtained algebraic equation and applying the
inverse  S-transform (see Corollary 3.1 and Remark 3.6) we obtain the solution

X X F F t H H G Lt n m t= ◊ ◊ … ◊ [ )( ) + ◊ … ◊ ◊{ } ∈( )◊ −
0 1 1

2 1
0exp ,σ .

By analogy one can solve the more general equation

X X X F ds X H dGt

t

s

t

s s= + ◊ + ◊∫ ∫0
0 0

σ( ) ˆ ,

where  X0 ,  F,  H L∈( )−2 1
,  the solution has the form

X X F t H G Lt t= ◊ [ )( ) + ◊{ } ∈( )◊ −
0

2 1
0exp ,σ .

Example 3.2 (the Verhulst-type equation).  Let us consider integral stochastic
equation

X X r X N X ds X N X dGt

t

s s

t

s s s= + ◊ − + ◊ −∫ ∫0
0 0

( ) ( ) ( ) ˆσ α , (3.18)

where  X L0
2 1

∈( )−
,  N,  r, α ∈R,  N > 0,  r > 0,  SX0 0( )( )  > 0.  Applying to (3.18) the

S-transform (with regard to (3.15)), solving the obtained algebraic equation and
applying the inverse  S-transform, one can show by the full analogy with [19] that the
solution of (3.18) has the form

X N N X N r t G Lt t= + −( ) ◊ − [ )( ) +( ){ }[ ] ∈( )◊ − ◊ ◊ − −
1 1 00

1 1 2 1( ) ( )
exp ,σ α ,

where  Y ◊ −( )1  : = S
SY

−1 1 .
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