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EXACT SOLUTIONS OF A MATHEMATICAL MODEL
FOR FLUID TRANSPORT IN PERITONEAL DIALYSIS*

TOYHI PO3B’SI3KU OTHIET MATEMATHUYHOI MO/IEJII
IMEPEHOCY PIJUHU ITPU OYEPEBUHHOMY IAJII3I

A mathematical model for fluid transport in peritoneal dialysis is constructed. The model is based on a nonlinear
system of two-dimensional partial differential equations (PDE) with the relevant boundary and initial conditions.
Using the classical Lie scheme, we have established that the based PDE system (under some restrictions on
coefficients) is invariant under the infinite-dimensional Lie algebra, therefore families of exact solutions were
found. Moreover, exact solutions with a more general structure were found using another (non-Lie) technique.
Finally, it was shown that some of the solutions obtained describe the hydrostatic pressure and the glucose
concentration in peritoneal dialysis.

[TobynoBaHO MaTeMaTUYHY MO/IEJ/Ib IEPEHOCY PiZIMHU IPY OUEPEBUHHOMY JliaJIi3i, sika 6a3yeThCs Ha HeJliHikHii
CHCTEeMi IBOBUMIpHUX NUdepeHIia/IbHiX PiBHsIHb 3 YacTUHHUMH noxianumu (JIPYII) 3 BignoBigHuMu Kpa-
HOBHMMH Ta MOYATKOBUMH yMoBamH. L1I11X0M 3acTOCYBaHH I KJIACHYHOI'O MeToAy JIi BCTaHOBJICHO, 1110 6a30Ba
cuctema [JPYII (npu meBHUX OOMEXKEHHSX Ha KoedillieHTH) iHBapiaHTHa BiJHOCHO HECKiHYEHHOBHMipHOI
anre6pu Jli, 10 /103B0JIMJI0 NOOY/yBaTH CiM1 TOUHMX Po3B’sA3KiB. KpiM Toro, TouHi po3B’s3KM OiJIbLI 3a-
rajIbHOI CTPYKTYPH 3HaiijeHO 3a JOIIOMOI0IO iHIIIOT0 HeJliiBCbKOro MeToy. TakoK BCTAaHOBJIEHO, IIIO JesIKi
3 OTPUMAHUX PO3B’A3KiB OMUCYIOTh T'iJPOCTATUYHUI THCK Ta KOHIIEHTPAIIIO I'JIIOKO3U MPU OYEPEBUHHOMY
miaJtisi.

1. Introduction. Peritoneal dialysis is a life saving treatment for chronic patients with
end stage renal disease [1]. Dialysis fluid is infused into the peritoneal cavity, and, during
its dwell there, small metabolites (urea, creatinine) and other uremic toxins diffuse from
blood to the fluid, and after some time (usually a few hours) are removed together with
the drained fluid. The treatment is repeated continuously. The peritoneal transport occurs
between dialysis fluid in the peritoneal cavity and blood passing down capillaries in tis-
sue surrounding the peritoneal cavity. The capillaries are distributed within the tissue at
different distance from the tissue surface that is in contact with dialysis fluid. The solutes,
which are transported between blood and dialysis fluid, have to cross two transport bar-
riers: the capillary wall and a tissue layer. Typically, many solutes are transported from
blood to dialysate, but some solutes that are present in high concentration in dialysis fluid
are transported to blood. This kind of transport system happens also in other medical
treatments, as local delivery of anticancer medications, and some experimental or natu-
ral physiological phenomena. Mathematical description of these systems was obtained
using partial differential equations based on the simplification that capillaries are homo-
geneously distributed within the tissue [2, 3]. Experimental evidence confirmed the good
applicability of such models [2, 3].

Another objective of peritoneal dialysis is to remove excess water from the patient
[1]. This is gained by inducing high osmotic pressure in dialysis fluid by adding a solute
in high concentration. The most often used solute is glucose. This medical application of
high osmotic pressure is rather unique for peritoneal dialysis. Mathematical description of
osmotically induced fluid transport from blood to dialysis fluid has not been formulated
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fully yet, in spite of the well known basic physical law for such transport. A previous
attempt did not result in a satisfactory description, and was falsified later on [2].

The paper is organized in the following way. In Section 2, a mathematical model of
fluid transport in peritoneal dialysis is constructed. In Section 3, the classical Lie method
(see, e.g., [4, 5]) is applied for finding exact solutions of a simplification of the model con-
structed. Moreover, exact solutions were found using a non-Lie ansatz. Finally, in Sec-
tion 4, the exact solutions are compared with numerical solutions, which were found using
a numerical technique [6] based on the finite elements method and Galerkin’s method. It
was shown that some of these solutions describe the hydrostatic pressure and the glucose
concentration in peritoneal dialysis.

2. Mathematical model. The mathematical description of transport processes within
the tissue consists in local balance of fluid volume and solute mass. For incompressible
fluid, the change of volume may occur due to elasticity of the tissue. The fractional void
volume, i.e., the volume occupied by the fluid in the interstitium (the rest of the tissue be-
ing cells and macromolecules forming interstitium) expressed per one unit volume of the
whole tissue is denoted v, and its time evolution is described by the following equation:

% = —68]—;/ +av 1
where jy is the volumetric fluid flux across the tissue, gy is the density of volumetric
fluid flux from blood to the tissue, ¢ is time, and z is the distance from the tissue surface
in contact with dialysis fluid (flat geometry of the tissue is here assumed). The solute
(glucose) is distributed only within the interstitial fluid, and its concentration in this fluid
is denoted by C¢ . The equation that describes the local changes of solute amount, vC¢ ,
is as follows:

Wla) _ ey, @
where jg is glucose flux through the tissue, and q¢ is the density of glucose flux from
blood. The flows of fluid and solute are described according to linear nonequilibrium
thermodynamics. Osmotic pressure of glucose is described by van’t Hoff law, i.e., it is
proportional to glucose concentration. The volumetric flux across the tissue is generated

by hydrostatic and osmotic pressure gradients:

oP oC,
jv = VK~ + opavKRTE 3)
ox ox
whereas for the density of fluid flux from blood to tissue we assume that it is generated

by osmotic pressure difference between blood and tissue:
qv = —LpaachT(C’GB — Cg) (4)

The solute flux across the tissue is composed of diffusive component (proportional to
glucose concentration gradient) and convective component (proportional to glucose con-
centration and volumetric flux):

Jja = _VDG% + SrcCaljv- ®)
Similarly, the density of glucose flux from blood to tissue has diffusive component (pro-
portional to the difference of glucose concentration in blood, Czp, and glucose concen-
tration in tissue, C¢ ) and convective component (proportional to the density of volumet-
ric flow from blood to tissue, gy ):
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q¢ = paa(Cap — Cq) + Scaqv (1 — Fg)Cas + FaCa) . (6)

The coefficients in the above equations are: K — hydraulic permeability of tissue,
orc — the Staverman reflection coefficient for glucose in tissue, R — gas constant,
T — temperature, L, — hydraulic permeability of the capillary wall, a — density of
capillary surface area, oo — the Staverman reflection coefficient for glucose in the
capillary wall, Dg — diffusivity of glucose in tissue, Srg = 1 — opg — sieving co-
efficient of glucose in tissue, pe — diffusive permeability of the capillary wall, Scg =
= 1—o0cg — sieving coefficient for glucose in the capillary wall, and Fg — weighing
factor.

Equations (1), (2) together with equations (3)—(6) for flows form a system of two
nonlinear partial differential equations with three variables: v, P, and Cg . Therefore,
an additional, constitutive, equation is necessary, and this is the equation describing how
fractional fluid volume, v, depends on interstitial pressure, P:

Vmax — Vmin
V(P):Vmin+ Py - ) (7)
1 max mm_1 —bP—-P
(P 1) exp-b( - )

where Vmin, Vmax, Y0, and b are empirically measured constants. Boundary conditions
for a tissue layer of width L impermeable at x = L and in contact with dialysis fluid at
x = 0 are as follows:

r=0: PZPD7 CG:OGD7
0P _,  9Cc _, (®)
e
Initial conditions describe equilibrium within the tissue without any contact with dialysis
fluid at = = 0:

r=1L:

t=0: P=DPF,, Co =Cgg. 9)

It is easily seen that equations (1) —(7) can be united into two equations for finding the
glucose concentration C; = U(t, ) and the hydrostatic pressure P(t,x), namely:

v _ k2 < 3P) 0 <u8—U>+h1Uho,

o or\"or ) TYor \Uox

(10)

owu) 0 oUu 0 oP

o Pa (”am) K5, <VU833>

—Sal2 VUa—U + bU? — by U + by,

Ox ox
where
o1 =0r¢KRT, D=Dg, S=S57¢,
ho = CGBhl, hl = LpaRTacg,

(11)

by = PaaCgp — Sca(l — Fg)hoCas,

bl = Pga — (1 — 2FG)SGh0, b2 = chF(;hl.
Thus, we obtain the boundary-value problem (7)—(10) to find the functions v(¢,x),
P(t,z) and U(t,x).
Note that possible values of the parameters arising in this problem can be established
from experimental data published in [2].
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3. Exact solutions of system (10). In this section we restrict ourselves to the con-
sideration of the nonlinear balance equations (10) together with an approximation of the
switch type relation (7) in the form of the linear piecewise continuous function

Vmin, P < Pmina
V(P) = Vpin + b(P - Pmin)7 Pmin < P < Pmaxv (12)
Vmax; P > Ppax.

Substituting (12) into the balance equations (10), we arrive at the following equations:
0=KP,y —01Uzz + AU — R,
(13)
U= DU, + KS(UP,)y — So1(UU,), + b3U2 — biU + b},

in the cases v = Viin OF V = Vmax (here hj = h;/Vmin OF b = hi/Vmax, i =0,1;
b5 = bj/Vmin OF bj/Vmax, j=0,1,2) and
bP; = K (Vimin — bPin) Prx + Kb(PPy) s — ho + hiU,
(14)
(Vmin — bPuin)Ut + b(UP)y = D(Vmin — bPanin) Uz + Db(Uy P) o+

+KS(Umin — bPain)(UP,)g + KSHUPP,)y—

*Sgl(l}min - meln)(UUr)x - So—lb(PUUr)r + b2U2 - blU + bO

in the case v(P) = Vpin + b(P — Puin)-
Let us consider the nonlinear system of equations (13). It can be noted that the nonlo-
cal substitution

V = —Kuv,, P, (15)

where vy, = Vnmin OF Uy, = Vnmax (see formula (12)), reduces this system to the form
Vz = hlU - UIVmsz - h07
(16)
v Uy = Dup Uy — 50'1Um(]I2 - SvVU, — b20U2 — b1oU + bo,

where bz(] = Shl — bQ, bl() = b1 — Sh() .

Theorem 1. The maximal algebra of invariance (MAI) of the nonlinear system (16)
with arbitrary non-zero coefficients is the infinite-dimensional Lie algebra generated by
the operators

P o 0 Um, D
o G =)+ i a7

or
df

where f(t) is an arbitrary smooth function and f, = —.

P =

The proof of the theorem is based on the classical Lie scheme (see [4, 5] ). Here the
relevant calculations are omitted because of their awkwardness.
It should be noted that the operator G* for f(t) =t takes the form

Gt 0 Uy, O
T s av
Such a type of invariance operators is known as the Galilei operator because it produces
Galilei transformations of the form

t'=t, ' =x + et

(18)

v (19)
V’:V+§s, U =10,
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where ¢ is a group parameter. Now one can note that the first two formulas in (19)
produce the classical Galilei transformations (see, e.g., [7, 8]).

It seems reasonable to construct exact solutions of system (16) using its Lie symmetry
operators (17). According to the general procedure (see [4, 5]) it is necessary to construct
the general solution of the linear equation

X(®(t,2,U,V)) = 0 (20)

where the operator X is a linear combination of the operators of MAI (17) and @ is an
unknown function. One can easily prove that there are three different types of solutions
that can be found by solving (20) for (i) X = P;, (ii)) X = G* and (iii)) X = aP; +
+ G*°, 0# a € R. Let us consider each of them.

(i) Putting X = P, , we immediately obtain the ansatz

V =V(x), U=U(x). (21
One can see that ansatz (21) is the most general form of steady-state solutions. Substitut-
ing (21) into (16), we arrive at the system of ordinary differential equations (ODEs)
Ve =mU =01 Ups — h07
(22)
0= Dv,Ugp — SO’leUJQ. - SvVU, — b20U2 — b1oU + bg.

This system is not integrable if S % 0 or byy £ 0 (the case S = byg = 0 is unrealistic).
However taking into account formulas (11) one can note that

U=—=Cgs, V=W, WEeR, (23)

is a steady-state constant solution of (22). Obviously, the initial conditions (9) can be
obtained from (23) as a particular case at Vy =0.

Consider the second case (ii)) X = G°°. Solving the equation (20) for X = G*°,
we obtain the following ansatz for the functions U and V:

U= p(t), V = o(t) + w2 (t)z, 24)
where g, @1, p2 = Vm—ft are unknown functions that should be found. Using ansatz (24),

we can reduce the nonlinear system (16) to the ODE equation

dpr

VUm o —(Shy — 52)90% — (b1 = Sho)p1 + bo, (25)

and

Y2 = h1<,01 — ho.

One can see that equation (25) is easily integrated, and, substituting its general solution
into ansatz (24), we obtain the following solution of the nonlinear system (16):

A — [Sho — by + VH tanh (;/—ﬁ(t + to))

= 2(Shy — by) - ’
(26)
V= o(t)+
hlx 2(b2 — Shl)ho \/ﬁ
+ 35 by (Sho — by) + e + V/H tanh <2Vm(t+t0) ,
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where ¢(t) and ¢y are an arbitrary function and constant, respectively, and
H= (bl — Sh0>2 + 4b0(5h1 — bg)

Finally, consider the case (iii) X = aP; + G*°, « # 0. Solving the equation (20)
for this operator, we obtain the ansatz

Um,
U:<p1(w), V= _f(t)+902(w)7 27

oS
where w = ax — / f(t)dt . Using this ansatz, the nonlinear system (16) is reduced to

the following ODEs system:
2 d2901 dipa

a“ o1V, A2 + OZE = hip1 — ho, (28)
d2<p1 dg@l
o?Duv,, e el CL ba)¢? + (by — Sho)p1 — bo.

Unfortunately, this system is not integrable. Moreover, we have not found any non-
constant particular solution. Of course, one can solve (28) using numerical methods.

It turns out there is another possibility to obtain exact solutions of system (16). One
observes that system (16) contains only quadratic nonlinearities. Several new approaches
were recently suggested to find exact solutions for evolution equations with quadratic
nonlinearities (see, e.g., [9] and references cited therein). Those methods lead to the so
called non-Lie ansatze which cannot be found using the classical Lie method.

Following [10], let us consider the ansatz

U=1o(t)+ ...+ ¢n(t)x",
V=po(t)+...+on(t)x™,
where ;, i = 0,...,n, and ¢;, 7 = 0,...,m, are unknown functions. Obviously,
this ansatz is a generalisation of the Lie ansatz (24). Substituting this ansatz into (16) one
can easily show that the expression obtained is reduced to a ODE system only under the

restriction m = n + 1. In the particular case n = 2, the corresponding ODE system
takes the form

(29)

d
Vm% = 20, Dty — baot§ — bioto + bo,
) (30)
de—tz = (3Sho — b1)Y2 + bagtot)a.
Simultaneously, we obtain the expressions
h
po=p2=0, @1=hio~Wmord—ho, @3= 5 (31

for the other functions arising in (29) with n = 2, m = 3 and the additional restriction

Sh
by = Tl Finally, taking into account formulae (15), (29) and (31), we obtain the exact

55h
solution of (16) with by = !

U = o(t) + da(t)a?,
By (32)
V = (h1¢0 - 2V7n0'1w2 - ho)x + §¢2(t)$37

where (1o(t),¥2(t)) is a solution of (30).
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It turns out that ansatz (29) with n > 2 works only under two additional restrictions
on the coefficients of system (16). Omitting the relevant calculations, we present here

2 1
only the result. System (16) with by = nt Shy [(i.e., by = — i Shy ) and
+1 n+1
D = 0 has the exact solution
U =o(t) + ()",
n—1 hl n+1 (33)
V = (hitho — ho)x — nvpo1p(t)a" ™" + ——(t)z"",
n+1
where (¢o(t),1(t)) is a solution of the ODE system
d
v 20— Gy — byt + bo,
dt n+1
dy n®—n (34
" — = 1)Shg — b1 — h .
e R e L

Obviously, the general solution of the nonlinear system (34) can be constructed in explicit
form (see, e.g., [9]).

Remark 1. It can be easily checked by direct calculations that formulae (33), (34)
with arbitrary real value n # —1 represent the exact solution of the nonlinear system

on + 1
(16) with by = =2 Sh, and D =0.
n—+1

4. Applications and interpretation. Let us use the particular exact solution (26) for
solving the boundary-value problem (7)—(10) under additional restrictions. The restric-
tions are: 1) we assume ¢ >> 0, i.e., the initial conditions play no essential role, and
2) we consider the process of dialysis with high P, i.e., with v(P) = vax. Obviously,
we can construct the formula for the pressure using (15), namely:

x (t) _ h1£Z?2 %
Kv, 70 AK vy (Shy — ba)

X [(2}% - S) ho — by + VH tanh <2@(t+to)>

1 Vm

P = Py(t) -

; (35)

where Py(t) and ¢g(t) are arbitrary functions. To satisfy the Neunmann and Dirichlet
conditions (8) for the pressure, the functions Py(t) and ¢o(t) must be specified, and the
expression

4Kl/m (Shl - bg)

by + (S - 2h—b2) ho — V'H tanh (;/ﬁ(tﬂo))
1 VUm

P=PFPp

X (22L — z?) (36)

is obtained. In the similar way, we obtain the formula for the glucose concentration
C’GDa z =0,

U= 1 VH (37)
m(Shobl‘i’\/ﬁtanh <ﬂ(t+to))>, 1’>0,

which also satisfies boundary conditions (8) for U . Thus, formulas (36), (37) present
the exact solution of the balance equations (10) with v(P) = v, and the boundary
conditions (8).
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Consider the behaviour of (36), (37) at ¢ — oo . Taking into account (11) it is easily
calculated that

CG'D, T = 0)
t—+4o00: P=Pp, U=
Cagp, x=>0.
In quite similar way, we can construct the exact solution of the balance equations (10)
2 1
with v(P) = vy, by = n—:l Shy1, D = 0 and the boundary conditions (8) using
n

the more general solution (33), (34). The final formulae for the pressure and the glucose
concentration take the form

P=Pp = g ((havn(0) = ho)a® = 20L) — 2010 (@ = 1" = (L)) wlo)+
L T — n+2 _ (_ 17 \n+2
ey (( Ly~ (-L) >)w<t>)
and
Ceap, z =0,
o) + (& — L™p(t), = >0,
respectively.

Let us consider a possible interpretation of the solutions obtained. With this in mind,
the numerical solution of the boundary-value problem (7) — (10) was found. Omitting here
the details (this will be done in another paper), we note that a numerical technique based
on the finite elements method and Galerkin’s method was used [6]. We have compared
the numerical solution obtained for parameters given in [2] with the exact solution (36),
(37) and established that it is possible to select the value of the parameter ¢y such that
the numerical solution for the pressure P coincides with exact solution (36) if ¢ > ¢;
(here t; is a constant that depends on parameters arising in (7)—(10)) and the diffusivity
D = 0. It was also established that the numerical solution for the concentration U tends
to exact solution (37) if ¢ — oo and the diffusivity D = 0. Thus, we conclude that
the exact solution (36), (37) at sufficiently large values of time describes the hydrostatic
pressure and the glucose concentration in peritoneal dialysis based on the mathematical
model (7)-(10) with D =0.
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