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ON THE SMOOTHNESS WITH RESPECT

TO TIME VARIABLE OF GENERALIZED SOLUTION
OF THE FIRS INITIAL BOUNDARY-VALUE PROBLEM
FOR STRONGLY PARABOLIC SYSTEMS

IN THE CYLINDER WITH NONSMOOTH BASE

IIPO TJIAJKICTH BIITHOCHO YA COBOI 3MIHHOI
VY3ATAJILHEHOI'O PO3B’SI3KY IMEPIIIOI HOYATKOBOI
KPAMOBOI 3AJAYI [1JISI CUJIBHO HAPABOJITYHUX
CHUCTEM HA IIMJIH/IPI 3 HEI'JIAJJKOXO OCHOBOIO

We consider the first initial boundary-value problem for strongly parabolic systems in infinite cylinder
with nonsmooth boundary. We establish conditions for the existence of generalized solutions, an
estimate of this solutions, and an estimate of derivative of the solution.

Hocuijpkyerscs nepina No4aTKoRa Kpaitona 3aj1a4a JIJIs CHJILIIo napaboJliuIHX CHCTeM IIa IecKiHyen-
oMy IHJIYIPI 3 Helnajikolo Mexelo. BeranonJiello YMOBH icCIIyBalllIs ysaraJibIIelioro poss'M3Ky Ta
Horo oIilky, & TAKOX OIilKY MoXijiiol posn’ssKy.

1. Introduction. The boundary-value problems for a system of partial differential
equations in domains with smooth boundary in nowadays are well studied. General
boundary problems for elliptic equations and systems in domain with nonsmooth
boundary were considered by V. A, Kondratiev [1], V. G. Mazya, B. A. Plamenevsky
[2]. In [3, 4], the single solvability of boundary problems for parabolic equations was
established and it was shown that if the right-hand side, the initial, and the boundary
functions are infinitely differentiable, then the solution is also infinitely differentiable.

In this paper, we consider the first initial boundary-value problems for strongly
parabolic systems in infinite cylinder with nonsmooth boundary.

2. Smoothness of generalized solutions. Let Q be the bounded domain in R",
n22, and Qr=Qx(0,7), 0<T<eo,

We introduce some following spaces:

Hf‘k(QT} is a space which consists of functions u = (uy, ..., u;) from L,(Qq)
such that they have generalized derivatives up to order [ with respect to x and up to
order k with respect to ¢ belonging to L, (Q7). The norm in this spaces is defined as
follows:

lulgie,, = {f Y, | D%l dxar + | Z |uJ[ d.xa‘rJ “,

Qrlal=0 Qr j=1
where
¥ o 5 i
o = a |2 o _ a 2 _ ajﬂ'
0% = X, |P%, D% = g |l = Zl =]

H"¥(Q7) is the closure in H"¥(Qj) of the set consisting of all functions infinitely
differentiable in Qg which vanish near S7=0Q x (0, T). Let T =, We assume

that Q_=Q x (0, =) - H“k(e'w, Q..) is the space consisting of all functions u(x, t)

Py

W a|<l, 1<iss, 1<j<k

which have generalized derivatives D %u;

satisfying
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! k

2 = 2 _

luligreev gy = j > | Dule M dxde+ [ Y, |Hrj| e M dxdt < oo
Q. laj=0 Q. i=l1

Ak, Q..) isaclosure in H"*(Q.) of the set consisting of all functions infinitely

differentiable in Q_ and vanishing near S_=dQ X (0, =).

‘Let e=const>0, L7(0, =; &, L, (Q)) be the space consisting of all measurable
functions with the norm

[l oy = essep et 0

L@
In the domain Q_, we consider the first initia] boundary-value problem for the
following system:

m m

=™ [ Y, DPa,(x,)Du+ Y, a,(x, D u+ a(x, :)u} —u = flx 1), (1)
[Phlgl=1 Ipl=1

where a,,, a,, a are the bounded measurable complex-valued s X s matrices, a,,=

= (_])IPI'!'IQ] Apg» Gpgs [p | = | g] = m, are uniformly continuous in Q_ = Q X [0, ).

We assume that the considered system (1) is strongly parabolic, i.e., for each &e

e R"\{0} and n & CS\{O}, we have

- 2 2 =
> ap(nNEPEMTA > wolE P, (xp)e Q.. @)
[pl=lgl=m
where &= EP .. EPn 1, is a positive constant.
Let (2) be satisfied. For any function u(x, £) from H™%(e™™, Q.), the inequality

r mn
2 (- 1)-‘”+|f¢’| Ia; /1%, :)D‘quPudx + 2Re z apD"’ude >
[phlgl=1 |pl=)

1?0”9%[ dx — A j]u| dx 3)

holds, where [, =const >0, A| =const > 0. This statement can be proved on the
basis of the Garding inequality [5].
The function u(x, t) is called a generalized solution of the first boundary-value

problem for the system (1) in the space H™(e™ Q) if u(x,0)=0 and for each
T>0 we have

m —
| [ w+ Yy, )"l pIuDPy +
Qr [pllgl=1

m ’
+ Y )" 'a,DPum + (—l)’“—lauﬁ} dxdt = [ fRdxdt )
| pl=1 Qr

for all functions m € }‘;”” 1(Qy) satisfying n(x, T)=0.
%pg O < 1<|pllg|sm, (xT)e @
a 1 at -y, ¢ - 2 e ] 1 ‘oo

Then there exists a positive constant v, such thatif fe LT(0, e; g, L,(Q)) then

Theorem 1. Let

a,a
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80 - NGUYEN MANH HUNG, PHAM TRIEU DUONG

the first initial boundary-value problem for system (1) has a unique generalized
o Y '
solution u(x,t)e H™ (e M0*® [(Q)) and

I[u"Hml(g—Wﬂ"'Elf Q) = C”f”L (0, e Elxz(n))’

where C=const is independent of u, f.
Proof. Suppose that the problem has two solutions u;, u,. We denote u =1u —
—u, and set

<t < b
NG 1) = ulx, t)dr, 0<t < b

: A
O Th—

then (4) takes the form

m R
= [nfdxds + [ 3, 1" Pla,, Din, D +
Q, Q,LIpllgl=1

+ D" 3 e, DA + (—D”“‘anfﬁ] dxdt = 0.
Ipl=1

Let aj =a—(—1)"AL Thus,

1mt j{ >, DPla,, DM, DPq + )"AMA +
» =lpllgl=1

+ a,D'nm + am,ﬁ]dxdr - J'n“ﬁdxdr =0. )
Ipl=l Q

Since a,, = (—I)JP]J'[q[a;P, we obtain

mn ———
Re[ >, (—1)“’Jaqu“me”n+<~1)”‘-n,ﬁ] =

[phlgl=1

= z (_]_)|1f='|‘_.(ar anDPT])— z (~1)l7! aP‘? anDPn+
[»llgl=1 [pllgl=1

ms 9(NM)
+ (=D)"\ 5
The integration of the real part of (5) gives

m ——
2 [ImPaxde + 0" [ Y (-1)Pla,,DIDPy L_de +
o) Q |rllgl=1 -

I

+ (~1)™2Re Z JaPD -r]'rl] dx + A J.In]'l L=0d.x
tpl=1q "

= (-p™! j 2 (-1 )l,vl P‘f DInDPndxdt +
,1pllgl=1

& [da
+ (-1)™12Re _[ { z l: a;) DT +a Df’nn‘jl+ain, }dxd:
Ipl=1
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da da
Since —a?‘i Léri are bounded, by using the Cauchy inequality, we obtain

2 2 & 2 '
I, ":,z(nf,} + G, O)IIOH"’(Q} = CI|?9|DPT]| dxdt + Gf|n, ”izgnb)
PZ
or

m 2
InGe Oy < € 3, [ |DPn[ dxar,
lpl=0 g,

where C=C(W, 1, A )= const.
Putting -

& B
v(x, ) = [ DPu(x, v)dv, 0 <t<b,

t .
we can write

t
DPq(x,£) = [ DPu(x, ©)dt = v,(x, b) — v,(x, )
b
By virtue of (6),

InCx, Oy = 5 [ st b)| dx <
[pl=0 o

g6 z [|DPf axar < Z j[u,,(x B)P + vy (x, )] dxat
[pl=0 Q, .

-y [ [opt o) ax + € ) { vy 0 dxat.
[pl=0 O Ipl=0 q,
Settings )

I = i [ op0s D[ dx
[p=0
and using (7), we get ’
1

b
(1-CbYJ(b) < C[Iwdt, be [0 %J
0

81

6

)

According to the Gronwall — Bellman inequality, one has J ()= 0. This implies that

m=0ie, yy=u, Vie [0, %:’ By using the same argument as before for

1

functions u;, w, on |—,
s 2 [20

T], we can prove that, after finite steps, u) =u, Vte

e [0, T]. Since T3>0 is arbitrary, u;=u, Vte [0, o). This completes the proof of

the uniqueness.

Let us prove the exwtence by the Galerkin method. A function u(x) belongs to

H"(Q) if it has generalized derivatives of all orders o with || <m and

lillmgey = (| 3 [P ] B

0 |o)=0
H™(Q) is the closure of C=(Q) in the norm of the space H™ ().
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Let {¢(x)}r=1 < 5‘”((1) be an orthonormal system in L, (Q), linear closure of
which in H™(Q) is the space H""(.Q) For each natural number N, let us consider
the function

N y N
w(x 1) = Y, Cf 000, ®
k=1
AN
where C;' satisfy

m S—
J Iiu;’\"cﬁ; - Z (=1 "’IawD“’uND-”q), + l]uth;] dx +
Q [pllgl=1

m
+ (D" j ( > GP'D"’uN@? - aoquT,-J dx =

Q\pl=l
= —jfc?,dx, I=1,2,..,N, )
N m ciC} .
C. (0) =0, with gqg=a—-(-1) 7&.,! After multiplying (9) by T taking the sum

in [ from | to N, integrating the real part of obtained equality in ¢ from 0 to T,
and using a,,= (- l)lf’l"'ma;;,, we get

2 _[ |u;”|2dxdr + |:J' i| (_1)’"'"“’].,_.{#41)9“!\'1);:”}\/ # 7\.]|L(N !2] dx +
Qr Qlpllgl=! _

=

m
+ 2(-1)"Re _[ [ > aPD”u u + agu™u! :’cb:dr -
Qrtpl=l :

m a _—
[ Y ol —‘;’ri'i DuNDPuN drdr = —2Re [ ful dxdt.
Qrlprllgl=1 Qr
Inequality (3) and the Cauchy inequality imply -

+ ;.11”:1 (x, f)”

ZHHFN ”i.,m ) H™ (L) =

| < [ui+M ]j”

where M is a number of multi-index p such that |p| < m. So, for O0<g <1, we
have

dr + 22| || »—j Ilf(x Ol @t (10)

H"(Q) L(@r)

o
\|L,~ui ooy € u(Mi:IEIH) ”] ”Hﬂ_m) +Ei|£ 1£1, et (11)

According (o the Gronwall — Bellman inequality, it follows from (10) that
e . . HiMey +1) . :
N = = Hig
”“ —_— e s “L"m.w:s,L;(nn"" : (12)

For each given positive € choose g, = . By multiplying both sides of (12)

.UM+2!~L

with e 2(BM/K+E)T opg thenm[etflatmg in 7 from 0 to e, we obtain
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NP 2
"u ”Hnl‘l](e-(w.l’j.ll-i-:}r_ Q) = C“f”[_“(ﬂ,m;‘g,_[,z(n))} (13)

wherc C depends only on M, p, [T

Let us multiply (9) by e_Ju oo (C; (t)e'l") with A= -'l:-& + & and take the sum in
[ from 1 to N. After mtv:.cvrf;ttln‘7 the result obtained in ¢ from 0. to T, asin the
proof for (10), we have :

2fue],

oy 1l

+H U | Q)

(“ & M”) [l Ju",qm(m dt + 2 '™ “Iq(ﬂr) "

1 2 -
! ;J'||f||£2m)e My
=0

y 4
By choosing &, = =, we can see that

A
N =P NP 2
” il L, (Q.) 5 D““ “H“'-"(r’“,n_,) * E”f”L“(O.w:a.Iq(ﬂ)) S
. .
< (CD+ E)| f”L""(O,w;a. L@ (14)
It follows from (13) and (14) that
' N2 ' 2
”u Hm.l(e—(':rg)-l-s)r'n“) s C"fNL"[U.n_n;S.LZ_(Q))’
where
Mp
= —. 15
Yo i (15)

Since the sequence of functions {u’} is uniformly bounded in H”"l(e_(""“ +E)", 8.2,
we can take a subsequence which is weakly convergent to some function u(x, t) e

Hml( —(yp+e)t Q).
We will prove that u(x, ) is a ganerahzed solution. Smce uM(x,0)=0 on Q

and u"(x, ) e H’”'l(e'(””)ﬂﬁm), it follows that u(x,t)=0 on Q and u(x, t)e

o ¥
e H™'(e(0*e) Q). Take T> 0. Multiplying (9)-by d,(t)=H"' (0, T), d,(T)=0,
taking the sumin / from 1 to A, then integrating in ¢ from 0 to T, we obtain

m Ae——
[ w¥Rdxde + (-1)" j( Y 1'*la,, D%V Dy +
Qr arMpllgl=!

mn 3
+ EapruNﬁ+auNﬁ] dxdt = — Jfﬁdxdt‘ (16)
|pl=1 Qr

Equality (16) is true for any function m € My, where
N
My = {Tl = 3, di()p;(x)|di(®) e H'O, T), d;(T)=0}-
i=l

For each M € My, where N — o, equality (16) implies

ISSN 0041-6053. Yxp. mam. sypit., 2004, m. 56, N* ]



84 NGUYEN MANH HUNG, PHAM TRIEU DUONG

m s
[wndxdt + )" | [ Y 1*la,, DD +
Qr artpllgl=1

m
r EapD”ﬁ+auﬁ]-dxdr = — [ fldxa:. (17)
[pl=1t Qr

It is easy to check that (17) holds for any function 1 € }GI’“'D(QT), nix, T)=0; ie.,
u(x, t) is a weak solution of the first initial boundary-value problem for (1) in the

space !:’""I(e"““"'e)',nw). Moreover, the weak convergence of {u"} and (15)
imply that

2 P 2
uCe, ) fm1-trover oy S CllF gm0, e, Ly

where the constant C does not depend on u, f, ancl e
The theorem is completely proved. .

k, k-1 =
apy 9" "a, *a
ark Y K=] 2 ot £—1
<h+1, p=const, (x,t)e Q_. Then there exists a posu‘we constant 7, such that

if fue L™(0,00; € Ly(Q)), fu(x,0)=0, 0<k<Hh, then the g'-enera{ized solution
u(x, t) of the first initial boundary-value pi ob!em for system (1) has derivatives with
respectto t of all orders k<h and

s |
|| h

‘where the constant C does not depend on u, f, and e.
Proof. We prove that there exists a positive constant 7, such that an inequality

Theorem 2. Suppose that <u 1<]p) |q| <m, k<

2 - P '
Hm,lte‘-(n,-l-:)r‘n-) < C‘;) ||f|'1’ "L"({)‘u;a,bz(n))’ (18)

NP '
’Iu’* "H'"'(e'(“”)’ o Z ”f* "L (0,518, L5 (Q)) (18y)
holds,wﬁere uV is the same as in (8), C isindependent of N and f We will a '"1
( P _ pply

induction on h. _
If h=0, (18y) is true according to Theorem 1. Let now j = 1 -and the inequality

(18y) be true for h<j—1. From the identity (9), we have -~ &

= m * Y ¥ R
.[ [u:}'ﬂ ¢ + I sza I("‘l)m+I d a_ (apq'un?{.)Dp(Pl] dx +
Q rllgl=

= l)m J [
J+l~N

After multiplying both sides of this identity by ddrjc {C‘I 1_5 determined by (8)],

- m o !
N
a,D’u” + au } I ;(Pt

Ipl=t Q

taking the sum in ! from 1 to N, and integrating the result over [OI T, we obtain

J[ :f"‘”ﬁ“ + z (- 1)"”’”’| o (a D"uN)DPuj+.]dxdr+
Qr Irhlgl=1

+ (=™ J gt‘ftzl:,a DPuN + au Jujﬂ dxdt = — J-f;l-l:,n dxdt.
P : A
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; — (=Pl el >
Since a,,= (-1) a,,, we have

- e 5
;i[ [ U jri u!.j-l-l +l % l(—])m a— quuﬁ)Dpuj}f] dxdt =
T Phlg o

= —2Re ¥ E( l)m+|pi( J J at(Baafq unr_,—:D u;]

[Phlgl=1 o=l

n

% _
+Re Y, (pmHel | —aftﬂ D‘fu;’}’pf’u;}’ dxdt +

[pllgl=1 Qr
m —_—
N
- 2Rc[ |12|,| “E( 1)"”“"( ) j a:“‘ a, DI, DPuY dxdt +
rl=Llg|=

m

+2Re Y Z( 1)"’+|Pi( )j-a DY DPuY ded -
[pklgl=1 s=1 Qr _ :

a_,l’ m R P
— 2Re(-1)" | 5 [ > a,DU" +au )uj}’ﬂdxdz— 2Re [ ful, dxdt,
Qr [pi=1 - Qr
J | l
where (s) ﬁ Let us integrate this result by parts. By using condltlon 3),

and estimating the right-hand side of considered relation accordlng to the Cauchy
inequality, we obtain that

Ao L * I

((2_,: +1)—+a)_[|

& . i=
C (E”ﬁ* “i"(o,«;alq(ﬂ)) o S g’o “ ik ”Z'"-”(nr) a

N
H'J'i'f ( 7‘) o (n)

“ L.r*" Q)

] T R | )

L Q) AL
Let us choose €; < 2, use the Gronwall — Bellman inequality and the inductive
hypothesis by the same way as in the proof of Theorem 1. In general, we arrive at the

inequality

] R | VY A

where the constant C, v; are independent of N. Thus, we obtain inequality (18y).
Since y; and C from (18y) are independent of N, (18y) implies (18) as N — o=,
The theorem is proved. ‘
3. Example. In this section, we will apply the previous results to the theory of
elasticity.
Let u, f be the n-dimension vector functmns with real components. Denote u =

= Uy g, ooos th)y F= (F1ofoson s J)-
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We will consider the next differential operators of the form

L ; oul
k
L.(x,t,D)u = Z -a—g(aﬁh(x, r)ég), §=1,..,m (19)
Jihk=1
where a;’ff are continuous real functions bounded in Q.. and satisfying
ajy = ajy = aj. (20)
Denote
duy au,,)
= = Hoes L i 21
e.n‘; ( axh + ax.‘ » 5 ] » N . ( )
Assume that the elastic potential
Wix, te)= > Z anh sh€ jk (22)
r h,j.k
is positively defined quadric with respect to var;ables ey, 1<s<h =<n, for each
(x,t)e Q,
Cons:dcr the following problem:
5 3 ( AN '
2 f,f(!) J_-“_.'=.y) S=1I"'ln) (,23)
Pt lax, J ox, ot
with an initial condition . _
U)o =0 (24)
and a boundary condition I
= 0. 25
uls, =, @5)

It is well-know that (see [5]), for any function v € H' (Q), the following inequality
holds

E ] [auf au,,) > C””"if'cn)- | (26)

sh=l Q

where C =const> 0. By virfue of (22) th‘lS inequality is cquwa]ent to the following
one:

n au au_ 5
m%{:l J alf —= iy a}: dx 2 Cllv[ig - (27).
Inequality (27) in this case is equivalent to (3). In particular, when @ =A+p, af =
=afl =p, s#h, a}}’c’ =0; in the cases where >0, L+ A >0, we obtain the Lame
system _
pAL + (A + ) grad (div ) — u, = £, , (28)
We have

n- - n " Ln Ln
_Jk 2 i 2
ZW(I, L 8) = E a.i{he.rhejk = (Z' . 2”-) z €y +A 2 €sxCith + p Z Ehy =

5h,j k=1 5=l h#s " hey
L n 2 Ln 4 )
= 2U Z ey + A 2 € | 2 Eyr ; (29)
=1 g=1 h#s )

ISSN 0041-6053. Ykp. sam. xypit., 2004, m. 56, Ne ]



ON THE SMOOTHNESS WITH RESPECT TO TEMPORAL VARIABLE ... 87

Since >0 and pw+ A >0, it follows that there exists £> 0 such that L—£> 0 and
KL+ A —e=0. This and (29) imply

n n n Ln
2W(x,t,e) = 2e Y en + Z(M—E)Zef, + ?\.[Ee“J +pY e 2

=1 hses

Ln

] n 2 i
223 e 4 u Y el + (- e>[zem) a(Sa] -
s=1 s=1

h#s

Ln

I n
Y el + (u+1—e)[2e”) + 1Y e

1l
*)
m

=1 =l h#s

Thus, we have

n
W(x te)= o 3, e
sh=1

where g =const> 0. Therefore, inequality (27) is also true for the Lame system.
‘We obtain the following results.
Proposition. Suppose that

i) fae L7(0,00; 1, Ly(Q)) for 0Sk<h;
i) fiu(x,0)=0, 0k<h.
Then, for every v > 0, the unique generalized solution of problem (28), (24) and

(25) from Hl‘l(e—w, Q) has the derivatives with respect to t up to order h
belonging to H“'(e™ 7"+ O Y and

L
” o

where C=const>0 does not depend on u and f.

2

sc %l '
Hl‘l(i‘.’_ﬂzh'{'”’,n_) k;o {!k Lﬂ{o.”:J,LQ{Q)}
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