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Properties of the set Ts of “particularly nonnormal numbers” of the unit interval are studied in details (T
consists of real numbers x, some of whose s-adic digits have the asymptotic frequencies in the nonterminating
s-adic expansion of x, and some do not). It is proven that the set T’ is residual in the topological sense (i.e.,
it is of the first Baire category) and it is generic in the sense of fractal geometry ( 7 is a superfractal set, i.e., its
Hausdorff — Besicovitch dimension is equal to 1). A topological and fractal classification of sets of real numbers
via analysis of asymptotic frequencies of digits in their s-adic expansions is presented.

[leTajiIbHO BUBYAIOTHCS BJIACTMBOCTI MHOKMHM T's ,,0CO0JIMBO HEHOPMAJIbHUX YMCEeJ” OJMHUYHOIO iHTEep-
BaJly (TOOTO MHOXKHMHH YHCEJI &, [JIs SKHX HEMae aCUMIITOTHYHOI YaCTOTH AESKUX UMD B S-aANUHOMY
300pa’keHHi, a AesKi [udpu MalTh ACUMITOTUYHI YyacToTH). [loBeneHo, o MHOXKUHA Ts € HEXTYBaHOIO
B TOMOJIOTiUYHOMY ceHci (mepiuoi Kareropii Bepa) Ta 3araibHolo B cenci dppaktasnbHoi reomerpii (Ts € cy-
neppakTaabHOI0 MHOXKHUHOIO, po3MipHicTh Xaycopda—Bbe3ukouya siKoi popiBHIoe ounuii). Haseneno
TomoJIoriuy i ppakTasbHy KacudiKalilo MHOXKHH [ifiCHUX YUcesI Yepe3 aHaJli3 aCHMITOTHYHOI 4acTOTH
iX s-aquuHUX 300parkeHb.

1. Introduction. Let us consider the classical s-adic expansion of x € [0,1] :
x = Z sT"an(x) = Aoy (x)ag(x) .. ap(x) ..., ax(x) e A={0,1,...,(s=1)},
n=1

and let N;(z,k) be the number of digits “i” among the first k digits of the s-adic

Ni(z, k
expansion of z,i € A. If the limit v;(z) = klim (%)
(or the asymptotic frequency of

exists, then the number

[T¥e1] [T
2 2

v;(x) is said to be the frequency of the digit ) in
the s-adic expansion of x .

A property of an element x € M is usually said to be “normal” if “almost all” ele-
ments of M have this property. There exist many mathematical notions (e.g., cardinality,
measure, Hausdorff — Besicovitch dimension, Baire category) allowing us to interpret the
words “almost all” in a rigorous mathematical sense. “Normal” properties of real num-
bers are deeply connected with the asymptotic frequencies of their digits in some systems

of representation.
Ny = {x

The set
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is said to be the set of s-normal numbers (or the set of real numbers which are normal
with respect to the base s). It is well known (E. Borel, 1909), that the sets [N, and the set
N* = [\ N; are of full Lebesgue measure (i.e., they have Lebesgue measure 1).

s=2
The unit interval [0,1] can be decomposed in the following way:

0,1 = E, | D,
where
E, = {z|vi(x) exists Vie A},

Sie 4, tim YOK)

k—oo

DS:{:E

The set D, is said to be the set of nonnormal real numbers. Each of the subsets E; and
D can be decomposed in the following natural way.
The set

Wsz{x

is said to be the set of quasinormal numbers. It is evident that

Es:VVsUNsa Ws*mNs:®

Lsz{x

is said to be the set of essentially nonnormal numbers.

The set
Ts = {x

does not exist } .

(VicA): vi(z) existsand (3j € A): v,(x) # %}

The set

(Vie A) lim Ni(x, k)

k—oo

does not exist}

(Jic A): lim Ni(z, k)

does not exist, and
k—oo k

N,(x, k
(3j€A): lim Ny, k) exists}
k—oo k
is said to be the set of particularly nonnormal numbers.
It is evident that

Ds:LsUTsy LemT9:®

The sets Ny, Wy, Ts, Ls are everywhere dense sets, because the frequencies v;(x)
do not depend on any finite number of s-adic symbols of x . It is also not hard to prove
that these sets have the cardinality of the continuum.

The main purpose of the paper is to fill in completely the following table, which
reflects the metric, topological and fractal properties of the corresponding sets:

Lebesgue measure | Hausdorff dimension | Baire category

SEs
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Let v = (vg,v1,...,Vs—1) be astochastic vector and let
Wlv] = {x o= Aar(x)as(z) . oag(z) ...,

N
11m 1 (‘r7 k)

=y € Ap.
Jim 2 v; Vze}

The well known Besicovitch — Eggleston’s theorem (see, e.g., [1, 2]) gives the following
formulae for the determination of the Hausdorff — Besicovitch dimension g (Ws[v]) of
the set Wy[v]:

s—1 1
V; log v;
Zk:o i l0g V;

aO(WS[V]): “logs

From the latter formulae it easily follows that the set W, of all quasinormal numbers
is a superfractal set, i.e., W, is a set of zero Lebesgue measure with full Hausdorff —
Besicovitch dimension ( ag (Ws) = 1).

Properties of subsets of the set of nonnormal numbers have been intensively studied
during recent years (see, e.g., [3—6] and references therein). Some interesting subsets of
D, were studied in [4] by using the techniques and results from the theory of multifractal
divergence points. In [3] it has been proven that the set D, is superfractal.

In the paper [7] of the authors it has been proven that the set L, of essentially non-
normal numbers is also superfractal and it is of the second Baire category. Moreover,
it has been proven that the set L, contains an everywhere dense G -set. So, the sets
N, W, Ty are of the first Baire category. From these results it follows that essentially
nonnormal numbers are generic in the topological sense as well as in the sense of fractal
geometry; nevertheless, the set L is small from the point of view of Lebesgue measure.

The main goal of the present paper is the investigation of fractal properties of the set
T of particularly nonnormal numbers. To this end we apply a probabilistic approach
for the calculation of the Hausdorff dimension of subsets. More precisely, we apply the
results of fine fractal analysis of singular continuous probability distributions.

The first step of the fractal analysis of a singular continuous measure v is the in-
vestigation of metric, topological and fractal properties of the corresponding topological
support S, (i.e., the minimal closed set supporting the measure). These are good charac-
teristics only for the class of uniform Cantor-type singular measures. But, in general, they
are only “external characteristics”, because there exist essentially different singular con-
tinuous measures concentrating on the common topological support. The main idea of the
paper [7] consisted in the construction of singular continuous measures whose topological
supports coincide with some subsets of the set of essentially nonnormal numbers.

The second step of the fractal analysis of a singular continuous measure v is the
determination of the Hausdorff dimension «ag(v) (and the local Hausdorff dimension )
of the measure, i.e., roughly speaking, finding the Hausdorff dimension of the minimal (in
the fractal dimension sense) supports (which are not necessarily closed) of the measure.
This problem is much more complicated than the previous one (see, e.g., [8]), especially
in the case of essentially superfractal measures.

In Section 2 we prove that for all s > 3 the set Ty is of full Hausdorff dimension.
To prove the main result we construct a sequence of singular continuous measures i,
such that the corresponding minimal dimensional supports consist of only particularly
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nonnormal numbers, and apply the results of [8] to perform a fine fractal analysis of these
supports.

2. Fractal properties of the set of particularly nonnormal numbers. Let us study
the sets T of particularly nonnormal numbers which were defined in Section 1. It is easy
to see that the set 75 is empty, because from the existence of the asymptotic frequency
v;(x) for some i € {0,1} the existence of another asymptotic frequency follows.

Theorem 1. For any positive integer s > 3 the set T of particularly nonnormal
real numbers is superfractal, i.e., the Hausdorff— Besicovitch dimension of the set T
equals 1.

Proof. To prove the theorem we shall construct a superfractal set G C T .

In the sequel we usually shall not use the indices s in the notation of the corre-
sponding subsets, since s will be an arbitrary fixed natural number greater than 2. Let
us consider the classical s-adic expansion of z € [0,1] : = = Zoo_l s "o (z) =
= Aay(z)as(x)...ap(z).... If z isan s-adic rational number, then we shall use the
representation without the period s — 1.

Foragiven p € N and forany « € [0,1) we define the following mapping ¢y, :

op() = pp (A°ai(z)as(z) ... ax(z)...) =

s—1 s—1 s—1
—
=A%00...011...1...(s =2)(s = 2)... (s = 2)(s — Dai(z)az(x) ... aszp(z)
2(s—1) 2(s—1) 2(s—1)

00...011...1...(s=2)(s—2)...(s—2)

(s = 1)(s — Dagzppr1(T)aszpra(®) .. ag2pros2p(T) ...
21071(8_1) 216—1(5,1) ok—1

.. 00...011...1...(s—=2)(s—2)...(s =2)(s—1)(s—1)...(s— 1)

O[(Qk—l_l)szp+1(z) N 04(2’6—1)52;1;(1) e

Let us explain the construction of ¢, . First of all we divide the s-adic expansion
of x into groups in the following way: the k-th group consists of the sequence
(Qar-1_1ys2p41(T) - - (26 _1)52p(¥)), k € N . The s-adic expansion of y = ¢} (z)
is constructed from the s-adic expansion of z via inserting (before the k-th group) the
following series of fixed symbols (0...01...1...(s—2)...(s—2)(s—1)...(s—1)),
where each symbol i (0 < i < s —2) occurs 2¥~!(s — 1) times, but the symbol s — 1
occurs 2F~1 times.

Let M, = 2,(0,1)) = {y : y = (@), € [0, )}

For a given p € N and for any y € M, we define the mapping ,(y) in the
following way: if

s—1 s—1

y=@p(x) =A%00...0...(s =2)...(s = 2)(s — Daq(x)oa(z) ... as2p(x)

2(s—1) 2(s—1)
0...0...(5—=2)...(s=2)(s=1)(s—1)

s2pt1 () s2ppo(T) . o Cg2pyos2p(T) ..y
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then
s—1 s—1

z=1Yp(y) =A%0...0(s—1)...(s—=2)...(s—2)...

(5= D)(s — 1) (01.. . (s — 2)) ar(@)an(x) ... agy ()
(s-1) (s-1) (s-1)
00.. 0(s—1)00.. 0(s—1)... (5= 2)(5—2)... (s —2)
(s-1)
(s=1)(s=2)(s—2)...(s—=2)(s—1)
(5= 1) (0. (5 = 2)) (5 — 1) (01 .. (s — 2)) csp1 (£)saprale) -

cOg2pyoen(z) ..., 2 e[0,1),

i.e., the s-adic expansion of z = 1, (y) can be obtained from the s-adic expansion of
y = ¢(x) by using the following algorithm:

1) after any fixed symbol (s—1) we insert the following series of symbols: (01...(s—
-2));

2) after any subseries consisting of (s — 1) fixed symbols ¢ (0 < i < s—2) we
insert the symbol s — 1.

Let f, = ¢p(ypp) and let
Sp = [p([0,1)) = {z:2 = fp(x), w0, 1)} ={z:2=4(y), y € Mp},
Gp = fp([0,1)) ={z: 2= fp(a), z € Ns}.

The following two lemmas will describe some properties of the constructed sets G/, .

N,
Lemma 1. Forany z = ZOO 8 "an(z) € Gy the lim Ni(zn)
n= n— o0 n

N i (z, 1
forany i € {0,1,...,s — 2}, and lim M:—

n—oo n
Proof. The set G, has the following structure:

does not exist
S
Gy =

s—1 s—1
~ ——
= {Z:Z—AS 0...0(s—1)...(s—2)...(s—2)(s—1)(s—1)(0L...(s—2)) o1 (z) 2 () ... (2 , ()

first group

0...0(s—1)0...0(s—1)...(s—2)...(s—2)(s—1)(s—2)...(s—2)(s—1)(s—1)(01...

second

< (5=2))(s=1)(01...(s=2))er 2 1 (B)or g2, o (@) 2, o2, () oty .’L’ENS}.

group

1
From x € N it follows that the symbol s—1 has the asymptotic frequency — in the se-
S

Ns-1(z,
quence {ay(z)} andthe equality lim No-alzn)

1 .
= — follows from the construction
n—oo S
of the set G, .

ISSN 1027-3190. Ykp. mam. xypH., 2005, m. 57, N° 9



1168 S. ALBEVERIO, M. PRATSIOVYTYI, G. TORBIN

Let [ be the number of the position at which the above k-th group of symbols ended,
ie., I =s%(p+1)(2F - 1).

Let mj (i) be the number of the position at which the k-th series of the fixed symbols
iand (s—1) (0 <i<s—2) ended,ie., mj_ (i) = s*(p+1)(2F — 1) + s(i + 1)2~.

Let mj/(i) be the number of the position at which the k-th series of the fixed symbols
i (0<i<s—2) started, iie., mj (i) = s*(p+ 1)(2% — 1) + si2" + 1.

If 2 € G,, then there are 5(28T! — 1) + dj) symbols i (0 < i < s — 2) among
the first mj (i) symbols of the s-adic expansion of z, where dj, is the quantity of
the symbol i among the first (2% — 1)s?p s-adic symbols «;(z) in the expansion of
x = f;'(z). Since z isan s-normal number, we have dj, = (2" — 1)sp + o(2).

So,

Ni(za m;c-i-l(z))

lim ————— =
noe m;c—&-l (4)

C oy 2T Ds (28— Dsp+s570(2F) p+2
n—oo  $2(p+1)(2F — 1)+ s(i + 1)2F sp+1)+i+1"

If z € G, , then there are s(2¥ — 1)+ dj, symbols i (0 < i < s—2) among the first
my (i) — 1 symbols of the s-adic expansion of z.

So,
Ni(z,m/. (i) —1 2k 1 2k —1 —lo(2F
SR (U P91 e A | i | R
n—oo  my (i) =1 n—o0 sS2(p+1)(2% — 1) + si2
p+1 p+2
= - < - .
sp+1)+i  s(p+1)+i+1
Ni )
Therefore, for any z € G, and for any ¢ € {0,1,...,s — 2} the limit lim ﬂ
n—oo n

does not exist.
The lemma is proved.
The following Corollary is immediate, using the definitions of G, T and Lemma 1:
Corollary 1. G, C T, Vp e N.

Lemma 2. The Hausdorff— Besicovitch dimension of the set G\, is equal to

p
+2
Proof. Let B,(i) be the subset of N with the following property: Vk € N, k €
€ B, (i) if and only if ay(fy(z)) = ¢ forany x € [0,1), i.e., By(i) consists of the
numbers of positions with the fixed symbols ¢ in the s-adic expansion of any z € S, .

s—1
Let B, = B,(i),andlet C, = N\ B,.
P p P P

i=0

Let us consider the following random variable £() with independent s-adic digits:
€ =3 s el
k=1

where £ ,(f ) are independent random variables with the following distributions: if k£ €

€ B,(i), then ,(f ) takes the value i with probability 1. If k € C,,, then §,(cp ) takes the

11 1
values 0,1,..., (s — 1) with probabilities —, —, ..., —.

s s
It is evident that the set S, is the topological support of the distribution of the ran-
dom variable &) . Actually, the corresponding probability measure pp = Pep s the
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image of Lebesgue measure on [0, 1) under the mapping f, = ¥, (¢p),ie., VE C B:
pp(E) = pp(EN Sp) = Mfy H(EN Sp)) -
A. Firstly we prove that ao(G,) < % Since G, C S, itis sufficient to show
p

that ag(S,) < % To this end we consider the sequence {Bi(k)} (k € N,i ¢

e{1,2,..., 552”(2k71’1)}) of special coverings of the set .S, by s-adic closed intervals
of the rank my = I, — 2871s%p = s%(p + 1)(2%¥ — 1) — 2¥~1s%p. Forany k € N
the covering {ng)} consists of the s°"P(2"~
with length ), = s~ (*(P+D@"=1)=2""1s%p)

The a-volume of the covering {ng)} is equal to

"=1) closed s-adic intervals of my-th rank

12 (S,) = 57 P2 =1) —a(s (p+1) (28 -1) =27 1s%p) _ ((p-a(pt2))2" T s? ga(p+l)—p

For the Hausdorff premeasure h we have hg, (S,) <12 (S,) forany k € N . So,

for the Hausdorff measure H, we have H,(S,) < klim 12 (Sp) =0 if o> —i 5
—00 . p
p
H s S,) < ——.
ence, ag(Sp) < P

B. Secondly we prove that ao(Gp) > % To this end we shall analyze the
p

internal fractal properties of the singular continuous measure /i, .
For any probability measure v one can introduce the notion of the Hausdorff dimen-
sion of the measure in the following way:

ap(v) = Eei?vf(y){ao(E)’E € B},

where N(v) is the class of all “possible supports” of the measure v, i.e.,
N()={FE:FEeB,v(E)=1}

An explicit formula for the determination of the Hausdorff dimension of the measures
with independent (Q*-symbols has been found in [8]. Applying this formula to our case

1
(Qik— —,Vk € N, Vie{(),l,...,s—l}>, we have
s

n

oo () = nh—>—moo nins’

where H, = Zn h;,and h; are the entropies of the random variables fj(-p ) h; =

=1
s—1
=—2_._,Di Inp;;.
Ifje% ,then h; =0.1If j € Cp,then h; =1Ins.
So,
H
_ 1 n — 1. mpg —
ao(tip) Aes nins % my Ins
~ i s?p(2F=1 — 1) Ins P

oo (82(p+1)(2F — 1) — ps?22k—1)In s - p+2

The above defined set G, = f,(N;) is a support of the measure i, , because 1, =
= AM/f, 1) and the Lebesgue measure of the set Ny of s-normal numbers of the unit
interval is equal to 1.
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Since G, € N(u,) and ag(pp) = P we get ag(py) > P Wwhich proves
p

P + 27 + 27
Lemma 2.

Corollary 2. The set G, is the minimal dimensional support of the measure |y,
ie., ao(Gp) < ag(E) for any other support E of the measure .

Finally, let us consider the set G = |J G,,. From Lemma 1 it follows that G C T .

p=1
From Lemma 2 and from the countable stability of the Hausdorff dimension it follows
that o(G) = sup ap(G,) = 1. So, ag(Ts) = 1, which proves Theorem 1.
p

Summarizing the results of Sections 1 and 2, we have for s > 2:

Lebesgue measure | Hausdorff dimension | Baire category

N, 1 1 first
Wy 0 1 first
T, 0 1 first
L 0 1 second

For the case s = 2 we have a corresponding result, but the Hausdorff dimension of
the set T is equal to 0, because the set T is empty for s = 2.
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