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ULAM-HYERS STABILITY ANALYSIS
OF A THREE-POINT BOUNDARY-VALUE PROBLEM
FOR FRACTIONAL DIFFERENTIAL EQUATIONS

AHAJII3 CTABLUIBHOCTI 3A YJIAMOM TA XAUEPCOM
TPUTOUYKOBOI TPAHUYHOI 3A TAYI
JIJISI TPOBOBUX JU®EPEHIIAJTBHUX PIBHSIHD

We study the problem of existence and uniqueness of solution of a three-point boundary-value problem for a differential
equation of fractional order. Further, we investigate various kinds of the Ulam stability, such as the Ulam— Hyers stability,
the generalized Ulam—Hyers stability, the Ulam—Hyers—Rassias stability, and the generalized Ulam - Hyers — Rassias
stability for the analyzed problem. We also provide examples to explain our results.

BuB4aeTscst mpodiieMa iCHyBaHHS Ta €IHHOCTI PO3B’SI3KY TPUTOUKOBOI IPaHUYHOI 3a1adi A7t Apo6oBOro audepeHniaIbHOro
piBastHHEA. KpiM Toro, mocimikeHo pi3HI THOHM CTaOUIBHOCTI JaHOi mpoOiiemMu 3a YiaaMoM, IO BKJIIOYAIOTH CTaOLIBHICTH
3a Ynamom Ta Xalepcom, y3arajabHEHy CTaOUIBHICTB 32 YimamoMm Ta XalepcoM, cTabuIbHICTB 3a Yinamowm, XaifepcoM Ta
Pacciacom, a Takox y3aranpHeHy cTabinbHICTb 32 YiamoM, XaitepcoM Ta Pacciacom. HaBeneHO MpHKIIaau, O TOSCHIOIOTH
OTpUMaHi pe3ysbTaTy.

1. Introduction. Classical calculus has been generalized from integer order to arbitrary order. At
the end of sixteenth century (1695), in a letter to Leibnitz, L. Hospital asked about the derivative of z
with respect to ¢ of order « = 1/2. This was a question which moved minds towards generalization
of integer order derivatives to fractional order. Lacroix was the first person who introduced fractional
order derivative for first time [18]. Later on a great contribution in this field was made by researchers
like Abel, Fourier, Riemann, Liouville, Grunwald, Letnikov and others, for detail see [11, 15, 20].
Now a days fractional calculus is the most developing and interesting area of research. There has
been a lot of development in this field. This course has got great attention and importance for its
many applications in various fields of science, engineering and technology like physics, chemistry,
dynamics, control system, optimization theory, computer networking systems, mathematical biology,
bioengineering, aerodynamics, electrodynamics, signal and image processing, mathematical model-
ing, etc. (see, for instance, [8, 9, 16, 19]). One of the most well-known area of research in fractional
differential equations is concerning to the existence theory. For the last one hundred years this area
was very well explored by many authors, for detail see [2, 4, 23, 28, 31]. Benchohra et al. [5],
studied existence and uniqueness of solutions to the following antiperiodic boundary-value problem
(BVP) provided by

°DY%(t) = O(t, 2(t),c D 12(t), 0<t<1, 1<a<2,

z(0) = —z(1), Z'(0) = —2'(1).
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In same line Shah et al. [27], studied the following BVP for multipoints:

—D%(t) = O(t, 2(t),“ D*'2(t)), 0<t<l, 1l<a<2,
z2(0) =0, 2(1) = Z 0iz(Vi), where 6;,7; € (0,1) with Z 5i(0;) < 1.

To receive the existence and uniqueness results, the researchers used the classical fixed point theory
of cone type. Besides from the aforesaid theory, they also applied pre estimate method known
as topological degree method, Schauder’s degree method and Brouwer’s degree method, etc., for
instance, we refer to [1, 3, 10, 26].

Another important area of research which has attracted more attention from researchers is devoted
to the stability analysis of differential equations of both classical and fractional order. Historically,
S. M. Ulam [29], did a fundamental question about the stability of functional equations which was
answered in 1941 by Hyers [12] in Banach spaces. Obloza was the first to report Hyers—Ulam
stability for linear differential equations. Later on this result was generalized and extended by Rassias,
Jung and others, for instance, we refer to [13, 14, 25]. Recently Benchohra and his co-author [7],
established Ulam — Hyers stability, generalized Ulam — Hyers stability, Ulam — Hyers — Rassias stability
and generalized Ulam — Hyers — Rassias stability for the following initial value problem of implicit
fractional order differential equation:

°D%%(t) = O(t,2(t),D%(t)), 0<t<1, 0<a<l,
2(0) = 2o,

where “D® is the Caputo fractional derivative and © : J xR xR — R is a given continuous function,
20 € R, J=[0,T], T > 0 and R denotes the set of real numbers.

The aim of this paper is to investigate the existence and uniqueness results of solution and then to
establish the above four types of Ulam stabilities for the following boundary-value implicit fractional
order differential equation:

Dz(t) = O(t, 2(t), D*z(t)), 0<t<1l, 1<a<2,

(1)
2(0) =0, 2(1)=46z(9), 4,9€(0,1),

where “D® is the Caputo fractional derivative and ©: J x R x 8 — R is a given continuous
function. Here we remark that over all in the subject of fractional calculus huge research is in
progress in recent times which addresses existence theory, numerical analysis and stability theory, we
present some recent work as [33 —44].

2. Preliminaries. Now to receive the aforementioned goals, we remind some basic definitions
and lemmas which will be used in our results.

Definition 1 [22]. The arbitrary order integral of a function h € L'([0,T],R) of order o €

€ (0,00) is defined by
¢
I°h(t / )*h(s)ds,
0
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provided that integral on the right is pointwise defined on (0,00), where T' is the Euler Gamma
oo

Sfunction defined as I'(a)) = / t*te7tdt, a > 0.
0
Definition 2 [15]. The Caputo fractional arbitrary order derivative of order o of function h is

defined by
t

CDOR(t) = 1) / (t — 5)" 1 hnh(s)ds,

I'n—«
0

provided that integral on the right is pointwise defined on (0,00), where n=[a]+1 and [a] denotes
the integer part of the real number «.

Lemma 1 [17]. For a fractional derivative and integral of order a.,we have the following result:
I%Dh(t) = h(t) + by + byt + bot® + ... + bp_1t" 1,

where b; e ®, 1=0,1,2,3,...,n— 1.
Lemma 2 [5]. The space C defined by

C(J,R)={ze€C(J,R): °D*z € C?(J,R)}
with the norm
||2]]oc = Sup {|2(?)] : t € [0, 1]}

is a Banach space under the defined norm.

Definition 3 [24]. The equation (1) is said to be Ulam— Hyers stable if there exists a positive
real number N such that for every € > 0 and for each solution w € C*(J,R) of the inequality

“D*w(t) — O(t, w(t),” D*w(t))| <&,  te, 2

there exists a solution z € C*(J,R) of the equation (1) such that |w(t) — z(t)| < Re, t € J.
Definition 4 [24]. The equation (1) is said to be generalized Ulam— Hyers stable if there exists
p € C(RT,RT), u(0) = 0, such that for each solution z € C*(J,RT) of the inequality (2), there
exists a solution w € C(J,R") of the equation (1) such that
lw(t) —2(t)| < pe,  ted

Definition 5 [24]. The equation (1) is said to be Ulam— Hyers — Rassias stable with respect to
U € C(J,R") if there exists a nonzero positive real number N such that for each € > 0 and for
each solution w € C*(J,R) of the inequality

[°D%w(t) — O(t,w(t), D*w(t))| < eV(t), ted, (3)
there exists a solution z € C(J,R) of the equation (1) such that
lw(t) — z(t)] < NeW¥(t), ted
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Definition 6 [24]. The equation (1) is said to be generalized Ulam — Hyers — Rassias stable with
respect to U € C(J,R), if there exists a real number Xg > 0 such that for each solution w €
€ CY(J,R) of the inequality

|°D%w(t) — O(t,w(t),” D*w(t))| < W(t), telJ, “4)

there exists a solution z € C*(J,R) of the equation (1) such that |w(t) — z(t)| < Ng¥(t), t € J.

Remark 1. A function w € C1(J,R) is a solution of the inequality (2) if there exists a function
h € C(J,R) (dependent on z) such that

(D) |h(t)] <eforallt e J;

(I) D*w(t) = O(t,w(t), D*w(t)) + h(t), t € J.

Definition 7. A function x € C(J) is said to be a solution of the problem (1) if x satisfies (1)
and the boundary conditions on J.

3. Existence and stability analysis. The concerned section is devoted to establish conditions
for the existence of at least one solution to BVP (1) and also to discuss the four different kinds of
stability for the afore said problem.

Theorem 1. Let h € C(J,R), then the equivalent Fredholm integral equation of the given

1
BVP (1) is z(t) = / H(t,s)h(s)ds, where H(t, s) is the Green's function given by
0

(5t Lt "

— (9 —5) !t — —(1—239)> <t<s<v<
A('19 s) A(1 s) T, 0<t<s<v<I1,
ot 1t 1 -1

—(W =9 = —Q =)+ (t—95)", 0<s<t<P<I1,

1 A A
R

—Z(l—s)afl, 0<9<t<s<l,
—£(1—s)a—1+(t—s)a—1, D<v<s<t<l,

where A =1 — §9.
Proof. Let us consider a linear BVP given by

D2(t) = h(t), 1<a<?2, t €[0,1]. Q)
Applying Lemma 1, we have
z(t) = by + bit + I*h(t). (6)
By using initial and boundary conditions z(0) = 0 and z(1) = dz(n), we get by = 0 and
1
by = —[01%h(¥) — I*h(1)].
A
Inserting these values of by and b; in equation (6), we have
t

2(t) = R [BI°h() = Ih(1)] + I*(1) =
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¥ 1
- = / (0 — 5)* h(s)ds — ALM / (1= 5)°  h(s)ds+

0 0

t

—&-Fi /(t — 5)* " h(s)ds

(67
0

which implies that

1
z(t) = /H(t,s)h(s)ds,
0

where H (¢, s) is the Green’s function.
Therefore, in view of above theorem, our considered problem becomes

1
A(t) = / H(t,5)O(s, 2(s),. D=(s))ds,  t € [0,1]. )
0

Theorem 1 is proved.

The given assumptions are useful in the proof of the following theorems. Assume that there exist
w(t) € C(J,R+) and a continuous nondecreasing function ¢ : [0, 00) — (0, 00) such that
(A1) ©:J xR xR — R is continuous;

(A2) |O(t, z,w)| < w(t)p(w) for z,w € R;
( te[0,1]
(

there exists a constant A > 0 such that for each ¢ € J and for all z,w, z, w € RN, we have

)
1
As) p(w)w*H* < @, where @w* = sup{w(s): s € J} and H* = max / |H(t, s)|ds;
0
Ay)

|O(t, z,w) — O(t, z,w)| < A(|z — 2| + |w — w]).

Theorem 2. Under the assumptions (A1) — (As), there exists at least one solution of the con-
cerned BVP (1).

Proof. To prove the required result, we use Schauder fixed point theorem. Let z,, be a sequence
such that z,, — z, where z € (J,R). Let 0 > 0 such that ||z, || < o for each ¢t € J. Then considered
a bounded set

D= {z e C(LR): |zl < w} C C(J xR, R),
and defined an operator
F:D— D byFz(t) =z(t), tedJ
We have to show that the operator has at least one fixed point. To prove this, consider
1
[Fzn(t) = F2(t)] = /"H(ta 5)[O(s, zn(s),” D 2n(s)) — O(s, 2(s),” D“2(s))]ds| <
0

1
< /\’H(t,s)||@(s,zn(s),cDazn(s)) — O(s,2(5),“DY2(s))|ds.
0
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By using Lebesgue dominated convergent theorem, we have |F z,(t) — F 2(t)|n—00 — 0, which
implies that / is continuous.
Next, we show that f is bounded. For this we will show that f (D) C D. Let z € D € and
consider
1
|Fz(t)] = /H(t, 5)O(s,2(5), Dz(s)ds| <

0

1
< /\H(t,s)H@(s,z(s),CDaz(s)]ds§
0

< @(t)p|lw max /\7—[ (t,s)|ds <

@(t)p|w|H" <
< wro(w)H* < w.

Thus, |F 2(t)] < w.
This shows that £ is bounded and hence F (D) C D. For showing that f is equicontinuous, let
t1, to € J with t1 < t9, consider
1
|F z(t2) — F 2(t1)] = /H(tg, s) — H(t1,5)0(s, 2(s), D%2(s)ds| <
0

1

< / Mtz ) — H(t1, 5)[|0(s, (s).° D*az(s)|ds <
0

1

< w(Op(w) [ [Hlt2s) - Hitr,9)lds.
0
1

Now, if to — t1, then w(t)p(w) / |H(t2, s)—H(t1, s)|ds — 0, consequently, |F z(t2)—F z(t1)| —
— 0, which implies that F is eqﬁicontinuous. So by Arzela—Ascoli theorem, F has at least one
fixed point and hence the corresponding BVP(1) has at least one solution.

Theorem 2 is proved.

Theorem 3. Under the assumptions (A1) and (Ay4) with the additional condition 2H*\ < 1,
the BVP (1) has a unique solution.

Proof. To prove the required result, we use Banach contraction principle. Define a mapping
F:(JxRR) = C(JxR,R) by

1
Fz(t)=2z2(t) = /H(t,s)@(s,z(s))ds.
0
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Obviously, [ z(t) is continuous, because H(t,s) and © are continuous. Let z,z € C(J,R) and
t € J, consider

1
|Fz(t) — Fz(t)| = /’H(t, $)[O(s, 2(s), DY2(s)) — O(s, 2(s)," D¥Z(s))]ds| <
0

1
< / H(t, 5)/[0(s, 2(5), D=(s)) — O(s, 2(5), D*=(s))|ds <
0

< HA(lz = Zlloo + D%z = D2[|oc) =
= |Fz(t) — F2(t)] < 2H" Az — 2] .

Here,

/H*

1
max / (1, )|ds.
te[0,1]
0

Since 2H*A < 1, so by Banach contraction theorem f is contraction and so has a unique fixed poind
and hence the corresponding BVP (1) has a unique solution.

Theorem 3 is proved.

Theorem 4. If the assumptions (A1), (A4) along with the conditions H*\ # 1 — X and X\ # 1
hold, then the BVP(1) is Ulam — Hyers stable.

Proof. Let (A1), (A4) and the conditions H*X # 1 — A and A # 1 hold. Let w € C(J,R) be
a solution of the inequality (1) and z € (J, R) be a unique solution of the Cauchy problem

‘D%(t) = O(t,2(t),D2(t)) forall teJ 1<a<2.

By Theorem 1, we have
1
z(t) = /’H(t,s)h(s)ds,
0

where h € C(J,R) satisfies the functional equation

1
y(t) =0 t,/?—[(t, s)h(s)ds, h(t)
0

Hence, we take

1
w(t) —/H(t,s)hw(s)ds <e. (8)
0

On the other hand, we get, for ¢t € J,
1
lw(t) — z(t)| = |w(t) — /’H(t,s)hz(s)ds =
0
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1 1 1
— | H(t,s)hw(s)ds + | H(t,s)hw(s)ds — [ H(t,s)h,(s)ds| <
/ / /

1
€+ / |H(t, s)||hw(s) — hx(s)|ds (via using the inequality (8)), 9)
0

where hy,(t) = O(t, w(t), hy(t)) and h,(t) = O(t, 2(t), h»(t)). We have, for all ¢ € J,
|ho () = hz(8)] = [O(t, w(t), hu(t)) — O(t, 2(t), hz(1))] <
S Aw(t) = 2(8)] 4 Alhw(t) — y=(t)] (by using (A4)) <
< 2 hult) - =)
Hence from above inequality (9), we obtain

*

w(t)  2(0)] < <+ 2 hlt) — (0] =

:>|w(t)_z(t)| S%, H*)\#l—)\ and )\751:>
1—
1—-A

= |w(t) — z(t)| < Ce,

where C' = with H*A #1— X and A # 1.

1
H*N
1—X
So, equation (1) is Ulam—Hyers stable. By putting ¥(¢) = Ce, ¥(0) = 0, in this case the
equation (1) is generalized Ulam — Hyers stable.
Theorem 4 is proved.
Theorem 5. Assume that (A1), (A4) hold, then the equation (1) is Ulam — Hyers — Rassias stable
fHXN#1—Xand \ # 1.
Proof. Let w € J be any solution of the inequality

|°D%w(t) — O(t,w(t),” D*w(t))| < ed(t), tedJ, (10)
and z € J be the unique solution of the considered Cauchy problem (1). Then, for € > 0, we get

w(t) — 2(t)] < e®(t). (1)

In view of Theorem 1, we get
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where y € C'(J,R) satisfies the functional equation

ht) = © (t,/?—[(t,s)ds,h(t)) .
0

Hence, we obtain, from inequality (11),

<ed(t).

1
w(t) — /’H(t, $)hy(s)ds
0

Also, we have, for t € J,

w(t) — =(t)] =

< +

1
w(t) — / H(t, 5)h(5)ds
0

By using inequality (12), we get
1

[w(t) — 2(t)] < e®(t) + / [H(E, 8)||huw(s) — ha(s)lds,
0

where hy,(t) = O(t,w(t), hy(t)) and h.(t) = O(t, z(t), h,(t)). So, we have, for all ¢ € J,
|heo () = B ()] = [O(t, w(t), hu(t)) — O(t, 2(1), h(1))] <
< Alw(t) = 2(t)] + Alhuw(t) — hz(t)]  (by using (A4)) = [he(t) = he(1)] <

So, inequality (13) becomes

wlt) — 2(0)] < <00 + [ p(t5)| 5 fle) — 2(0)| <
0

<ed(t) + ’H*%Iw(t) —z(t)| =

ed(t) H*A
= |w(t) — z(t)] < W <Where T £ 1) =
1—A
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1
= |w(t) — 2(t)] < Ned(2) where N = ——
1—
1—A

with H*A # 1 — X and A # 1. So, equation (1) is Ulam - Hyers — Rassias stable. By taking ¥(g) =
= Ne®(t), we have U(0) = 0. This shows that equation (1) is generalized Ulam—Hyers — Rassias
stable.

Theorem 5 is proved.

4. Examples. To demonstrate the established results in previous section, we provide the follo-
wing examples.

Example1. We consider

3
CD%z(t) = % (t sin z(t) — z(t) Cost> + %, t€[0,1],
40 + |cD22(t)| (14)
z(0) =0, z(1) = %z <i13>

o]
=
o
8
-
=
(¢}
vy
<
)—U
—_
—
b
<
(¢}
)
(¢}
[¢)]
—
=
I~
=4
Q
Il
[\CR V]

(o)
|

\

1
Y= 3 and the nonlinear function

3
[“D22(t)|
3

O(t, z,w) = 1 <t sin z(t) — z(t) cost> +
40 + [¢D2 z(t)|

80

is clearly continuous and the Green’s function is

1
3t /1 2 12t 1 1
B — (1 —-13s)2 <t<s< =<1
11(3 > TR Ostsssg<l
1
3t /1 2 12t 1 1 1
1 =z =82 4 (E—8)2 0<s<t<-<1
H(t75) — 3 11 <3 ) 11( ) +( S) bl -~ S_ -~ 3 )
P(2> 12t(1 )2 0<tcics<i
1 g=t=%=5
12t 1 1 1
—H(l—S)Z—F(t—S)?, 0<§§S§t§1

Now for any z, zZ, w, w € R and ¢ € [0, 1], we get

‘@(ta Z,'LU) - @(ta E,u_})‘ <

< Litjlsinz - sinz| + L cost]]z — 2| + | 1! ol |
—_— SNz —SsIinz — | COS z — Z —
=80 80 40+ [w] 40+ ]| =
< oAt Sl
_402 z 40w w|.

1
Therefore, we have \ = 0 and computing
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8

1 1

1
:m / (t,s)|ds < / 8)2ds = ——.
telo ) 11F<>0 33/

< 1. Hence, the BVP (1) has a unique solution.

2
N ing Th: 3, that 2H*\ =
ow using Theorem 3, we see tha 1657
Further, as H*A £ 1 — X\ and A # 1 are also satisfied, hence, by Theorem 4, the given BVP (1) is

Ulam - Hyers stable and, hence, generalized Ulam —Hyers stable. Also it can be easily derived that
the given BVP is Ulam — Hyers — Rassias stable and, hence, generalized Ulam — Hyers — Rassias stable

by applying Theorem 5, because it is obvious that X = — # 0.

1A
Example2. We consider

3
3 2 t ¢D2z(t
Dha - 2FEOIEFDEOL

1206%(1+¢z@N+—PD%z@M)

2(0) =0, (15)
1 /1
H==z(=].
= 3(3)
3 1 1 . .
From the BVP (2), we see that o = ok d = 3’ ¥ = — and the nonlinear function
2
O(t,z,w) = + |2 + vl

120 €24 (1 + |z| + |w|)

is clearly continuous and the Green’s function is

o (1 \2 6t 1 1
201N 0 s 0<t<s<=<l
5(2 % 5 (1=s)%, Stsssg s
1
o (1 \2 6t 1 1 1
1 Y — —(1—-23%)2 t—s)2 0<s<t< =<1
Hit,5) = — 5<3 Q g2 -9, sestsg st
I'\s t 1 1
<2> SR S 0<><t<s<l,
5 2
6t 1 1 1
—3(1—3)2+(t—s)2 0<§§s§t§1

Now, for any z,z,w,w € R and t € [0, 1], we get

1
120e2t

2+ |z[ 4w 2+ |z+ |0
T+ z| +|w| 1+ |Z|+ |©]

|O(t, z,w) — O(t, z,w)| =

1|2+ Jz[+|w| 2+ |2+ [w]
T120|1 4 |2| Fw] 1|2+ |0
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RN N s R
120 | (1 + |2] + Jw])(1 + |Z| + |w])

RS |z — 2| + |w — 0
1200 (1 4+ |z] + Jw)(1 + |Z| + |w|)

|z — Z| + |w — w\‘

- 120

1z =2+ sfw — @l

=120° T a20" T
1 .

Therefore, we have A = 120 and computing
1
/ H(t,5)|ds < / H(1, / )ids—
= s s) ds =
e [ [H(ts 3/2 15v/7

0

Now using Theorem 3, we see that 2H* A < < 1, hence, the BVP (2) has a unique solution.

1
225./m
Further, as H*A # 1 — X\ and A # 1 are also satisfied, hence, by Theorem 4, the given BVP (2) is
Ulam - Hyers stable and, hence, generalized Ulam — Hyers stable. Also it can be easily derived that

the given BVP is Ulam - Hyers — Rassias stable and, hence, generalized Ulam — Hyers — Rassias stable

by applying Theorem 5, because it is obvious that X = 1"H* X # 0.
R
5. Conclusion. By use of Arzeld— Ascoli theorem, Lebesgue’s dominated convergent theorem
and Banach contraction principle, we have deduced the sufficient conditions for existence and unique-
ness of solution for our considered problem (1). Also under certain assumptions and conditions, we
have deduced the Ulam— Hyers stability results for the solution of the said problem by adopting the

definitions from [24].
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