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INVARIANT MANIFOLDS
FOR COUPLED NONLINEAR PARABOLIC-HYPERBOLIC
PARTIAL DIFFERENTIAL EQUATIONS

IHBAPIAHTHI MHOI'OBH/IH IIOB’ABAHUX
HEJIIHIMHUX ITAPABOJIIKO-TTIIEPGOJIIMHUX PIBHAHD
3 YACTUHHHUMH ITOXTTHUMU

We consider an abstract system of parabolic-hyperbolic coupled nonlinear partial differential equations.
This system describes, for instance, thermoelastic phenomena in various physical bodies. Several results
on the existence of invariant exponentially attracting manifolds for similar problems have been obtained
earlier. In the present paper, we prove the existence of this invariant manifold under less restrictive
conditions for a wider class of problems.

Po3ryisinyTo abcTpakTHY CUCTeMY napaboJIiKo-TinepooJIiyHIX MOB’ 13aHUX HEJIIHIHHUX PIBHSHD 3 Yac-
TUHHUMU noxigHumiu. Lls cucrema ommcye, HaNpUKJIaz, TEPMOINPYKHI SABUINA B Pi3HUX (PI3UYHUX
Tizax. JesKi pe3yibTaTu 010 iCHYBaHHS iHBapiaHTHUX MHOTOBH/IIB, III0 €KCIIOHEHITia/IbHO MPUTATY-
I0Th, /IS 33/1a4 MO/IGHOro TUIMy 0yJI0 OTPUMAHO paHille. B gaHiil po6OTi HOBE/IEHO iCHYBaHHSI LILOT'O
iHBapiaHTHOI O MHOT'OBH/1Y 32 MEHIL OOMEXKYBaJIbHUX YMOB /1J1s1 O1/IbII LIMPOKOI'0 KJIacy 3aiad.

Introduction. We consider an abstract system of coupled parabolic-hyperbolic
differential equations

I'w, + Aw = F(w,w,,0), t>0, in H, (D
0, + NLO = G(w,w,,0) + K(w,w,), >0, in E, (2)

where H and E are infinite-dimensional separable real Hilbert spaces and n is a
positive constant. We assume the following hypotheses to hold.

Aj. T and A are linear positive self-adjoint operators in H with domains D(I")
and D(A), respectively, such that

D(AIIZ) - D(l"”z).
A,. L is a linear positive self-adjoint operator in E with discrete spectrum, i.e.,
there exists an orthonormal basis {e;} in E such that
Lek = }\,kek, 0< )\‘IS;\’ZS"" lim 7\,]( = oo, (3)

k—>o0

Aj3. F and G are nonlinear globally Lipschitz mappings
F: D(A"?)x D(I'"?)x D(L*) — [D(F”Q)]*,
G: D(A"?)x D(T?)x D(L*) — E

for some 0 <o <1, i.e., there exist positive constants M and Mg such that

7001, = F{, #1 )] ypeyy <
< {470 o), +[20n -} +[0-B2) T @
and
H G(wg, wy, 0) — G(Wo, wi, é)HE <
< MG(HA1/2(WO - fvo)HZ ]| 2w, - fvl)HZ + H 10 — é)Hi)m~ "
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A4. The mapping
K: D(A"?)x D(T'"?) x [D(LB)]*
possesses the property

| P (K (o, w1) = K(ig, )|, <

< MK(HAI/Z(WO - WO)HZ #7172 - wl)Hil)l/z o

forsome 0 <P <1- 0, where My is a positive constant.

System (1), (2) is an abstract representation of certain models of thermoelasticity
(see, e.g., [1]).

The goal of this paper is to find sufficient conditions for existence of asymptotically
stable invariant manifold of the dynamical system generated by (1), (2) and relying on
this fact to formulate a reduction principle for the system considered. This principle
allows us to show that the long-time behavior of system (1), (2) is completely
determined by a nonlinear elastic system and (possibly) a finite-dimensional heat-
conduction equation. For a discussion of a general idea of reduction principles we refer
to [2].

A similar problem for coupled parabolic-hyperbolic partial differential equations
was studied in [3] (but under rather restrictive hypotheses in the right-hand sides) and
in [4] under the condition I = [. For instance, in [4] it was proved that the
exponentially attracting invariant surface of the form

M = {(w,w, ®w,w)): (w,w) e D(A"*)x D(T''?), ®(w, w) € E} (7)

exists provided that

n > %[MF A MG +23Par ). ®)
where A, is the minimal point of the spectrum of L.

Our goal is to find less restrictive condition on the constants of the problem which,
nevertheless, allows to prove reduction principle. Instead of relations between the
diffusivity parameter 1 and Lipschitz constants in (4) — (6), we obtain a spectral
condition. It allows to dispose of any conditions on the relation between 1 and Mp.
In some cases (for certain parameters o and [ and space E), we also have no
conditions on M;/m and Mg/m.

The paper is organized as follows. Section 1 contains the statement of our main
result on the existence of invariant manifold (Theorem 1), in Section 2 we prove some
auxiliary lemmas and the main theorem, in Section 3 we apply the results obtained to
some parabolic-hyperbolic problems.

1. Statement of main result. Rewrite system (1), (2) in the following way:

d

=V + AV = BV), t>0, ©))
dt

where V= (w(r), w,(2), 9(1))T,

0 -1
A=|T"'A o0 0
0 0 nL

is an operator with the domain D(A” 2) X D(Al/ 2) X D(L), and
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1686 T. B. FASTOVSKA

0
B(V) = I 'F(w, w,,0)
G(w, w,, 0) + K(w, w,)
We consider equation (9) with the initial condition

Ve =% (10)

in the scale of spaces H s = D(A”z) X D(F”z) x D(I°) (where ¢ € R) equipped
with the norms

2 2 2\l/2
Ve = ([ wolf, [T [, + 2200 )
H H E

where V= (wg, w;, 8). The linear problem
d

=V +AV =0 (11
dt
generates in the spaces #H 5 C,-semigroup
U 0

A t
M = (O enLl)’ (12)
where U, isa C,-group in the space D(Al/ 2) X D(l"l/ 2) generated by the equation
I'w, + Aw =0, >0, in H. (13)

Definition 1. A function V(t) is said to be a mild solution to problem (9), (10)
on the interval [0,T] if V(t)ye C([0.TEH o 10) N L([0.TLH ), V(0) =V,
and for almost all t e [0, T]

t
vy = ¢V + [ TOB () dn.
0

The contraction principle allows to establish the following result on the existence of
mild solution to (9), (10) (see [4] for the case ' =1):
Proposition 1. Let Vy € H ,_,, and let one of the following assertions take

place: a+B<1 or a+B=1 and Mg <m, where Mg is the constant
from (6).
Then there exists the unique mild solution of the Cauchy problem (9), (10) and,

forany G such that o — % <0< min(l -B, %),

V, e C([0, T, #H ). (14)

It follows from Proposition 1 that for any o — % <0< min (1 -B, %) problem (9),

(10) generates a dynamical system (% 5, S,) with the evolution operators S,V = V(¢),
where V() = (w(r), w,(¢), 8(2)) is a mild solution to (1), (2) with the initial data V =
= (wo, w1, 0).

Let P, be an orthoprojector onto lin {el, €ry.nns en} and Q, =1- PB,, where
ne N and {¢;} isan orthonormal basis of eigenfunctions of L. We can define such
orthoprojectors in each of the spaces D(L°) due to the fact that these spaces can be
S . = 242
identified with the spaces of formal rows {Zkzlckek: 2k=1ck AL < oo}. We also
denote Fy=0 and A, =0.
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Now we state our main result.

Theorem 1. Let in addition to hypotheses A; — A, the following spectral
condition hold:

As. There exists Ne NU {0} such that

i 2l +15) | 2

(15)
Ay +hy Ay — Ay A=Ay

n >

We define the orthoprojector

I 0 0
P=|0 I 0
0 0 Py

in the space H and the orthoprojector Q = I —P. Then, by any © satisfying
the inequality o — % <0< min(l -B. %), there exists the function ®@: D(Al/z) X
x D(T'?) x PyD(L°) = QyD(L?) such that
| 2(@W) - d(Wy)|,. < Col W= Wa,,_ (16)
forany W, Wy € H, where Cg is a positive constant. The surface
M = {(w.W.0+D(w,w,0): (w,w,0)e D(A"?)x D(T"?) x PyD(L?),
D(w, w, 6) € Oy D(L)}, (17)

is invariant with respect to the semigroup S, in the space Hg, i.e., SM < M
and exponentially attracting, i.e., for any mild solution V(t) to problem (9) there
exists Vy; € M such that

[ V) - SV |y, < C1+1Vl5) (18)
0
and
V) = SVae s < CeM(1+]Vy ), >0, (19)
Ay +A
where L= n%.

Remark 1. In the case of N = 0, condition (15) coincides with (8) and the
manifold M given by (17) transforms to form (7). Therefore, our Theorem 1 is a
generalization of the result from [4] for the case I' # 1.

We also note that if o= =0 and Ay, — Ay — oo, there exists N, such that
condition (15) holds for any N = N,. Thus, in this case an exponentially attracting
invariant manifold exists for any choice of parameters of the problem.

2. Construction of the invariant manifold. To construct an invariant manifold,
we consider (following [5]) the integral equation

V() = By[V1(), t<0, (20)

where By[V] = Jy[B(V)]. Here, Jy[V] is as follows:
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1688 T. B. FASTOVSKA

0 t
TylV1@) = W = [ PPv@dr + [T Pov(ndn 1)
t

—oo

and We PH .
We seek the solution of equation (20) in the space

Y, = {V: Ve X ((—e, 015,
where NAy <UL < NAy,-

To prove Theorem 1, we need some preliminaries.
Lemma 1.

H U, (wy, W])T H D(Al/z)>< D(r1/2) = H(Wo’ Wl)T HD(A”Z)xD(F”z)’ te R, (22)

teR, 020, (23)

He_nLZPNGH ) < k‘fven)""‘t‘HPNG\E,

D(L°

teR, o0<0, (24)

He—nLtPNeHD(LG) < [ (15\1971“”[+7»(15€_M”]HPN9\E,

_9 1 ° My
‘8 ?[tQV‘G < ncl:((;) +(T]7\N+1)G:|€ NAN II‘QV‘O’ t>0, 0>0, (25)

e MoV < e Mgy 150, o<0. (26)

The proof is standard. We refer to [5, p. 88] and [6, p. 425] for details.

Lemma 2. Let a positive self-adjoint operator L be a generator of a strongly
continuous semigroup ¢ =" in a Hilbert space ©. Assume that Amin > 0 is the
minimal point of the spectrum of L. Then, for any 0<B <1 and pn=0, the
mapping

t
- = [0 +pnfP fyar

—oo

is continuous from LZ(R; 9) into Lz(R; D(LI_B)) and the estimate

7\’2

min

2(a+P)
[l +un*sBina ;dr < Croin W77 [lra| ar
R R
holds forany -B<o<1-f.
For the proof of the lemma we refer to [4].
Lemma 3. For every W € PH s and o € [0,1], the operator Iy is
continuous from Yy into Y5 and, forany Vi, V, € Y, the estimates

1 23
[ Iw[PVi]= Tw[PVa]ly, < (quu—TI;]kNJPVl - PWly, 27)
and
AN+
+
| Iwlovi]- JW[QVZ]‘YG = m\QW -0V, ‘yo (28)
hold.

Proof. First, we prove relation (27):
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1/2
0 /

O 2
Jw[PV.]1= T [PV- < HMVM Py Py | dr| dr|  +
w 1 w 21y 1 210

172
0 /

O 2
+ 2% j( ) R A Odr] dt

Each of the integrals on the right-hand side has the form JR (e f)(1)dt, where

e(t) = ¢ for t<0 and e(t) =0 for r > 0. Hence, using the Fourier transformation
and Plancherel formula, we get (27) (for a similar argument see also [4] (Lemma 2.2)).
Similarly, using Lemma 2, we obtain

| Tw[OVi] = Jyw[OV;] ‘Yo p

1/2

2
0f( t
< % J. [ J mL)° e~ (NL-W(t-1) ut 10V, - OV, Od‘c] dt <
Ul

— oo\ —oo

}VCISVH
Ny —H
It is easy to see that relations (27) and (28) entail continuity of Jy,.

Lemma 4. For every W € PH , the operator By is continuous from Y,
into itself and

‘Q‘/I_sz‘y()'

| B Vil = B V2, < (142577 + 7)W= Wa | + p| Y = Valy,

forevery Wi, W, € PH , and Vi, V, € Y,, where

Mg VMg +7J}‘V+BMK N Ay 1M N MMk
B p-mAy  p-mAy  MAyg—p MAyy —u

Proof. We canrewrite By, in the following way:

pw) =

BylV] = JW(O, F_lF[V],PNG[V]+IB(nL)B[L_BPNK[w,w]])+
n

+ nlﬁ(o 0, e‘“’JLB(EWL_BQNK)) + (O’ 0, e_ng(erNG[V]))’
where
L =nL-ul.

Consequently,

‘Bwl[vl]—1—%{/2[‘/2]‘1,(x <

172
0
_ 2
< {J‘[)ﬁ—ce(u—nkl)t +7J5¢V—0 oM nkN)t] | Py6; — Py0, ESJ +

—o0

0 1/2
2 — — 2
+[Je M (wy, ) = (wp, ) J +

ISSN 1027-3190. Ykp. mam. sxypn., 2005, m. 57, N° 12



1690 T. B. FASTOVSKA

+

JW(O, I~ FIV;], PyGIV,] + #(n LP[LPPK wy, W, ]]) -

- JW(O, T AV, 1, PyGLV,] + n—lﬁ(n LP[LPPyK w,, wz]])

+
Ya
0 1/2
1 - _ _ P2
+ nB[ [ 78(eH L POy (K [wy, ] = K [wy, )| J +
0 1/2
2
+ [JJO(e“’QN(G[VI]— GIv))| J :
It follows from Lemma 2 and (6) that
1/2
0 o+
1 - _ ) Mg X
nﬁ[_'[o JB(EWL POy (K wy. ;] - K[w,, Wz]))‘ J = WIN_H“M ~Wly, -
(29)
Similarly, we get from (5) that
0 172 Y
2
[17°(eon@vii-av))[ | < =221V -wl, . (30)
o MAyi — 1 “

The statement of the lemma can be easily deduced from (27), (29), and (30).

11(7¥N +}"N+1)
2

Lemma 5. Let 1= and hypotheses A| — A5 hold. Then equa-

tion (20) has the unique solution V(t; W) in the space Y,. For any & such that

o< min(l -B. %), this solution possesses the properties

V(t) e C((—oo, 0], H 5), 31
and
sup{e! |V, =V |o | < Col Wy = Wal, (32)
t<0
for any Wy, Wy € PH ,, where Cg is a positive constant. Moreover, for every
s € (—o0,0) and for almost t € [s,0], the function V(t) satisfies
t
V() = e NIy + j;;‘““‘”%(vm»m. (33)
S

Proof. By Lemma 3,

Ay +A
|By[Vil- By[Va]ly, < p((NZN))v ~Valy,

2

contraction principle we have that equation (20) has the unique solution in Y.
Relation (33) can be obtained by direct calculation and (31) follows from this
representation, therefore, we prove here only (32). As

Ay +A
for every V;, V, € Y,. Since hypothesis A5 holds and p(n(NNH)J <1, by
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Vi- Vs = By [Vil()— By [Val() = (W = Wy) + [Bo[ V] () — Bo[ V] (1),
we have

"' | PV, - PV, s < M| (wy, wy) — (wy, W2)HD(A”2)><D(F”2) +

0
+ TN 0, =0, [0y + My [TV MV = Vs | dT+
t

0
+ (Mg Ay + M AGTP) [ VED M Y~ | d
t

0
+ (MG A + Mg 7»?“3) J.e(“_nxl)(t_r) MV -V, dt.
1
Hence, using the Holder inequality, we get

0 172
sup{e" | PV, — PVa |} < [W =Wy + sup MF[jez“("” er +
t<0

t<0 t

0 12
+ (MG A+ Mg l‘j’\fﬁ) [J‘eﬂ“_m"v)“_” dr} Vi =Valy +
t

0 1/2

+ (MG A + My 7»‘1’+B)[Ie2(”_“7”)”_” drj Vi-W |, -
t

This estimate implies that

sup{e"' | PV — P3|} <
t<0

My Moh%+ M MghS + MKN};B] v,
Y,

< W =-W, |+ ‘ 7 /
‘ 1 2‘0 (\/2'_1 \2(u_n}\,N) \2(IJ~_T]7\.N)

(34)
Similarly, we obtain
t
MOV - QW |y < Mg [ |00 T Y, - vy | dr +
t
+ My [[| 7P| kT Py, - PV, |, dt.

Therefore,

sup{euf‘QV] -0V, \G} < gV, -V, ‘Ya + a,(1) sup{ellt‘PV1 - PV, \G}, (35)

t<0 t<0
where

12
a)(t) = Mg jHLGe_(nL_“)('_T)QHZ sl

—oo

a,() = My jHL"*Be*(“L*“)(’*”QHdr.

—oo
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Using Lemma 1, we have

al(t) <

t
2 —W)(f—
2(1’]7\,N+1) 662(T17\.N+1 W T)dT+ J‘Z(IS

1/2
20

) ez(nkml—u)(t—r)dr] <
T

Y (117»1\/ 1)20 ; 1/2
s 7? . + 2 1-26 =4q (36)
N° [ MAys —0 MAyy —U

N

forany 0<o <1, where x, = s° I:T_ e "dt for 0<s<1 and ¥, =0. Since

K, >0, we can also estimate a,(t) < q; for 6 <0.

Similarly,
t c+f
Mg o+p  (o+P (MAyar —W(E=T)
a2(l‘) < M_J;o((an+l) +([-T) JE‘ dt <

+p

My Ks+B + (TVVNH)G = 4 37)

—_ _ = 2-
n°*P (nKNH - u)] @B " Ay —u

From (34) and (35) we obtain

sup{e"'| Vi = Va|o} < 1+ a)|W = Wy, +

t<0

o c+B c c+P
+ (al (a +1)( Mg + Mgy + Mghy + Mghi + Mgk, J]Vl ~ W), (38)

V20 J2m-mAy) N2 -nhy)

It follows from Lemma 3 that
Vi=Waly, < A=p) (142 + 407 W = Wal .

Hence, (38) implies (32).
Proof of Theorem 1. We define the mapping
p 9)
oW) = [ QG+ K (w, W)dT = V(0) - W,

—o0

where V(¢) = (w, w, 0) is the solution to (20). Relation (32) and standard arguments

(see, e.g., [5]) imply that the manifold M generated by @ is forward invariant and
possesses the property (16). To prove the tracking properties, we rely on the idea

applied by Miclav¢i¢ [7] in the theory of inertial manifolds. We extend the mild
solution V(#) to (9), (10) on the semiaxis (—oo,0] by the formula V(r) =

= (Wo, Wi, (1 + ‘ t ‘A)_leo)
Consider the function
= V(1) + Bpy(o)[V1(D), +<0,
Zy(t) = L
e [=V(0) + Bpyo[V1I(0)]. >0,

in the space
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Z = {Z(t): 1Z|2 = jez“f\za)@dt < oo}.

—oo

It is easy to see that

IV, < ClV VeC((—=,0],4,)

and

1Zol, < C1+]Vp,). su]g{e“’\zo s} < C1+1%5)
te

for any o such that o — % <o< min(l—B, %)

Define the integral operator N : Z — Z by the formula

oo

RIZI) = Zo(t) - [ TOPBV(D) + 2(1) - BV (1)) dr +

t

t
+ [ MIGBV(n) + Z(m) - BV(D)]dr.

—oo

The reasons analogous to given in Lemma 4 for the operator By [V] lead to the
estimate

INZ]-RDl, < 9z -2,

forevery Z,, Z, € Z, i.e., N is a contraction in Z. This implies that the equation
Z = N[Z] has the unique solution Z € Z and the estimate

Zl, < -7 Zl, < C(1+]Vy) (39)
holds.
Using the same arguments as in Lemma 5, we obtain
sup{e"'|Z|s} < C(1+|Vy ). (40)
teR

It follows from (39) and (40) that V(¢) + Z(¢) is the desired trajectory emanating from
V' = V(0) + Z(0) [4].

In the case of o < min(l -B. %), we can apply the results obtained to reduce
system (1), (2), to the following system:
T'w, + Aw = F(w,w,,v+®(w,w,,v)), >0, in H, 41)
v, + NLv = PyG(w, w,, v+ P(w, w,,v)) + PyK(w,w,), t>0, in PyE (42)
with initial conditions
Wlio = Wo»  Wil_o = Wi, vl = o 43)
Denote
B (w(1), w, (1), v(t)) =
0
= F(w(T), w,(T), v + ®(Ww(T), w,(T), 1(1)))
PyG(w(T), w,(T), v + D(W(T), w,(T), 1(T))) + PyK(w(T), w,(T))
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A mild solution to this system on the interval [0, 7] is a function

W) = (w(e), w(1).v) € C([0, T], D(A"?) x D(T"?) x PyD(L*)) (44)
such that
L 2
[ @), wyo,v)|[_dr < < (45)
0
and
WO ¢
W) = S,|w, |+ jst_rB‘D(w(r), w, (1), (1)) dT
Vo 0

for almost all e [0, T7.

Proposition 2. Ler (wg, wy,v) € D(Am) X D(Fm) X PND(LOH/Z) and let
conditions of Theorem 1 hold. Then problem (41) — (43) has a mild solution. If
o< min(l—B,%), then the solution is unique and any mild solution W) =

= (W, w,, ) fo this problem generates the mild solution to problem (1), (2) by the
Sformula
(w(0), w, (1), 8(1)) = (W(t), w, (1), v+ P(W (1), W, (1), V). (46)

Proof. Let V(@) = (w(r), w,(t),0(r)) be a mild solution to (9) with initial
conditions V, = (wy, wy, vy + ®(wy, wy, vy)). The property (44) holds by
Proposition 1. We get (45) from the fact that PV (¢r) = W(r), QV(¢r) = ®(W(¢)) and

T

T
j\QV(r)@dt < j\V(t)@dz < oo,
0 0

consequently, W(f) is a mild solution to (41) — (43).
Let W = (w,wp.v1), Wy = (wy..05) € D(A"?) x D(TV?) x PyD(IL*). 1f

o< min(l -B, %), we use the Lipschitz properties (16) and (4) — (6) to get
2
[BPW) -8y, <

< [(MF + Mg || L2Py ) (1+ C2) + My | L2¥P Ry H] x

IN

2 — — 2 2
X (lwy = wa a2y + 17 = ey + oy = v e
< (MF + Ay Mg + x‘;‘;BMK)\ﬁ(l +C) | Wi = W, [

The uniqueness of the solution to reduced system and relation (46) follow immediately
from the estimate obtained.
Theorem 1 and Proposition 2 allow us to obtain a reduction principle for problem

(1), (2). The point is that by Theorem 1 for any mild solution V(¢) = (w(2), w,(r), 6(z))
to problem (1), (2) with initial data V, € # 5, where o — % <6< min(l _B, %)

there exists a mild solution W(r) = (w(z), w, (1), v(r)) to reduced system such that
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HAI/Z (w(t) - v;,(t))HiI + HFl/z (w, (1) — vT/t(t))HZ +

+ [[61) = v() — D(W(2), W, (1), VD) [[3. < Ce™!

forany >0, where C, L > 0. Therefore, under conditions of Theorem 1, the long-
time behavior of solutions to (1), (2) can be described by solutions to the reduced

problem. Moreover, if o < min(l —B,%), then by Proposition 2 every limiting

regime of the reduced system appears in system (1), (2).
3. Application to the thermoelastic models. In this section, we give examples of
several thermoelastic models with various o and P to illustrate the results obtained.
Consider a one-dimensional Mindlin — Timoshenko system

PV, + Bov, — OV + LoV + Wou, + 600, = T(v,u,v,, u,, v, 1,,6,0,),
p(xX)u, + Bru, — Wottye — Uovy = D, u, vy, uy, v, 4,0,0,), >0, xe(0,1),
0, — Mo, +0ov, = Gv,u,v,,u,v,u,6,0,),

with Dirichlet boundary conditions
20,8) = v(l,1) = u(0,1) = u(l,t) = 6(0,7) = 6(L,1) = 0.

This system describes the dynamics of heat conductive elastic beam. Here, v(x,t) and
u(x, t) are, respectively, the angle of slope of the transverse section and deflection
averaged with respect to the thickness of the beam, ©O(x,f) is the temperature
variation, p(x) is a strictly positive continuous function. For details concerning

Mindlin — Timoshenko hypotheses see [8]. We assume that 7, D, G: R® > R are

globally Lipshitz functions. Denote w = (v(x, 1), u(x, t))T and rewrite the system in
the following way:

p(w, — dgw,, = F(w,w,,w,,6,0,), >0, xe(0,]),
47
0, - Mo, = Gw,w,,w,,6,0,) — K(w,w,).

Note that system (47) satisfies conditions Az, A, with o= = H = [LZ(O, l)]z,

1
2 9
E= L2(0, [), the operators I, L and A are givenby T'w=p(x)w, A = -0 B)ZC and
L=-0°

To use Theorem 1, we should check the spectral condition (15). The spectrum of

2
the operator —8)2( with the Dirichlet boundary conditions has the form {(Tl:ln) :
ne R}, therefore, (15) looks like

2% M, 2AM;  2Mg(2N* +2N +1)
+ +
N (2N? +2N+1)  nm NEN +1)

This condition holds, for instance, if each item is less then % The first one tends to
zero if N — oo, thus, we can find N, € NU {0} such that condition

20> My,

N (2N + 2N +1) <

1
3
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[3M% 1

1
2 ¥ \ nn® 4
provided r>0 ([r] denotes the integer part of r), otherwise, N, =0. Therefore, we
exclude My from the condition on the constants of the system given in [4]. Thus, we
have obtained the following result.

Proposition 3. Assume that conditions on the parameters of the problem (47)

nn
6 M,

holds for any N > N,, namely, Ny =[r] + 1, where r = -

l <

and
Mg _ N+
N 2N?>+2N+1

hold for some N > N,. Then, for any & such that 0 < 6 < %, there exists the

mapping @ : [L*(0, 1)]2 x I20,0) x PyH3%(0,1) = QOyHZ®(0,1) holds and the

surface (17) is forward invariant in H 5 = [L2(0, l)]2 X LZ(O, l) x ch((), l) and
exponentially attracting.

The case of oo =0 and B =0 in conditions Az, A, is exemplified in a system
appearing in classical linear two-dimensional thermoelasticity (for the statement of the
problem see, e.g., [1]). We use the well-known decomposition of the displacement
vector into potential and solenoidal part v = Vw + rotu, where w, u are scalar

functions and the rotation of u is defined by rotu = (d,u, —0;u). The function u
satisfies a linear wave equation and the problem is reduced to the following coupled
system:

Wy — OgAw + 8,0 = 0, >0, xeQcR?
0, — NAO + dAw, = 0,
with Dirichlet boundary conditions. For this system, condition (15) has the form
28, . 28(Ay4y +Ay)
ﬂ(kzvﬂ + 7\1\7) n()‘*NH - 7"N)

Due to the fact that lim A,y = oo, the first item tends to zero as N — e and there
N—oo

< 1. (48)

exists Ny € N such that the first item in (48) is less then % Hence, we obtain the

existence of the mapping @: [L2(£2)]2 x [2(Q) x PyH**(Q) — QyH*°(Q) for any

—% < 6 <0 such that surface (17) is forward invariant and exponentially attracting

provided that
28(7\'1\]0*'1 * XN())
n(}”\/o+1 - XN())

In two cases considered, Theorem 1 gives us a good sufficient condition for
establishing the existence of invariant manifold if My is large and My is small.
Then condition (8) may not be satisfied, while condition (15) holds.

1
< —.
2

It appears that, in the case of o + f =0 and a rectangular domain Q in R?,
Theorem 1 holds for any choice of the parameters of problem (1), (2). Consider a two-
dimensional problem
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p(xX)w, — agAw = F(w,Vw,w,,0), >0, xeQc RZ,
0, — NA0 = G(w, Vw, w,, 0),
with globally Lipschitz functions F and G. Here, H = E = L2(Q), the operators T,

L and A are givenby I'w =p(x)w, A = —0yA and L = -A, and the spectral
condition turns into

My, Mg 2My
ﬂ(kzvﬂ + 7‘N) Tl(7~1\/+1 - 7»1\/) 11(7\N+1 - 7‘1\/)

As it have been already note, the item including M tends to zero when N goes to

1 (49)

l
infinity. We assume that Q = (0,7) x (0,/,) is a rectangle with l—l rational. For
2

such form of the domain, there is a spectral gap limit result, i.e., Ay — Ay =

when k — oo for some subsequence N(k) (see [9]). Therefore, by the choice of N,
the expression on the left-hand side of (49) can be made arbitrary small and we
establish the existence of invariant exponentially attracting manifold in the space #

for —lS(5<l.
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