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ON MODIFIED PICARD AND GAUSS - WEIERSTRASS
SINGULAR INTEGRALS

IMPO MOJOU®IKOBAHI CUHI'YJISAPHI IHTETPAJIN
INIKAPA TA T'AYCCA -BEUEPIITPACCA

We introduce certain modification of the Picard and Gauss — Weierstrass singular integrals and we prove approx-
imation theorems for them.

Beeneno nesky moaudikarito cuHrysisapHux inrerpasis Ilikapa Ta I"aycca— Beiiepiurpacca, a Takox /10Be-
JIEHO aNPOKCUMAIIiViHI TEOPEMH LIS LIUX IHTErpasliB.

1. Introduction. 1.1. Let LP = LP(R), with fixed 1 < p < oo, be the space of all
real-valued functions, Lebesgue integrable with p-th power over R := (—o0,+00) if
1 < p < oo and uniformly continuous and bounded on R if p = oco. We define the
norm in LP, as usual, by the formula

1/p
(/ |f(x)pdx> if 1<p< oo,
1Al =11 C) llp = R (1)
sup |f(z)] if p= oo,
TER

“+oo
where / E/ .
R —0o0

Denote (as usual) by wq(f; LP;-) and wa(f; LP;-) the modulus of continuity and the
second modulus of smoothness of f € LP, respectively, i.e.,

wi(f; LP;t) == sup [|ALfC)lp,  £20, i=1,2, (2)
0<h<t

where A} f(x) = f(z +h) — f(z) and A% f(z) = f(z +h) + f(x — h) — 2f(x).

It is known [1] that for f € LP, 1 <p < oo, and ¢ = 1,2 the following conditions
are satisfied:

i) wi(f; LPsAt) < (1+ N)w;(f; LP;t) for A\t > 0;

i) limy o4 w;i(f; LP;t) = 0;

iil) wo(f; LP;t) < 2wy (f; LP;t) for ¢t > 0.

1.2.  Let P.(f;-) and W,(f;-) be the Picard singular integral and the
Gauss — Weierstrass singular integral of function f € L, respectively, i.e.,

P.(f;z) = %/f(m +t)exp <|71i—|> dt, 3)
R
1 t2
Wilfia) = = [ flat e (L) @
\/47rrR/ 4

for x € R, > 0 and » — 0+ . Itis known [1] that these singular integrals are well
defined on every space LP and P,(f), W,.(f) withevery fixed r > 0 are linear positive
operators from the space LP to LP.

The fundamental approximation property of integrals (3) and (4) gives the following
theorem.

© L.REMPULSKA, Z. WALCZAK, 2005
ISSN 1027-3190. Ykp. mam. xypH., 2005, m. 57, N® 11 1577



1578 L. REMPULSKA, Z. WALCZAK
Theorem A [1-3]. Let f € LP, 1 <p <oo. Then
5 P
12 (f5) = fOllp < Swalfs L7 7),
7
W (f5) = FOllp < Gwalfs LP5V/7)

forall r > 0.

The limit properties (as 7 — 0+ ) of these integrals were given in many papers and
monographs (e.g., [1-3]).

1.3. The order of approximation given in Theorem A can be improved by certain
modification of formulas (3) and (4).

Let N := {1,2,...} and Ny := N U {0}. For fixed n € Ny and 1 < p < oo,
we denote by LP" the set of all f € LP which derivatives f’,..., f(™ belong also to
LP. The norm in these L?™ (n € Ny, 1 < p < 00) is defined by (1), i.e., for f € LP"
we have || f||p.n = || f|lp, where ||f||, is defined by (1). Moreover, for f € LP"™ there
exists norms || f*)||,,, 0 < k < n, defined analogously to (1). Clearly, LP* = LP.

Definition. Ler f € LP" with fixed n € Ny and 1 < p < oo. We define the
modified Picard and Gauss — Weierstrass singular integrals by formulas

@) (¢
Pron(fia) : ZT/Z]” (1) exp(' ')dt, 5)

( ) _
W,. n(f, : / J) (x — t)] exp (— (t 4rx)2>dt, (6)

for x € R and r > 0.

In particular, we have Pro(f;-) = P-(f;-) and Wyo(f;-) = Wi (f;-) for f € LP.

In Section 2, we shall give some elementary properties of integrals (5) and (6). In
Section 3, we shall prove two approximation theorems.

2. Auxiliary results. It is obvious that formulas (5) and (6) can be written in the
following form:

Pry(f;) Z ' 5 /f(j) (t + ) tje—\t\/rdt’ (5")
7=0 J: R
(-1 1 / ( _
Win ) = - 7) t + tj ¢ /4rdt 6’

forevery f € LP" z € R, and r > 0.
By elementary calculations, we can prove the following lemma.
Lemma 1. Forevery n € Ny and r > 0, we have

“+o0
1
Iy, = - / et/ dt = nlrm, @)
r
0

ISSN 1027-3190. Ykp. mam. sxypH., 2005, m. 57, N° 11



ON MODIFIED PICARD AND GAUSS — WEIERSTRASS SINGULAR INTEGRALS 1579

'
I = /tn€7t2/4rdt:
47r
0

1
P12k — ek if n=2k>2, ®)
4k lpkt1/2
% if n=2%+1>1,

where 2k — 1)1 =1-3-5-----(2k —1) for k € N.

Applying Lemma 1, we shall prove the main lemma.

Lemma 2. Let n € Ny and 1 < p < oo be fixed numbers. Then for every
f€LP™ and r > 0 we have

n (.7) n

1 Pranf5 )l < Z'fT'f’fj S O, ©)
j=0 ’ j=0

IWoon(f: )l < Z ”p I (10)

where I; and I3 are given by (7) and (8).

Formulas (5) and (6) and inequalities (9) and (10) show that the integrals P, (f)
and W,..,(f), with fixed n € Ny and r > 0, are linear operators from the space LP"™
into LP.

Proof. Inequalities (9) and (10) for n = 0 are given in [1].

If n € N and p = oo, then by (5'), (1), and (7) we get

I1f 9] 1 / Jo—|tl/r
| Prin (f Z T ogy | eVt =
:Z”f ”°°1 _an loor?, 7> 0.

§=0
If ne N and 1 < p < oo, then by (5), (1), (7), and by Fubini inequality [4] we get

n

—1) ) .

1 Prin (5 )lp = Z%/f(” (t+ ) e rar|| <
j=0

p

P 1/p

"1
gZ—Q ) (t+z) e U7 dt| da <
:0

n 1 ] ]
_2/ t|36—\t|/r / ‘f(]) (t+ x)’pdx dt =
R

i HpI —erHf(J)H r > 0.
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Hence, the proof of (9) is completed. The proof of inequality (10) is analogous.

3. Theorems. 3.1. First, we shall prove the theorem on the order of approximation
of f e LP™ by P.,(f) and W,.,,(f).

Theorem 1. Suppose that f € LP™ with fixed n € N and 1 < p < co. Then

1Prin(£37) = FO)llp < (4 2rwn (£ 2737), an
2
Wrin(F3) = FOllp < — (IZZ +T_1/2IZ+1) wi (f(”); Lp;rl/Q) <
< Ml(n)r"/zwl (f(");Lp;r1/2> for all r >0, (12)

where I is given by (8), Mi(n) is positive constant depending only on n, and wl(f(");
LP, ) is defined by (2).

Proof. We shall prove only (11), because by (5) and (6) and Lemma 1 the proof of
(12) is analogous.

We shall apply the following modified Taylor formula of f € LP" with n € N :

n g
) =31
j=0

7) .
J'(t) (LC _t)J +

n

(1‘—t) / n—1 n n
+(n_1),0/(1—u> {£fO ¢+ u@—1) = @)} du (13)

for afixed t € R and every z € R.
Since / e~ It=2l/"qt = 27 for r > 0 and z € R, we have by (13) and (5):
R

flz) = 2_17“ /f(x)e_‘t_mvrdt =Prn (f;z)+
R

+

1
i (UC—t)n \n—1a1 (n) —|t—z|/r
2r (n—1)! /(1 W' Ayaop [ () du | e dt (14)
R 0

for x € R and r > 0.
1. Let p = co. Then by (2) and the properties of wy (f; L°;-) we have
[Alan f P @ S wr (£ L% u(e ~ 1)) <
<o (§sLife = al) € (L r 7 e (70 L0r)
for 0 <u <1 and t,x € R. From this and by (14) we get
[f (@) = Pron (f52) | <

(n).Loo.
<oV oo il (s L1 / (lt — "+t - xl”“) e~ lt=l/r gy —

n!2r
R
wi (f0; L)

= T (In + 7"'71[”_;,_1)
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ON MODIFIED PICARD AND GAUSS — WEIERSTRASS SINGULAR INTEGRALS 1581
for z € R and r > 0, where I,, is given by (7). Applying equality (7), we obtain (11)
for p = oo.

2. If 1 < p < oo, then from (14) we deduce that

1
1 tr
f( )_ vn(fv ) VY] (l—u)nilAitf(n) (I—t)du e*\t|/rdt.
27“}!(11 1)! 0/

Applying (similarly as in the proof of Lemma 2) the Fubini inequality, we get

||f() - PT';n(f; )HP =

1

p 1/p
_ trelt/T (1 —w)" TAL f) (2 — ) du | dt| d
2r(n —1)! ‘ b w0 (@ " v

<
R |R 0

1 P 1/p
< ;/We—ltl/r / /(1—u)"—1A1 £ (@ — ) dul do
~ 2r(n—1)! ut

0

R R

1

1/p
< 2 /\t|”e_‘t|/r / 1—u)"” /‘Al AR x—t)‘ dx
r(

du | dt <
0

1

< 2r /\t|" —lt/r /(1 —u) "ty (f(”);Lp;|ut\) du | dt <

0

1 —|t|/r -1
< 2@l (f(”);Lp;r)/|t|”e ltl/ (L+r=Ht))dt =
R

1
= (In + 7 ' hy1) wr (f(") Lp;r) for r >0,

is given by (7). Using (7), we immediately obtain (11) for 1 < p < oco. Thus
the proof is completed.

where I,

From Theorem 1 and Theorem A we derive the following two corollaries
Corollary 1. Forevery f € LP™ n € Ny, 1 < p < oo, we have

rl—l%l-&- T ”Pr:,n(f; ) - f()”P =0,
Tli,%l+ Tﬁn/QHWr;n(f; ) - f()”p =0.

Corollary 2. Let f € LP" n € Ny, 1 < p < oo, and let f™ € Lip (o; LP)
with a fixed 0 < o < 1, i.e, wy (f(");Lp;t)

=O(t%),t > 0. Then
[ Prin(f5) = FO)llp = O(rn—&-a),

[Wein(f3) = FO)llp = O(r+/2)

for r > 0.

Remark 1. Theorem 1 shows that the order of approximation of function f € L?:

with n > 2 and 1 < p < oo, by the integrals P,.,,(f) and W,.,(f) is better than for
P.(f) and W,.(f) given in Theorem A.
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3.2. Now we shall prove the Voronovskaya-type theorem for integrals P,.,,(f) and

Wr;'rll’iliz).rem 2. Suppose that f € L°"*2 with a fixed n € Ny. Then
P () — f(@) = =Ly g g
+71 + (271)71 (n+ 1)r" P2+ () 4o (r"*t?) as r—0+ (15)
and
Won (Fi2) — flo) = XL 0 )

(=)"+1) (n+ 1)
(n+2)!

n+2f (n+2) ( ) +o (7’1+n/2) as T — 0+ (16)

for every x € R, where I is given by (8).
Proof. Fix € R and f € L>"t2 Then fU) ¢ L>*"+2-J ( < j < n, and by
the Taylor formula we can write

. nE270 p(j+) , ,
fO) = szi'(x) (t —z)" +j(t;x) (t — )" T2 (17)
i=0 ’

for t € R, where ¢;(t) = p,(t;x) is a function such that ¢;(¢)t"*2~7 belongs to L>
and lim;_, ¢;(t) = ¢;(x) = 0 forevery 0 < j < n. Using (17) to formula (5), we get

n n+2—j i
/e—|t—z|/rz (_.1)j Z f(j+)( ) (t _ x)j-{-i dt+

g! ~ 0!

—_

rn(fa )

1
il —|t— xl/r
+2 /
R

Further, by elementary calculations we have

2 -
R J=0

dt := Ay (z) + By (z), r>0. (18)

n ion
J

T) = 1 e~ lt=zl/r ) fO@) z)!

Ale) =5 [ I I

PO @)= 2 N (1)
(n+1)! O( j >(‘1)+

+f("+2)(33)(t—ﬂv)”+2 - <n+2
0

+

(n12) j )(—1)J’ dt

<.
Il

and

"D () (- 2) <& .
— MZG) (—=1) = f(x) for n € Ny,
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because

Moreover, for n € Ny we have

i (”}L 1) (17 = (=)™, :) (” j 2) (1) = (n+1)(-1)".

Jj=0 J
Consequently,
1
Ap(@) = f(z) 5 [ e I71mdt
ale) = @)y / ‘ +
(= sy 1/ 1 ft—al/
_ n x ’I"dt
oy (n+1)! 2 +
R
_1\n n+2
+( ]-) (n+1)f( (x)i/(t_x)n+267|t7$|/rdt.

(n+2)! 2r
R

Applying (7), we get for ¢ € Ny :

L[ = pysete=alirgy = i/ o lt/r gy —
2r 2
R R
1 —1)¢ 1 q
IR VPR EC
2 2
From the above we obtain
-1 -1
Arafi2) = fla) + L L o0

1 —1)"
+%(n S (g) s,

Denoting by

we have ®,, € L*> and lim;_, ®,,(t) = ®,,(z) = 0. Hence, by (18) we get
1

2r
R

B (z) = B, (t) (t — )" T2e =21/ g,

which by the Holder inequality and (5) and (7) implies that

1/2
|B ( )| < {217" / (t - $)2n+46|t1|/rdt} {PTO ((1)2.1:)}1/2 =

= (I a}? {Pro (82;2) 1%, v >0

Applying Corollary 1 and the properties of ®,,(-), we can write
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. 2, —_ B2 _
Tl_lgl_"_ PT;“((I)n’x) - (I)n(‘r) - 07

uniformly on R. From the above and (7) we deduce that

Bg(z) =0 (r"t?) as r— 0+ (20)

3

uniformly for x € R.
Collecting (18)—(20), we obtain the desired assertion (15).
The proof of (16) is analogous.
From Theorem 2 we derive the following corollary.
Corollary 3. Let f € L2 with n € Ny. Then for every x € R we have:
lim 7" P, (f;z) — f(2)} = fOFD (x), if n iseven number,

r—0+4

and
li%1+ r Y P (fi2) = f(2)) = —f"TV(2), if n is odd number.
The similar equalities hold for Wy.,,(f).
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