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SMOOTHING PROBLEM IN ANTICIPATING SCENARIO”
3ATAYA THTEPHOJIAII JJIsI HEY3TrOJKEHUX IIIYMIB

We consider a smoothing problem for stochastic processes satisfying stochastic differential equations with
Wiener processes which can have not a semimartingale property with respect to the joint filtration.

PosrisinaeTses 3aada iHTeprnosisii 1151 BUMAAKOBUX MPOLIECIB, 1O 3a[J0BOJILHSIOTH CTOXaCTHYHI IUcepeH-
LiaJIbHi PIBHAHHA 3 BIHEPOBUMU MPOIIECaMU, AKi He € CEMiMapTHHI aJIAMH Bi/JHOCHO CIiJIbHOI (i/IbTparlii.

0. Introduction. This article is devoted to the stochastic anticipating equations with the
extended stochastic integral with respect to the Gaussian processes of a special type and
its application to the smoothing problem in the case when noise is represented by the two
jointly Gaussian Wiener processes, which can have not a semimartingale property with
respect to the joint filtration. In order to describe the objects of our consideration more
explicitly, consider the following example.

Example 0.1. Consider the ordinary stochastic differential equation in R

dx(t) = a(z(t))dt + b(x(t))dw(t)

with the smooth enough coefficients a and b. Denote by z(r,s,t) the solution which
starts at the moment s from the point r. Let the function ¢ € C?(R) have bounded
derivatives. For r € R, s € [0; T], define

®(r,s) = L((r,s,T)), (0.1)

where I' is the certain operator of the second quantization [1, 2]. In particular, I" can be
a mathematical expectation. Then it can be proved that ® satisfies the following partial
stochastic differential equation:

1,, . 0° 0
d®(s,r) = — §b (r)ﬁq)(ns) + a(r)aq)(r,s) ds+
+b(r) 5 0(7,9)dn ()
5y 27, 8)d(s).
Here, v(s) = T'w(s) and the last differential is treated in the sense of anticipating

stochastic integration. When I' is the mathematical expectation, the last term vanishes.

This example shows the main goal of this article. Namely, there exist situations
when the naturally arising Wiener functionals satisfy the anticipating stochastic differ-
ential equations and can be described with the using of stochastic calculus. Here we
propose the appropriate machinery and derive the correspondent equations.

We will consider the second quantization transformation of the different Wiener func-
tionals. For such transformed functionals we will get the anticipating stochastic equations
with the extended stochastic integral. Accordingly to this aim the article is organized as
follows. The first part contains the properties of the second quantization operators in con-
nection with the extended stochastic integral or, more generally, with the Gaussian strong
random operators [3]. Sections 2 and 3 are devoted to the following pair of equations:
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SMOOTHING PROBLEM IN ANTICIPATING SCENARIO 1219

d.%‘l(t) = al(xl (t)) + dw1 (t),

dxs(t) = ag(x1(t)) + dws(t),

where wi,ws are jointly Gaussian Wiener processes, which can have not a semimartin-
gale property with respect to the joint filtration. Here we will look for the equation for
E(f(21(1))/x2).

1. Second quantization and integrators. The material of this section is partially
based on the works [3—5]. Corresponding facts are placed here for the completeness of
the exposition but their proofs are omitted. New claims are presented with the proofs.

We will start here with the abstract picture, when the “white noise” generated by the
Wiener process is substituted by the generalized Gaussian random element in the Hilbert
space. Let H be a separable real Hilbert space with the norm || - || and inner product
(+,-). Suppose that £ is the generalized Gaussian random element in H with zero mean
and identical covariation. In other words ¢ is the family of jointly Gaussian random
variables denoted by (¢, &), p € H with the properties:

1) (p,€) has the normal distribution with zero mean and variance ||¢||?> for every
p e H;

2) (¢, €) is linear with respect to .

During this section we suppose that all the random variables and elements are mea-
surable with respect to (&) = o((¢,§), ¢ € H.) If the random variable « has the finite
second moment, then « has an Ito— Wiener expansion [6]

o= 3 Al ). (1)
k=0
Here, for every k > 1, Ap(&,...,&) is the infinite-dimensional generalization of the

Hermite polinomial from &, correspondent to the k -linear symmetric Hilbert—Schmidt
form A, on H. Moreover, now the following relation holds:

e}
Ea® = k!|| Axl[7. (1.2)
k=0
Here || - ||z is the Hilbert—Schmidt form in H®*. The same expansion for H-valued

random elements will be necessary. Let = be a random element in H such that
E|lz||? < 4o0.

Then, for every ¢ € H,
(@,0) = > Arlg;&, ..., ). (1.3)
k=0

It can be easily checked using (1.2) that now Ay is the (k + 1)-linear (not necessary
symmetric) Hilbert — Schmidt form. So one can write now

z=Y A&, ....9), (1.4)
k=0

where

Ap(p1, .., 0k) == ZAk(ej; Oy Pk)EG
=1
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1220 A. A. DOROGOVTSEV

for the arbitrary orthonormal basis {e;; 7 > 1} in H and the series (1.4) converges in
H in the square mean. The relation (1.2) remains to be true

o0

Ellz” =) kI ALz, (1.5)
k=0

where || Az is the Hilbert—Schmidt norm in the space of H-valued k-linear forms
on H.

Now recall the definition of the operators of the second quantization. Let C' be a
continuous linear operator in H. Suppose that the operator norm ||C|| < 1. Then for «
and z from (1.1) and (1.4) define

F(C)Oé = ZA]C(O£7 . '?Cg)a

k=0

L(C)x =Y Ax(CE,...,C¥),

k=0

(1.6)

where for k > 1 Ay(C-,C-,...,C-) and A(C-,C-,...,C") are new Hilbert— Schmidt
forms.
Using the estimation

[AK(C- Cy o, C) e < NIC1* Al

it is easy to prove [2], that I'(C) is a continuous linear operator in the space of square
integrable random variables or elements in H.

Definition 1.1 [2]. Operator T'(C') is the operator of the second quantization corre-
sponding to the operator C.

Before to consider some examples, we will present the useful representation of the
second quantization operators. Let & be the generalized Gaussian random element in
H, independent and equidistributed with &.

Consider the following generalized Gaussian random element in H :

n=+V1-CC*¢ + CE¢. (1.7)
This element can be properly defined by the formula
VoeH: (pn):=(V1=-CC"¢,)+(C7,8). (1.8)

Note that 1 has zero mean and identity covariation. In order to check this, it is sufficient
to note the relation

el = V1= CCxl* + |Coll*.
For every random variable a with an expansion (1.1), define

a(n) = ZAk(n, Sy ).

k=0

The following representation will be useful.
Lemma 1.1. Forarbitrary o € Lo(Q),0(€),P) and operator C in H with |C] < 1,

[(C)a = E(a(n)/$). (1.9)
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SMOOTHING PROBLEM IN ANTICIPATING SCENARIO 1221

Proof. Note that the both parts of (1.9) are continuous with respect to « in the square
mean. So, it is enough to check (1.9) for the following random variables

eled)=zlell® o e p. (1.10)

Really, the random variable of this kind has the Ito — Wiener expansion of the form
(@& —zllell* — Ok (¢
Z Xk 58).

Here, ©®* is k-th tensor power of ¢ which acts on H by the rule

k
®k(,¢)17"'7,¢)k = H ®, ,(/)j
Jj=1
So, for «, which has an expansion (1.1),

Eae@9-3lel?* — ZA’“(@

Hence, the set of all linear combinations of the variables (1.10) is dense in Ls. Now [2]
the following equality holds:

F(c)e(%ﬁ)—%l\wHZ — (C 0 —3lIC™e|* (1.11)
On the other hand,
elem=3llel® — o(CT0.8)=3lIC ¢l* ((VI=CC7p,6")—3||VI=CC7p|*

In order to finish the proof, it is sufficient now to note that
Ee(VI=CCF 0.6 )~ 3IVI=CC70|* _

and that &’ and £ are independent. It follows from here that
E (e(w,n)*%H@HQ/g) — o(C 0 )—1lIlCTel?

The lemma is proved.

This lemma has the following useful application for us.

Corollary 1.1. Let T'(C) be an operator of the second quantization. Let x be a
random element in the complete separable metric space X measurable with respect to €.
Then there exists the random probability measure |1 on X such that for every bounded
measurable function f: X — R the following equality holds:

/ fdu =T (C)f(x).
X

Proof. Let us define 4 as a conditional distribution of z(n) with respectto £. Then,
for every bounded measurable f: X — R,

/fdu E(f(2(n))/€) = T(C)f ().

The unique difficulty on this way lies in the proper definition of z(n) (remind that &
and 7 are not usual random elements). In order to break this difficulty, we will use the
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1222 A. A. DOROGOVTSEV

following analog of the Levy theorem. Let {e;;j > 1} be an orthonormal basis in H.
Define the sequences of random elements in H by the rule
S’n = Z(ej7 g)eja
j=1
M= (ej,n)ej, n > 1.
j=1

Note that the sequences {&,;n > 1} and {n,;n > 1} are equidistributed. Now for ev-
ery n > 1 consider the random measure v, in X, which is constructed in the following
way:

vn(A) = E{Ia(2)/&n}-

Here, A is an arbitrary Borel subset of X. This random measures have two important
properties. First of all, for every n > 1, v, can be viewed as 7,,(§,,), where 7, is a
Borel function from H to the space of all probability measures on X equipped with the
distance of weak convergence. Secondly, with probability one, v,, weakly converge to
0, as n tends to infinity. The last assertion follows from the usual Levy theorem [7].
More precisely, for arbitrary continuous bounded function f: X — R,

fw) = B(f(@)/€) = Tim B(f(2)/€n) =

= lim [ f(u)v,(du) as.

n—oo

x

Taking f from the countable set which define the weak convergence [8], we get the
required statement. Now note that the sequence of random measures {7, (n,);n > 1}
is equidistributed with {7,,(&,);n > 1}. Hence, with probability one, there exists the
weak limit of 7,,(n),,) which is a delta-measure concentrated in the certain random point
y. This random point y is by definition z(n). The correctness of this definition can be
easily checked.

The lemma is proved.

Consider the examples of the random measures, which arise in the application of the
Corollary 1.1 and will be important for us.

Example 1.1. Suppose that H = L([0; T],R?). Define the generalized Gaussian
random element ¢ in H with the help of the d-dimensional Wiener process W on
[0; 7). Namely, for ¢ = (¢1,...,94) € La([0;1], R?), define

(0.8= Y [ @) (s). (112
0

j=1

Now consider the functions a : RY — R? and b : R — R?*? which satisfy the
Lipschitz condition and the domain G in R? with the C'-boundary T'. Let for every
s € [0;T] and u € R? z(u,s,T) denote the solution at time T of the following
Cauchy problem:
dx(t) = a(z(t))dt + b(z(t))dW (t),
(1.13)

x(s) = u.
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SMOOTHING PROBLEM IN ANTICIPATING SCENARIO 1223

Denote by v, s the random measure obtained from z(u,s,T’) via Corollary 1.1 with
the help of the certain operator of the second quantization I'(C). In the next section, we
will obtain the stochastic variant of the Kolmogorov equation for v, ;. Note that in the
case C' = 0 measures v, s became to be deterministic and satisfy the usual Kolmogorov
equation [1].

Now let us define for every u € G the random moment

Tu,s = Inf{t,t < T :x(u,s,t) €T}

Let i, s be the random measure obtained from z(u, s, 7, s) via Corollary 1.1. It occurs
that measures ,, s satisfy certain anticipating boundary-value problem.

In order to describe the anticipating SPDE for the random measures from above men-
tioned example, we need in the relation between the operators of the second quantization
and extended stochastic integral. We will study this connection in the more general situ-
ation when the extended stochastic integral is substituted by the general Gaussian strong
random operator (GSRO in the sequel). Let us recall the following definition.

Definition 1.2 [3]. The Gaussian strong random linear operator (GSRO) A in H
is the mapping, which maps every element x of H into the jointly Gaussian with &
random element in H and is continuous in the square mean.

As an example of GSRO the integral with respect to Wiener process can be considered.

Example 1.2. Consider H and ¢ from Example 1.1. Let for simplicity d = 1.
Define GSRO A in the following way

Vi € H : (A@)(t):/gp(s)dw(s), te[0:7),
0

It can be easily seen that Ay now is a Gaussian random element in H, and A is con-
tinuous in square mean.

In order to include in this picture the integration with respect to another Gaussian
processes (for example, with respect to the fractional Brownian motion), consider more
general GSRO. Suppose that K is a bounded linear operator, which acts from Ly ([0; T)
to Lo([0;7]%). Define

T

Ve e H:  (Ag)(t) = / (K ) (t, 5)duw(s).
0

It can be checked that A is GSRO in H. Making an obvious changes, one can define
the GSRO acting from the different Hilbert space H; into H. For example, consider for

a € <§, 1) the covariation function of the fractional Brownian motion [9] with Hurst
parameter «

1
R(s,t) = §(t2a + 8% — |t — 5]?).

Define the space H; as a completion of the set of step functions on [0; 7] with respect
to the inner product under which

(11[0;5]7 ]I[O;t}) = R(s,1).

Consider the kernel K* from the integral representation of the fractional Brownian mo-
tion B* [10]
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1224 A. A. DOROGOVTSEV

Bo(t) = / K (t, 5)duw(s)
0

and

I P 1O

Define for ¢ € H;

(0)(t.5) = [ o) %5 = 5)ar T ).

S

Now let

T ¢
/Kgp )(t, s)dw(s :/K<p )(t, s)dw(s).
0 0

Then
t

(49)0) = [ e(s)aB (o)
0
We will consider the action of GSRO on the random elements in H. The correspond-
ing definition was proposed in [3, 11]. Consider arbitrary GSRO A in H. Then for every
@ € H the Ito— Wiener expansion of Ay contains only two terms:

Ap = agp + a1(p)(£)- (1.14)

Here, «( is a continuous linear operator in H and «; is a continuous linear operator
from H to the space of Hilbert—Schmidt operators in H. Now let = be a random
element in H with the finite second moment. Then «;(x) has a finite second moment
in the space of Hilbert — Schmidt operators. So, for every ¢ € H,

k=0

It can be easily verified that By, is (k + 1)-linear H-valued Hilbert — Schmidt form on
H. Define ABy; asasymmetrization of By with respect to all k + 1 variables.

Definition 1.3 [3, 11]. The random element x belongs to the domain of definition of
GSRO A if the series

> ABk(¢
k=0
converges in H in the square mean and in this case
Az = ooz + Y AB(E, ..., 8). (1.15)
k=0

In the partial cases, this definition gives us the definition of the extended stochastic
integral [6, 12, 13]. We will define this integral for the special class of Gaussian processes.
Suppose that H = Ly([0;T]) and & is generated by the Wiener process w as above.
Consider the jointly Gaussian with w process {(¢);t € [0; ]} with zero mean.
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SMOOTHING PROBLEM IN ANTICIPATING SCENARIO 1225

Definition 1.4 [14]. Process ~ is an integrator if there exists the constant C' such
that, for every step function ¢ on [0;T] of the form

n—1

p= Z a0y
k=0

the following unequality holds:

n—1 2 n—1
E <Z ak(Y(te+1) — 7(@)) <CY aj(tie —t)- (1.16)
k=0 k=0

The good examples of the integrators can be obtained via the following simple state-
ment.
Lemma 1.2. Let I'(C) be an operator of the second quantization. Then

1(t) = T(C)w(t), te€[0;T],

is an integrator.

The proof of this lemma easily follows from the properties of I'(C).

Note that the integrator can have the unbounded quadratic variation and consequently
can have not the semimartingale properties (see [14]). It is easy to see from (1.16) that,
for every integrator v and ¢ € Lo([0;77]), the stochastic integral

t
/ pdry
0

exists as a limit of the integrals from the step functions and

t 2 t

E /gpd’y < C/apQ(s)ds.

0 0

So, one can define GSRO A, associated with the integrator v by the rule

Yo e Ly(0:T]) . (Ayp)(t) = / o,
0

In this situation, Definition 1.3 became to be a definition of the extended stochastic inte-
gral with respect to . Note that in the case v = w it will be a usual extended integral.

Now let us consider the relation between the action of GSRO and the operators of the
second quantization.

Theorem 1.1 [4]. Let A be a GSRO in H and T'(C) be an operator of the second
quantization. Suppose that the random element x lies in the domain of definition of A
in the sence of Definition 1.3. Then T'(C)x belongs to the domain of definition of GSRO
I'(C)A and the following equality holds:

[(C)(Az) = T(C)A(T(C)x). (1.17)
Here, T'(C)A is the GSRO which acts by the rule

Voe H: T(C)Ap=T(C)(Ap).
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1226 A. A. DOROGOVTSEV

The proof of this theorem is placed in [4] and so is omitted. Instead the proof con-
sider the following important example of application of Theorem 1.1 to the stochastic
integration.

Example 1.3. Consider in the situation of Example 1.2 GSRO of integration with
respect to Wiener process w. Suppose that random function = in Lo([0;7]) with the
finite second moment is adapted to the flow of o -fields generated by w. It is well known
[12, 13] that, in this case, the extended stochastic integral

t
z(s)dw(s), te[0;T],
0
exists and coincides with the Ito integral. Now the Theorem 1.1 says us that

t t

() /x(s)dw(s) :/I‘(C)az(s)dv(s),

0 0

where ~y is an integrator of the type () = I'(C)w(¢) and the integral in the right part
is an extended stochastic integral.

2. Smoothing problem. The last sections of the article are devoted to the following
problem. Let (wq, ws) be the pair of jointly Gaussian one-dimensional Wiener processes.
Let the processes x1,xo are obtained via the relations

dx(t) = aq(z1(¢))dt + dw (¢),
d(ﬁg(t) = ag(.’tl(t))dt + d’wg(t)7 (21)

Note that the second equality is just a definition of zo but not an equation. The
problem is to find the conditional distribution of x1(¢) for ¢ € [0;1] under given
{z2(s);s € [0;1]}. We will try to get the equation for

E(f(z1(t))/2)

for the appropriate functions f.
First, let us study the joint distribution of (w1, w2) . Note that there exists the bounded
linear operator V' : Ly([0;1]) — L2([0;1]) such that

1 1

Y1, 92 € La([0;1]) E/gpldwl/ga dwy = / w1 Vpads.
0

0 0

This fact follows from the reason that the left part of the above formula is the contin-
uous bilinear form with respect to ¢; and ¢2. Moreover, the operator norm ||V < 1.

In this section, we consider the density of the distribution (x1,z2) with respect to the
distribution of (w1, w2) and study its properties under the conditional expectation. The
problem is that the distribution of (wy,ws) is not a Wiener measure in C([0; 1], R?). So,
in order to get the density, we need to adapt the general Gaussian measure setup [15] to the
our case. For the future let us denote C([0;1]) as C' and identify the space C([0; 1], R?)
with the direct sum C' @ C, which is furnished by the sum of the norms. Denote also by
H the space

ISSN 1027-3190. Ykp. mam. xypH., 2005, m. 57, N° 9



SMOOTHING PROBLEM IN ANTICIPATING SCENARIO 1227

Lo([0;1], R?) = Lo ([0;1]) & L2([0; 1))
with the scalar product defined by the formula

1 1

(p,9) :/<P1¢1ds+/<p2w2ds.

0 0

With the pair (w1, ws) we can associate the generalized Gaussian random element £ in
H by the rule

1

1
(v, 8) :/@1dw1+/s@2dw2-
0 0

Note that ¢ has not an identity covariation operator. Really,

1 1
E(p,8)(,8) = | ortids + | patpads+
[ ]
1 1
+ [ o1Vipads + | 1 Vads.
[ ]

Here, V is described above bounded linear operator in Ly([0; 1]). Denote by S the
operator in H which acts by the rule

S = (o1 + Vo, Vo1 + 02).
Then

E(p,§)(¥,€) = (Sp,9).

Our aim is to describe the transformations of the pair (w1, ws) in the terms of £. Let us
start with the deterministic admissible shifts. Denote by 7 the canonical embedding of
H into C?, ie.,

t t

00 = | [ods. [ oads

0 0

Lemma 2.1. Let the operator norm ||V| < 1, then for every h € H, i(h) is
admissible shift for (., w, and the corresponding density has the form

(@ = exp {(57h.6) - 55701} (22)

Remark 2.1. Due to the condition ||V|| < 1, the operator S~! is bounded on H
and can be written in the form

S o = ¢+ (Quip1 + Qiap2, Q211 + Qaap2) = ¢ + Qo,

where Q] < 1.
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1228 A. A. DOROGOVTSEV

Proof. Note that, by the definition, the operator S is nonnegative. Define
¢=5"3¢

Then the shift of the distribution of (wy,ws) on the vector i(h) is related to the shift of
&' on the vector S ~2h. Now the statement of the lemma follows from the well-known
formula for the density in terms of &

§e) = e { (€540 - (55 min)

if we rewrite it in terms of &.

The lemma is proved.

Remark 2.2. Formula (2.2) can be rewritten in terms of w;, ws. Really, by the
definition,

1
—1 - —1 _
(57'h.€) = 5 (57 h,h)
1 1
/ dw1 +/ lh 2dU)27
0 0
1 1
1 1 1 -1
—5 (S h 1h1d8 5 h 2h2ds -
0 0

1 1
= / (h1 4+ Q11h1 + Qi2h2)dw; +/ (he + Qa1hi + Q22h2)dws—
0 0

1
(h1 + Qu1h1 + Qi2h2)hids — = [ (he + Q21h1 + Qa2h2)hods. (2.3)

[\J —
O\H
O\H

Using the same method, one can find the density of i, ., Wwith respect to iy, w,-
First, define the stochastic derivatives of the functionals from wi,ws with respect to &
and the extended stochastic integral in terms of . Let ¢ be a differentiable bounded
function on C @ C. Define the stochastic derivative of the random variable (w1, ws)
by the formula

Do(wy,ws) := i*V(wy, ws).
By this definition, for every ¢ € [0; 1],

le (t) = (]I[O;t] ) O)a

D’LUg(t) = (0, ]I[O;t])-

Note that ¢(wq,w2) can be regarded as a functional from the generalized random el-
ement £ which was introduced in the proof of Lemma 2.1. Since &’ has an identity
covariation operator, the stochastic derivatives and extended stochastic integral for the
functionals from &’ are connected by the usual relation. Now we will define the extended
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SMOOTHING PROBLEM IN ANTICIPATING SCENARIO 1229

stochastic integral with respect to £. It can be done in the following way. Consider the
Gaussian random functional on H of the kind

J(p) = (¢, €).

Then, in terms of &', J can be rewritten as
T(p) = (S2,8).
So, the action of J on the random element x in H via Definition 1.3 has the form
J(z) = I(S?x). (2.4)

Here, I is the extended stochastic integral with respect to &’. Note also that for the
stochastic derivatives with respect to £’ and ¢, we have the obvious relation

Derov = S_%Dga.
Hence, on the domain of definition,
E(Dea,z) = E(SiéDga,S%x) =
— E(Dea, S?z) = Eal(S?z) = EaJ(x). 2.5)

Thus, the relation between the stochastic derivative and extended stochastic integral with
respect to £ is the same as for £’. Now let us turn to the nonadapted shifts of the distri-
bution of (wy,ws). Consider the pair of random processes x1,xs which are defined by
Equations (2.1).

The next lemma is standard.

Lemma 2.2. Let the functions a1, as be continuously differentiable and have bounded
derivatives. Then:

1) for every t € [0; 1], the random variables x1(t), x2(t) have the stochastic deriva-
tives Dx1(t), Dxo(t);

2) the random element (a1(x1(+)), aa(x1(+))) in H has the stochastic derivative
and

D(a1(z1(s)), az2(x1(5)))(t) =
= () (z1(s)) D1 (s)(t), ay(x1(s)) D1 (s)(1));

3) the stochastic derivative of x1 with respect to wy (i.e., the first coordinate of
D) satisfies the equation

S

Dizi(s)(t) =1+ /a'l(zl(r))Dlxl(r)(t)dr, 0<t<s<l1,

t

Dyzq(s)(t) =0, t>s,
and

Dz:(s)(t) = (D1a1(s)(2),0).
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1230 A. A. DOROGOVTSEV

It follows from Lemma 2.2 that || D(a;(x1(+)),az2(z1(:)))||# canbe made small if we
take a} and af small enough. Since the operator S~2 isbounded in H, we have due to
Theorem 3.2.2 from [15] that the distribution of (x1,x2) is absolutely continuous with
respect to the distribution (wy,ws) for sufficiently small a}, a}. The corresponding
density will be denoted by p. Accordingly to [15], p has the form

p=Cexp {I(Séh) - %(S*lh, h)}, (2.6)
where

h(t) = (ar (w1 (), az(wi(t))),

and ( is the corresponding Carleman — Fredholm determinant. Due to (2.4), (2.6) can be
rewritten as

p—(exp{J(Slh)%(Slh,h)}. (2.7)

This expression allows us to conclude that up to the term (, p has the stochastic deriva-
tive. We will suppose that this is so in the next section, where the formulas for the con-
ditional expectation and extended stochastic integral will be obtained in non-Gaussian
case.

3. Conditional expectation. For the processes (x1,x2) from (2.1), let us search
for the conditional distribution of x1(¢) under fixed {z2(s);s € [0;1]}. First note that
under our conditions, the distribution of (z1,x2) is absolutely continuous with respect
to the distribution of (w1, ws) and, consequently, the distribution of zo is absolutely
continuous with respect to the distribution of ws.

Denote for a moment by g the distribution of the pair (wy,ws) on C([0;1]) &
@ C(]0;1]) and by py and po the distributions of w; and wy (surely, these are the
Wiener measures but on the different copies of C([0;1]). It follows from the general
theory of integration that the measure p can be desintegrated with respect to po, i.e.,

H(A) = / (i, Az (du),
C([051])

for arbitrary Borel A in C([0;1]) ® C([0;1]). Here, v is a measurable family of the
probability measures and A, = {v € C([0;1]) : (v,u) € A}.

Define for the measurable bounded function ¢ : C([0;1]) — R the function ¢ by
the rule

C((0:1]) 3 u > () = / o (0)p(v, w)v (s, dv) X
C([0s51])
X /p(v,u)u(u,dv) ) (3.1)
C([051])

The following variant of the Bayes formula holds.
Lemma 3.1.

E(p(z1)/x2) = ¢ (22).
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Proof. First note that v(z2) is correctly defined because the function 1 is defined
up to the set of Wiener measure zero, and the distribution of x5 is equivalent to this
measure. Now, for arbitrary bounded and measurable function v : C'([0;1]) — R,

Ep(x1)7(22) = Ep(w1)y(w2)p(wr, we) =
= Evy(wa)E(p(w1)p(w, wa) /w2) =

E(p(w1)p(wy, wa) /w2)
E(p(w1, w2)/w2)

= By (ws)t(ws)p(wr, wa) = Ey(w2)(x2).

This finishes the proof.
For arbitrary ¢ € [0;1], denote by 7; the random measure on R whose pairing with
the bounded measurable function f is defined by the formula

/ Fr)mydr) = B(f (s (6)p(wr, wa) /).
R

= Ey(wz)

E(p(wy,ws)/wsz) =

In view of the previous lemma, it is sufficient to get the equation for ;. The next
lemma contains the necessary facts from the theory of extended stochastic integral.

Lemma 3.2. Let H be the separable Hilbert space, £ be a generalized Gaussian
random element in H with zero mean and identity covariation. Suppose that the random
element x in H has two stochastic derivatives and let I and D be the symbols of the
extended stochastic integral and stochastic derivative correspondingly. Then for arbitrary
h € H and stochastically differentiable bounded random variable «, the following
formulas hold:

D) al(z) = I(az) + (z, Da);

2) (DI(z),h) = (z,h) + I((Dx, h)).

Proof. The first statement is the well-known relation [12]. Let us check 2). Use the
integration by part formula. Consider the random variable 8 which is twice stochastically
differentiable. Then, using 1),

E(DI(z),h)s = E(DI(x), Bh) =
= EI(x)I(8h) = EI(x)(BI(h) — (DB, h)) =
= E(z, D(BI(h) — (DB, h))) =
= E[(z, h) + (z, DB)I(h) — (z,(D*B, h))] =
= E(z,h)3 + E(z, I(Dfh)) =
=EB((z,h) + I((Dx, h))).

The lemma is proved.

Remark 3.1. Note that the statement of the lemma remains to be true in the case
when « is not bounded but all terms are well-defined. Also, due to the formula (2.5), the
lemma holds in the case when the initial generalized Gaussian random element has not
identity covariation.

Now let us turn to our filtration problem.

Take the function f € C3(R). Then for arbitrary r € R from the Ito formula
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f(r+wi(t))p(wr, we) =

t
— f(r)plwr,we) + / (7 + w1 (s))duwn ()p(wy ws) +
0

_|_

N =

t
/f” + wi(s))p(wy, we)ds.
0

Consider the second summand. It contains the Ito integral which coincides with the ex-
tended stochastic integral as it was mentioned before. So, we can apply the formula 1)
from Lemma 3.2:

= /f’(r + w1 (8))p(wy, we)dwy (s)+
0

t
+/f/ 7+ w1(s))(SDp(w1,ws2))1(s)ds.
0

Here, the index 1 symbolizes the first coordinate of correspondent element from H. Now
note that the conditional expectation with respect to w. is an operator of the second
quantization. So, if we denote

71(t) = E(w1(t)/w2),

then, due to Theorem 1.1,

E(f(r + w1 (t))p(wy, w2) /w2) =

= E(f(r)plw1, wa) /ws) + / E(f (r + wy ())p(wy, w2) /1w )y (t) +
0

t

+y [ B+ wn(s)plwn, wa) wa)dst

0
+ / E(f'(r +w1(s)(SDp(w1,w2))1)(s)/w2)ds, (3.2)
0

where the integral with respect to v is an extended stochastic integral. In order to get the
stochastic differentiability of p, let us consider the case when the Carleman — Fredholm
determinant ¢ is equal to one. Denote by P; the orthogonal projector in Ls([0;1]) &
® L2([0;1]) on the subspace Lo ([0;t]) & La([0;¢]).
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Lemma 3.3. Suppose that the operator S has the property

Then ¢ = 1.

Proof. The value ( is the Carleman —Fredholm determinant of the operator SDh,
where

h = (a1 (w1(-)); az(wi(-)))-
Now
(aﬁ (w1 (t)) Mjo:1(s) 0)
Dh(t,s) = .
ay(w1 (8)) oy (s) 0
In order to prove that

deto(Id + SDh) =1,

we will use Theorem 3.6.1 from [15]. Due to this theorem, it is sufficient to check that
the operator SDh is quasinilpotent, i.e., that

lim [|(SDh)"||* = 0. (3.4)

n—oo

It follows from representation (3.3) that
t
Yoe H Vte[0;1]: ||PDhyp|? < c/ | Psp||ds,
0

where ¢ depends on supg(|aj| + |ab])-
Consequently,

1
I(SDRY" ()] < |15 / 1Py, (SDR)™ ()| Pty <
0
1
< 15| / | PSPy, P, Dh(SDh)" > (i) [2dt, <
0

1 t
< 8] / / | P (SDR)™ () [Pdtadt < ...
0 O

1 t tn—1

...§||S||2"c"//... / 1Py, ol[2dtn . .. dty <
0 0 0

2n .n
< o P
This means that (3.4) holds and ¢ = 1.
The lemma is proved.
Now one can conclude that p has the stochastic derivative and (3.1) is correct. The
further concretization of (3.2) can be possible due to the special form of p. As a conse-
quence of (3.2) and (3.4), we have the following theorem.
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Theorem 3.1. Suppose that the coefficients ay, as and the operator V satisfy the

conditions of Lemma 3.3. Then the random function

U(r,t) = E(f(r + w1 (t))p(w1, w2)/w2)

satisfies relation

dUu(r,t) = %;—;U(r, t)di+
—&-QU(T7 t)y(dt) + Ef (r +w1(t))(SDp(wy,ws))1(t)dt. (3.5)

or

In some particular case, the last term can be written in a simple form. For example,

when as = 0, then (3.5) transforms into

12.

13.

14.

15.

2

10 0

0
+ai(r) EU(T, t)dt.
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