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ON THE PROPER POSEDNESS 
OF TWO-POINT BOUNDARY-VALUE PROBLEM 
FOR SYSTEM WITH PSEUDODIFFERENTIAL OPERATORS

PRO KOREKTNIST| DVOTOÇKOVO} KRAJOVO} ZADAÇI 

DLQ SYSTEM IZ PSEVDODYFERENCIAL|NYMY

OPERATORAMY

The question on the proper posedness of boundary-value problem with nonlocal condition for a system
of pseudodifferential equations of an arbitrary order is investigated.  The equation and the boundary
conditions contain the pseudodifferential operators which symbols are defined and continuous in some

domain  H ⊂ Rσ
m .  The criterion of the existence, uniqueness of solutions and of the continuously

dependence of the solution on the boundary function is established.

Rozhlqnuto pytannq pro korektnist\ krajovo] zadaçi z nelokal\nog umovog dlq systemy

psevdodyferencial\nyx rivnqn\ dovil\noho porqdku.  Rivnqnnq ta hranyçni umovy mistqt\ psev-

dodyferencial\ni operatory iz symvolamy, wo vyznaçeni ta neperervni u deqkij oblasti  H  ⊂
⊂ Rσ

m
.  Vstanovleno kryterij isnuvannq ta [dynosti rozv’qzkiv, a takoΩ neperervno] zaleΩnosti

rozv’qzku vid hranyçno] funkci].

1.  Introduction.  The present paper generalizes and evolves the results of works [1, 2].
It investigates the question of the proper posedness of nonlocal boundary-value
problem for system of equations, containing the pseudodifferential operators that

symbols are defined and continuous in some domain  H ⊂  R
m .  The solution of the

problem is sought in functional spaces.

Consider in the infinite layer  Π  = R
m  ×  0, T[ ]  the following two-point boundary

problem
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matrices that elements are pseudodifferential operators with symbols  P( )σ , A( )σ ,  and

B( )σ ,  respectively, continuous in some domain  H ⊂ Rσ
m .

Generally speaking, problem (1), (2) is improperly posed, even if  Pjk ( )σ , Ajk ( )σ ,
and  Bjk ( )σ   are polynomials [3 – 6].

We shall be concerned with the question of the existence and uniqueness of solution
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of problem (1), (2), and the question of the continuously dependence of this solution on
the boundary function  ϕ( )x .

2.  Notations and definitions.  For the description of the spaces of solutions, we
introduce the following notation:  

WΩ
∞   is the space of vector-functions  u x( ) = ( u x1( ) , u x2( ), … , u xl( )),  u xj ( ) ∈

∈ L m
2 R( ),  such that the Fourier transform  ˆ ( )uj σ   is compactly supported in  Ω ⊂

⊂ Rσ
∞ ;  the space  WΩ

∞   is invariant relatively to the pseudodifferential operator
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– Ω = { σ ∈ R
m : – σ ∈ Ω };  Ck ( 0, T[ ], WΩ

±∞)  are spaces of vector-functions that for

every  t ∈  0, T[ ]  are functions of space  WΩ
±∞   respectively and continuously depend

on  t  together with the derivatives up to order  k.
According to I. G. Petrovski [7], introduce the following definition:

Definition.  We say that problem (1), (2) is properly posed in  Cn( 0, T[ ], WΩ
±∞)

if, for every boundary function  ϕ( )x  ∈  WΩ
±∞ ,  problem (1), (2) should have in

Cn( 0, T[ ], WΩ
±∞)  one and only one solution  u x t( , ) ,  continuously depending on

ϕ( )x .
We shall not be concerned with Cauchy problem (the proper posedness of the

Cauchy problem for equation (1) is studied in [7]).
3.  On the proper posedness of problem (1), (2).  It is easily seen that the

following two applications for every domain  Ω ⊂ H  are continuous:
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Let us prove the inverse.
If we denote by  ˆ( , )u tσ   and  ˆ ( )ϕ σ   the  x-Fourier transforms of the solution  u x t( , )

of problem (1), (2) and the boundary function  ϕ( )x ,  respectively, it is easily seen that
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ˆ( , )u tσ   is a solution of the following boundary-value problem:

L d
dt

u t
du t

dt
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Let us find the fundamental matrix of solutions  F t( , )σ   of system (3).  Because
P( )σ   is a matrix continuous in  H,  the roots of characteristic equation

det ( )I Pλ σ+ = 0

are continuous functions of parameter  σ.  We denote by  χ j  = χ σj ( )  the multiplicity

of the root  λ j  = λ σj ( ),  j = 1, ν ,  ν = ν σ( ) .  According to the theory of matrices [8],

there exist two polynomial matrices  M( , )λ σ   and  N( , )λ σ  = Njk j k l
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= χ σk ( ) ,  k = 1, l ,  and  δ jk   are the Kronecker symbols.
It follows from the equality  M( , )λ σ  ×  L( , )λ σ  ×  N( , )λ σ  ≡  Q( , )λ σ   and

condition  det ( , )N λ σ  ≡  N( )σ  ≠ 0  that  M( , )λ σ  ×  L( , )λ σ  ≡  Q( , )λ σ  ×  N−1( , )λ σ ,

and after using the transformation  y t( , )σ  = N d
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Using the theorem of dependence of solutions on the parameter [9], we conclude that
F t( , )σ   is continuous with respect to  σ.

Therefore, the solution of system (3) reads as  ˆ( , )u tσ  = F t C( , )σ ,  where  C  =
= col (C1, C2 , … , Cl ).  Using the boundary condition (4), we find that  C  is a solution
of the following linear algebraic system

A F B F T C( ) ( , ) ( ) ( , ) ˆ ( )σ σ σ σ ϕ σ0 +( ) = ,

whose determinant is

∆( ) det ( ) det ( ) ( , ) ( ) ( , )σ σ σ σ σ σ= = +D A F B F T0 ,

where

ISSN  1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 8



1134 E. KENGNE

D A F B F T( ) ( ) ( , ) ( ) ( , )σ σ σ σ σ= +0 .

Let  Ω = H N\ ∆ ,  N∆  = {σ ∈  R
m : ∆( )σ  = 0}.  For every  σ  ∈  Ω ,  C  = C( )σ  =

= D−1( )σ  ×  ˆ ( )ϕ σ   and the solution of problem (3), (4) reads as  ˆ( , )u tσ  = F t( , )σ  ×
× D−1( )σ ˆ ( )ϕ σ   ∀ ∈( )σ Ω .  Let  W t( , )σ  = F t( , )σ  × D−1( )σ .
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Theorem.  In order that problem (1), (2) should be properly posed in  Cn( 0, T[ ],
WΩ

±∞),  it is necessary and sufficient that  Ω = H N\ ∆ .

Proof.  It is clear that  Ω ⊂ H .  We prove the theorem in the case of  Cn( 0, T[ ],
WΩ

+∞)  (the case of  Cn( 0, T[ ], WΩ
−∞)  can be done by analogy with [8]).

Necessity.  If  σ0 ∈ Ω ∩ N∆ ,  the homogeneous problem

L d
dt

u t, ˆ( , )σ σ0 0 0






= ,

M u t A u B u T( ) ˆ( , ) ( ) ˆ( , ) ( ) ˆ( , )σ σ σ σ σ σ0 0 0 0 0 00 0= + =

possesses more than one solution.  Consequently, the solution (if it exists) of the
homogeneous problem

L
t

i
x

u x t∂
∂

− ∂
∂







=, ( , ) 0,

M i
x

u x t A i
x

u x B i
x

u x T− ∂
∂







= − ∂
∂







+ − ∂
∂







=( , ) ( , ) ( , )0 0

is not unique in  Cn( 0, T[ ], WΩ
+∞),  and this implies the nonuniqueness of solutions of

problem (1), (2) in  Cn( 0, T[ ], WΩ
+∞).  The ill-posedness of problem (1), (2) in

Cn( 0, T[ ], WΩ
+∞)  follows from the nonuniqueness of its solution in  Cn( 0, T[ ],

WΩ
+∞).

Sufficiency.  Let  Ω = H N\ ∆ .  For every  ϕ( )x  ∈ WΩ
+∞ ,
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is a solution of problem (1), (2) in  Cn( 0, T[ ], WΩ
+∞)  and continuously depends on

ϕ( )x ,  which implies the existence of solution of problem (1), (2) in  Cn( 0, T[ ], WΩ
+∞)

that continuously depends on  ϕ( )x .  In order to prove the uniqueness of solution of

problem (1), (2), let us notice that if  u x t( , )  ∈  Cn( 0, T[ ], WΩ
+∞),  its  x-Fourier

transform  ˆ( , )u tσ   will be a solution of problem (3), (4).  Under the condition of the
theorem, this problem (3), (4) possesses one and only one solution for every  σ ∈ Ω .  If

σ ∈ R
m \ Ω ,  then  ˜( , )u tσ  ≡ 0.  This implies the uniqueness of solution of problem (1),

(2) in  Cn( 0, T[ ], WΩ
+∞),  and the theorem is proved.

4.  Application.  Consider an infinite set of point-like particles, disposed on a string
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at the same distances  l  from each other; the mass of each particle is  m,  while  F  is
the tension of the string.  The values of  F  and  m  are supposed to be constant every-
where and independent of time.  Particles are supposed to have only one degree of
freedom.  At each given time  t,  the motion of the  j-th particle is completely defined in
terms of the position of its adjacent particles, i.e., the  ( j – 1)-th and  ( j + 1)-th ones
( j = 0, ± 1, ± 2, … ).  Thus, the fundamental law of dynamics is given by

  
˙̇ ( ) ( ) ( ) ( )v v v vn n n nt a t t t= + −( )+ −

2

1 14
2 ,    n = 0, ± 1, ± 2, … , (6)

being  a = 2 F
ml
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nodes of the lattice, i.e.,  v( , )jl t  = vj t( ) .  Therefore, system (6) acquires the form of
the difference-differential equation
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and  θ1( )x   and  θ2( )x   are two differentiable functions that take the values of  ϕn   and
ψn ,  respectively, at the nodes of the lattice.  For this example,  F t( , )σ   reads as

F t( , )σ   =  
cos sin sin sin

sin sin sin sin cos sin

at at

a at a at

σ σ

σ σ σ σ

( ) − ( )

− ( ) − ( )








and

∆( ) sin cos sinσ σ σ= − + ( )[ ]2 1a aT .

Therefore,
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If we take  H = R,  we conclude from the above theorem that problem (10), (11) is

properly posed in  Cn( 0, T[ ], WΩ
±∞)  with  Ω = R \ N∆ .
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