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EXISTENCE RESULTS FOR A PERTURBED DIRICHLET PROBLEM
WITHOUT SIGN CONDITION IN ORLICZ SPACES

PE3YJBTATU ICHYBAHHS JJIs1 35YPEHOI 3ATAUI JIPIXJIE
3A BIICYTHOCTI YMOB OO0 3HAKA B [TIPOCTOPAX OPJITYA

We deal with the existence result for nonlinear elliptic equations related to the form
Au + g(z,u, Vu) = f,

where the term —div|( a(z, u, Vu)) is a Leray - Lions operator from a subset of Wy Las(Q) into its dual. The growth

and coercivity conditions on the monotone vector field a are prescribed by an N -function M which does not have to
satisfy a Ag-condition. Therefore we use Orlicz—Sobolev spaces which are not necessarily reflexive and assume that
the nonlinearity g(z,u, Vu) is a Carathéodory function satisfying only a growth condition with no sign condition. The
right-hand side f belongs to W ™' E5;(9Q).

Posrnsimaersest 3amaya icHyBaHHS U HENIHIHHAX €TINTHYHUX PiBHAHB Y Gopmi

Au+ g(z,u, Vu) = f,

ne —div (a(;r, u, Vu)) — omeparop Jlepe — JTionca 3 mimvaoxuan Wi L (Q) y 1i TyansHy MHOXHHY. YMOBH 3pOCTaHHS Ta
KOCPIUTUBHOCTI B MOHOTOHHOMY BEKTOPHOMY TOJIi @ BU3Ha4at0Thes IV -pyHKIiero M, sika He MOBUHHA 330BONBHATH Ao -
ymoBu. Tomy mu BukoprctoByemo mpoctopu Opitiua— CoGoneBa, siki He 000B’SI3KOBO € pe(IEKCHBHUMH, 1 TIPHUITYCKAEMO,
1o HemiHilHicTs g(x, u, Vu) € dpynkuieto Kapareomnopi, o 3a10BosbHs€ JIHIIE yMOBY 3pOCTaHHs 6e3 yMOBH 3Haka. [IpaBa
vactuna f manexuts W E57(Q).

1. Introduction. In the last decade, there has been an increasing interest in the study of various
mathematical problems in modular spaces. These problems have many consideration in applications
[13, 33, 34] and have resulted in a renewal interest in Modular spaces, the origins of which can be
traced back to the work of Orlicz in the 1930s. In the 1950s, this study was carried on by Nakano
[29]. Later on, Polish and Czechoslovak mathematicians investigated the modular function spaces
(see, for instance, [25, 28]).

One of our motivations to study nonlinear problems in modular spaces comes from applications
to electro-rheological fluids as an important class of non-Newtonian fluids (sometimes referred to as
smart fluids). The electro-rheological fluids are characterized by their ability to highly change in their
mechanical properties under the influence of an external electromagnetic field. A mathematical model
of electro-rheological fluids was proposed by Rajagopal and Ruzicka [32, 33], we refer for instance
to [4, 9, 21 -24, 27] for different non-standard growth conditions. Another important application is
related to image processing [30] where this kind of diffusion operator is used to underline the borders
of the distorted image and to eliminate the noise.

In this paper, we are interesting to prove an existence result for a nonlinear elliptic problem with
nonlinearity. The studies will be undertaken for the case of rather general growth conditions for the
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highest order term. This formulation requires a general framework for the function space setting.
The problems will be considered in Orlicz spaces. The level of generality of our considerations will
have a crucial significance on the applied methods. This is a natural generalization of the numerous
recent studies appearing on Lebesgue and Sobolev spaces, which may be considered as a particular
case of our approach.

Let Q be a bounded open set of RY, N > 2, we consider the following nonlinear elliptic

problem:
Au+ g(z,u,Vu) = f in ,
(1.1)
u=0 on 09,
where Au = —div(a(z,u, Vu)) is a Leray-Lions operator defined on W1P(Q), 1 < p < oo.

Bensoussan, Boccardo, and Murat [8] proved the existence of solutions for the Dirichlet problem
associated to the problem (1.1), where g is a nonlinearity satisfying the following (natural) growth
condition:

l9(, 5, ) < b(ls])(e(z) + [€]7),

and the sign condition g(x, s,£)s > 0. In the case, where the right-hand side f is assumed to belong
to W1 (Q) and g depends only on z and u, see the result of Brézis and Browder in [12]. In [31]
Porretta has proved the existence result for the problem (1.1) but the result is restricted to b(.) = 1
in Sobolev spaces, and in the case with b(|s|) < B|s|" 'where 0 < r < p the same problem has
been studied by Benkirane et al. in [7]. A different approach (without sign condition) was used in
[10], under the assumption g(z,s,&) = As — |£]?, with A > 0.

We recall also that the authors used in [10] the methods of lower and uper solutions. In the
literature of the same problems, the sign condition play a crucial role in the proof of the main result.

In [19], Gossez and Mustonen solved (1.1) in the case where g satisfies the classical sign condi-
tion g(, s).s > 0 and data f in W1 E5(9).

We find also some existence results in the same context for strongly nonlinear problem associated
to (1.1) proved in [3, 5, 6, 16] when data f belongs either to W1 E57(€2) or L'(€2) with M satisfies
As-condition. In the case where the As-condition is not fulfilled the above problem was studied in
[2, 14, 15].

In the present paper, we deal with the existence result for the following problem:

u € WiLy(Q), g(x,u, Vu) € L(Q),

/(a(x,u, Vu))VTi(u —v) de + / g(x,u, Vu)Ti(u — v) doe <
Q Q

< /Qka(u—v) dx

for every v € W Ly () N L°°(Q) and for all k& > 0,

where f € WL1E(Q).

Note that the sign condition on a nonlinearity plays a crucial role to obtain a priori estimates and
existence of solution, to overcome the difficulty of the elimination of the sign condition we use the
following growth condition:
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lg(z, 5, 6)| < b(ls|) + h(ls[) M ([¢]) (1.2)

with b € LY(RT), b(]s|) < F_lP(|s|) where M and P are two N -functions such that P < M.

In [2], the authors assume the same growth condition (1.2) on nonlinearities but the function b
depends only on = not on u and belongs to L().

The main novelty of the paper is that the nonlinearity g does not have to satisfy any sign
condition, beside this we have the function b depends on solution w of our problem.

Our principal goal in this paper is to prove the existence result for the problem (P) but without
assuming any sign condition on nonlinearities and any restriction on the N-function M of Orlicz
spaces.

This paper is organized as follows. Section 2 contains some preliminaries. In Section 3, we state

and prove our general results.

2. Preliminaries. Let M : R — R be an N-function, i.e., M is even, continuous and convex

M(t M(t
function, with M (¢t) > 0 for t > 0, t() —0ast— 0and t() — 00 as t — oo. Equivalently,

M admits the representation M (t) = / : m(s)ds, where m: RT — R* is non-decreasing, right
continuous, with m(0) = 0, m(t) > 00 for t > 0 and m(t) — oo as t — oo. The N-function
M conjugate to M is defined by M (t) = /M m(s) ds, where m: RT — R is given by m(t) =
= sup{s: m(s) < t}. "
The N-function M is said to satisfy the As-condition if, for some k£ > 0,
M(2t) < kM(t) forallt>D0.

When this inequality holds only for ¢t >ty > 0, M is said to satisfy the Ay-condition near infinity.
Let P and M be two N-functions. P < M means that P grows essentially less rapidly than
M, i.e., for each € > 0,

P(t) —+0 as t—
00.
M(et)
This is the case if and only if
M~H(t)
Pt —0 as t— oo.

We will extend these N -functions into even functions on all R. Let 2 be an open subset of R"Y. The
Orlicz class L£7(£2) (resp., the Orlicz space Ly, (2)) is defined as the set of (equivalence classes of)
real-valued measurable functions u on {2 such that

/M(u(aﬁ))daz < 400 resp., /M (ZL()\:E)) dx < +oo for some A >0
Q Q

Note that Ly,(€2) is a Banach space under the norm

|ullarg =inf ¢ A >0: /M(@) dr <1

Q
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and L£/(2) is a convex subset of Lj/(£2). The closure in Lj/(2) of the set of bounded measurable
functions with compact support in € is denoted by Ej/(Q2). The equality Ey/(Q) = L () holds if
and only if M satisfies the Ag-condition, for all ¢ or for ¢ large, according to whether €2 has infinite
measure or not.

The dual of Ej/(2) can be identified with L7;(£2) by means of the pairing / u(z)v(z)dz, and

the dual norm on L37(€2) is equivalent to ||.||57 . The space L(€2) is reﬂexivge2 if and only if M
and M satisfy the As-condition, for all ¢ or for ¢ large, according to whether  has infinite measure
or not.

We define the Orlicz norm |[ul| (5 by

||ul|(ar) = sup / u(x)v(z) da,
Qr

where the supremum is taken over all v € Eyyq) such that [[v||z7 < 1, for which

lullar < lullary < 2llulla

holds for all u € Lys(q).

We now turn to the Orlicz—Sobolev space. WLy () (resp., W1Ey(£2)) is the space of all
functions u such that v and its distributional derivatives up to order 1 lie in Ly;(€2) (resp., Ear(€2)).
This is a Banach space under the norm

lullare = Y IVullare.
lo|<1

Thus WLy (2) and WLE)(Q) can be identified with subspaces of the product of N + 1 copies
of Lr(€2). Denoting this product by IILj;, we will use the weak topologies o (IIL s, I1E;) and
o(ILL s, I1L77). The space W3 Ep(€2) is defined as the (norm) closure of the Schwartz space D(2)
in W!Ey(Q) and the space W L (Q) as the o(IIL s, I1E5;) closure of D(Q) in WL (Q).
We say that u,, converges to u for the modular convergence in WL () if, for some A > 0,

/ M((D®u, — Du)/\)dz — 0 for all |a] < 1 with |a] = a1 + as + ... + .
Q

If M satisfies the A, condition on R (near infinity only when Q has finite measure), then
modular convergence coincides with norm convergence.

Let W1L17(Q) (resp., W™1E57(€2)) denote the space of distributions on €2 which can be
written as sums of derivatives of order < 1 of functions in L7;(€2) (resp., E7;(€2)). It is a Banach
space under the usual quotient norm.

If the open set ) has the segment property, then the space D(2) is dense in W L/ (€2) for the
modular convergence and for the topology o (ITLys, IIL77) (cf. [18]). Consequently, the action of a
distribution in W~ L17(2) on an element of W L;(Q2) is well defined.

For k£ > 0, we define the truncation at height k£, Tx : R — R by

s, if |s| <k,

Ty (s) = min(K, max(s, —k)) = { s
o i I8l >k
s

The following abstract lemmas will be applied to the truncation operators.
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Lemma 2.1 (cf. [18]). Let F': R — R be uniformly Lipschitzian with F(0) = 0. Let M be an
N function and let uw € WLy (Q) (resp., WLEp (Q)).
Then F(u) € WLy (Q) (resp., WYEN(Q)). Moreover, if the set of discontinuity points D of
F' is finite, then
0 F’(u)@, a.e. in {x € Q:u(x) ¢ D},
F(u) = Oz;
O 0, ae. in {x € Q:u(x) € D}.

Lemma 2.2 (cf. [18]). Let F': R — R be uniformly Lipschitzian with F(0) = 0. We sup-
pose that the set of discontinuity points of F' is finite. Let M be an N-function, then the map-
ping F: WLy (Q) — WLy (Q) is sequentially continuous with respect to the weak* topology
o(ILLy, 11E;).

Lemma 2.3 (cf. [20]). Let uy, u € Lyr(Q2). If ui, — u with respect to the modular convergence,
then uy, — u for o(Lyr, L3y).

Below, we will use the following technical lemmas.

Lemma 2.4 (cf. [5]). Let (f,), f € LY(Q), such that

(i) fn>0a.e in(,

i) fn— fae inQ,

(iii) /Q Folz) dz — /Q f(x) da.

Then f, — f strongly in L*(Q).
Lemma 2.5 (Young’s inequality). Let M be an N-function and M its conjugate. Then we have

st < M(s)+ M forall s,t>0.

We give now the following lemma which concerns operators of the Nemytskii type in Orlicz
spaces (see [5]).

Lemma 2.6. Let Q be an open subset of R with finite measure. Let M, P, Q be N -functions
such that Q) < P and let f: 2 Xx R — R be a Carathéodory function such that, for a.e. x € Q) and
all s € R,

|f(x,5)] < e(x) + ki P™ M (Kals]),

where ki, ko are real constants and c(x) € Eq(S?). Then the Nemytskii operator Ny defined by
Ny(u)(x) = f(x,u(x)) is strongly continuous from

P (EM(Q)7 ,;) = {“ € Lar()) = dlu, En () < klz}

into Eg(2).

Lemma 2.7 [17]. Let Q be a bounded open subset of RN and M is an N -function, so there
exist two positive constants § and \ such that

/M(5|u\)dx < /AM(WU\)dx for all v € WLy (Q).
Q Q
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3. Main results. Throughout this paper, we assume that the following assumptions hold true:
Let © be an open bounded subset of RV, N > 2, with the segment property, M be an N-
function and P be an N -function such that P < M. We consider the Leray — Lions operator

Au = —div(a(x, u, Vu)), (3.1)

defined on D(A) C W Ly (Q) into W Ly7(€2) where a: Q2 x R x RV — R¥ is a Carathéodory
function such that, for a.e. x € Q, for all ¢,£ € RV(C # €) and for all s € R,

ja(z,5,¢)| < cx) + ki M P(kas|) + ksM " M(kslC]), (3.2)
(a(l’,S,C)—CL(iC,S,g),C—f) >07 (33)
a(z,s,¢)¢ > aM(|¢]) (3.4)

with a > 0 kq, ko, k3, k4 >0, c € EH(Q)
Furthermore, let g(z, s, &) be a Carathéodory function satisfying the following assumptions:

l9(z, 5, ) < b(ls]) + h(s) M([¢]) (3.5)

with b € LY(R™T) and b(|s|) < F_lP(lsl), where b: R — R is a continuous function and P < M.
Let us give and prove the following lemmas which will be needed later.

Lemma 3.1 (cf. [1]). Assume that the assumptions (3.2)—(3.4) hold and let (z,,) be a sequence
in Wi Lag(Q) such that

Zn — 2z in WiLy(Q) for o(TILy (), TTE(Q)), (3.6)
(a(@, 2, V) is bounded in (Li7(Q)N, (3.7)
/ [a(w, Zn, Vzn) — alx, zp, szs)} [Vzn — szs} de — 0 (3.8)

Q

as n and s tend to +00, and where x s is the characteristic function of
Qs = {x €Q; |Vz| < s}.
Then
Vz, = Vz ae. in ),

ILm /a(m,zn,Vzn)Vzn dx = /a(:c,z,Vz)Vzda;,

Q Q
M(|Vz,|) = M(|Vz|) in LY(9Q).

Remark3.1. It should be interesting to note that the condition (3.7) is not necessary in the case
where the N -function M satisfies the Ay-condition.
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Lemma 3.2. Let define the function ¢ as follows:

l¢]

o(t) = dtexp /h(|s|) ds
0
with a,c >0, s,t € R and h € L'(R™), then
h(|t
# 0~ MDoy > o
a
Proof. 1ft > 0, then
\tlh \tlh
10 = o [ [ 2D 4] D o 0D )
e Q@ «
0 0
|t‘h h(|t
By TP T
a «
0
and if t < 0, then
\tlh . \tlh
10 = o [ [ 2D 4] D o 0D )
« Q@ Q@
0 0
‘tlh h(|t
o[ 1D g, ) 1D
« a
0
which implies that
h(|t mh
0~ Dy = ey | [0 4] 50
a «

Lemma 3.2 is proved.

Remark3.2. If we have v € W'Ly;(Q) by using Lemma 2.2, we can conclude that ¢(u)
belongs to WLy, ().

Theorem 3.1. Assume that the assumptions (3.2)—(3.5) hold and let | belongs to WﬁlEM(Q).
Then there exists a measurable function u solution of the following problem:

u € WiLy(Q), g(w,u, Vu) € L(Q),

/(a(:z:,u, Vu)) VT (u —v) dz + / g(x,u, Vu)Ti(u — v) do <
Q Q

< /Qka(u—v) dx

for every v € Wi Ly () N L>®(2) and for every k > 0.
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Proof. The proof is divided into several steps, first we introduce a sequence of approximate
problems and derive a priori estimates for the approximate problem and we show two intermediate
results, namely, the the almost everywhere convergente of Vu,, and the strong convergence in L*(£2)
of the nonlinearity g, (x, u,, Vuy,).

Let us consider the sequence of approximate problem

(1w, € WELa(Q),
/(CL(.’L’,un, Vun))VTk(un - U) dx + / gn(a:, Un, vun)Tk(un - U) dx <
Q Q

§/Qka(un—v) dz

for every v € WLy (),

where

9,5,
L ~lg(a,5,6)|

Note that g, (z, s, ) satisfies the following conditions:

gn(fc, S, 5) =

|gn(x75>£)| < |g(x,s,£)|, |gn(m,s,£)\ <n.

By the classical result of [19], the approximate problem (FP,) has at least one solution.
Lemma 3.3. Let u,, be a solution of the problem (P,), then we have

/M(]Vun]) dx < C,
Q

where C' is a positive constant not depending on n.

It g,
Proof. Let v = u, — p(uy), where p(t) = texp ( / hllsD) ds) (the function h appears in
0 [0

(3.5)). Since v € W Lps(€2), v is admissible test function in (P,), then

/ (2, tn, Vi) V (0 (10n)) ez + / 00 (@0, Vit ) ) i < / folun) dz,
Q Q Q

by (3.5) we get

/ 02 t, Vi) Vitn! () dit < / b(Jtn ) ip(un)| i+ / (tan ) 6 11) M (V]
Q Q

Q
+ / Fllo(un)] da.
Q

Since ¢’ > 0 and by (3.4), we obtain
h(lun)
o

o [ 3019w (¢! wn) = " o)) do < o [P Punlual do -t o [ 17| do
Q Q

Q
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+o0 h
with ¢y = exp </ M ds).
0 «

By Lemma 3.2, we deduce

/ M(Vu) do < o [ PP (ual)fun) da + co / ol da. (.9
Q
Since P <« M, for all € > 0, there exists a constant that K. depending on ¢ such that
P(t) < M(et)+ K. Yt>0 (3.10)
. . ad
without loss of generality, we can assume that € = < 1, where § and X are two
degh+ a6+ 1)

o h(ls])

positive constants in Lemma 2.7 and ¢y = exp ( / ds> , S0, by convexity, we have
0

P(t) <eM(t)+ K. Vt>0. (3.11)

By Young inequality and in view of (3.10), we deduce

co/PlP(|un|)|un| de < 2CO/M(E\un) dz + C1,
Q Q

by Lemma 2.7 and the fact that % < 1, we get

2605)\
)
Q

o /PlP(un])|un| dr < M(|Vuy,|) dz + CL. (3.12)

On the other hand, f can be written as f = fo — divF, where fo € Eq7(Q), F € (Eg7(Q))", using
Lemma 5.7 in [18] and Young’s inequality we obtain

/foun dx SC’l—i—Z/M(]Vun])dx
Q Q

(3.13)
/FVun dz < Cy —i—Z/M(Wun[) dz
Q

Using (3.17) and (3.13) in (3.9), we get

2coe
1)

o [ M(Vu do < *F2 [2(Vunl) do+§ [ M(T0l) dz+
Q

Q

which implies

(;‘ - QCW) /M Vaun|) dz < C-,
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ad
degh + a6+ 1)

2coEN
we can easily verify that (g _ 2tef

2 0
Thus,

) > 0, where € =

/M(]Vltn!) de < C, (3.14)
Q

where C' is a positive constant independent on n.
It follows that the sequence {u,} is bounded in W Ly (). Consequently, there exist a subse-
quence on {u,}, still denoted by {u,,} and a function u € W Ly () such that

U, —u in WyLy(Q) for o(IILy, TE), (3.15)
U, = u in Ep () strongly and a.e. in €. (3.16)

Lemma 3.4. Let u,, be a solution of the approximate problem (P,). Then
(a(m, U, Vun)> is bounded in (L77(Q))".

n

Proof. Let ¢ € (Ep(2))"N be arbitrary. In view of the monotonicity of a, one easily has

/a(a:,un,Vun)cp dx < /a(x,un,Vun)Vun dx+

Q Q
—l—/a(:c,un, ©)(Vu, — ¢) dz.
Q
. Clun) o " h(]s)) o
First, let take v = u,, — u,e® ") with G(r) = ——= ds as a test function in (P, ), then
0 (6]

/a(xaunavun)v(unec(un)) dx + /gn(x,un,Vun)uneG(“") dr < /funeG(un) dz,
Q Q Q
by (3.5), we get

eClun)y  do <

/a(x,umvun)vunec(un) d=75+/a(x,un,Vun)Vunh(|u"|)
«

Q Q

< /b(\un)uneG(“") dx—i—/h(|un|)uneG(“”)M(\Vun\) da:+/]f\|uneG(“")| da.
Q Q Q

By (3.4) and the fact that 1 < e“(¥n) < ¢, we obtain

/a(x,un, V,)Vu, dz + / M (| V| A ) e, do <
Q Q

gco/b(|un|)uny d:v+/M(|Vun|)h(|un|)uneG(“") dw+/]f\|un| dz,
Q Q Q
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+o0 h
with ¢g = exp < / ) ds), which gives
0

(07

/a(m,un,Vun)Vun dx < co/b(\un\)]un] dx + co/\fHun] dx,
Q

Q Q

as in (3.9) and by (3.14), we have

/a(a:,un,Vun)Vun dx < C,,.
Q
Otherwise, for \ large enough, we get, by using (3.2) and convexity of M,

/M< a(2, tn, 0 )dx</M 7)+ kB P<k2iun|>+M "M (ksle))| e

gf/M(C() Bkl/MM P(kg\un!)dmﬁ/MM M (ksgl) dx <
Q

— k
<2 [ W) + B2 [ Ploalunl) do+ 5 [ 3rthali) as
Q Q
We have ¢ € (Ep ()Y and ¢ € E37(9), then

Q/M(a(x,TKiunyw)) iz < Cy +(129/P(k2|un|) dr

k
In view of (3.10), we can take £ small enough, the way that % < 1, thus by Lemma 2.7 and the
convexity of M, we get

CQ/CQE)\
o

Cg/P(k2|un|) iz < /M(|Vun|)dx+c€(sz). 3.17)

By (3.9) and (3.17), we obtain

/M (a(:c,TK)SUn)vw)> dx < Cy.

Q

Hence, since u,, is bounded in WolL Mm(€2), one easily deduce that a(z,uy, Vuy,) is a bounded
sequence in (L37(£2))". Thus, up to a subsequence

a(2, tn, Vug) = ¢p in (Ly(Q)Y for o(ILy7, Ew)

for some ¢y, € (L37(€2)V.
Lemma 3.4 is proved.
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Lemma 3.5. Let u,, be a solution of the problem (P,), then we have

lim lim / a(x, up, Vg )Vu, de = 0.

J—+00 N—>00

Proof. Consider the function v = u,, — e Ty (u,, — Tj(uy,))* for j > 1, where G(uy,) =

«

[unl p,
:/ (s ds. Then we obtain
0

([
| e, T D 0T, 1, )+
Q
+/a(1’7un7Vun)VT1(un — T (up))HeClum) 4
Q
+ [ gnlas 0 V)OO Ty = Ty ) < [ STy, Ty 1) o
. Q

From the growth condition (3.5), we have

h(lunl)

/a(x’ Un, Vn) Vg, eG(un)Tl (un — TJ(U"))—’_+

Q

+/a(ﬂ:,un,Vun)VT1(un _Tj(un))JreG(un) <
Q

< / PP (|un)) STy (un — Ty(un)) T+
Q

+ / h(Jun )M (Vg )Ty (wn — T (un)) ™ + /feG("")Tl (tn = Tj(un)) " do.
Q Q

Thanks to (3.4), we get

/a(a;, Up,, V) VT (uy, — Tj(un))JreG(un) <
Q
: / PP (Jun ) T (= T un)) ™ + / FeU T (uy, — Tj(un)) T da
{un>j} Q
By Young’s inequality and the fact that

‘un| +oo

h h
1 < eClun) = exp / (s) ds | <exp / (s) ds | = co,
a
0

[0}
0

we obtain
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/a(:):, U, Vun ) VT (g, — Tj(up)) T <
Q

< co / (P(|unl) + P(Ti(un — Tj(un)) ™)) + CO/le(un — Tj(uy))* da.
{un>j} Q

By the inequality (3.11), we get

/a(w, U, Vun ) VT (g, — Tj(up)) T <
Q

gm:/ @ﬂmﬁ+Mamm—nmmﬂ+Mg+m/ﬂm%—ﬂww+m.Qm
{un >]} Q

In view of (3.15) and (3.16), we have
Ty (un — Tj(un))t = Ti(u— Tj(u))™ in WyLap(Q) for o(I1Ly, I1E;).

In addition, since (uy)nen is bounded in L;(€2), we deduce by Lebesgue’s theorem that the right-
hand side of the last inequality goes to zero as n and j tend to infinity. Then (3.18) becomes

lim lim / a(z, up, V) Vu, de = 0. (3.19)

J—00 Nn—00
{iSun<j+1}

Furthermore, consider the test function v = u,, + e~ =) T} (u,, — Tj(uy,))” in (P,), and reasoning
as in the proof of (3.19), we deduce that

lim lim / a(x, Up, V)V, de = 0. (3.20)
]‘)OO n—o0
{—j—1<Zun<—j}
Finally, combining (3.19) and (3.20), we have
lim lim / a(x, up, V) Vu, de = 0. (3.21)
]—}OO n—oo

{i<lun|<j+1}

Lemma 3.5 is proved.
Proposition 3.1. Let u, be a solution of the approximate problem (P,). Then we have (for a
subsequence noted again )

Vu, = Vu ae. in €

as n tends to +00.
Proof. We will use the following function of one real variable, which is defined as follows:

]‘7 1f ‘S‘ S]?

0, it |s|>j+1,
j+l—s, if j<s<j+1,
s+i+1, if —j-1<s<—j

Si(s) =
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with j a nonnegative real parameter.

Let Qs = {z € Q,|VTi(u(x))| < s} and denote by x, the characteristic function of €2, clearly,
Qs C Qgy1 and meas(2\ ;) — 0 as s — 0. Let v; € D(Q2) which converges to Tj(u) for the
modular convergence in W Lys(Q). Using v = u, — ne™ ) (Ty (up) — Ti(vi)) TS (un) as a test
function in (P,,), we obtain, by using (3.4) and (3.5),

/ %) (2, Uy, Vun )V (Th (un) — Ti(v3)) S (un) da—
{T% (un)—Tx (v;) >0}

_ / ) (2, 1, Vg ) Vg (T (un) — Ti(v;)) T da <

{i<un<j+1}

= / P P(Junl) (T () — Ti(03))F S () dat

Q
+/f(Tk(Un) — Tk(vi))JrSj(Un)eG(u") dz.
Q

Thanks to (3.21) the second integral tend to zero as n and j tend to infinity, and by Lebesgue
theorem, we deduce that the right-hand side converge to zero as n and j goes to infinity.
Using the same argument as in [2], we get

/[a(m,Tk(un), VTi(up)) — a(z, Tk (un), VI (w)Xxs)][VTk(un) — VTk(u)xs] dz — 0.
Q

By the Lemma 3.1, we obtain
M(|Vup|) — M(|Vul) in LY(). (3.22)
Thanks to (3.22), we obtain for a subsequence
Vu, — Vu ae.in Q.

Proposition 3.1 is proved.
Proof of Theorem 3.1. Step 1. Equi-integrability of the nonlinearities.
We show that

Gn (T, Un, Vup) — g(z,u, Vu) strongly in L1(Q). (3.23)

0
Let v = u, + e(_G(un))/ h(s)X{s<—13 ds. Since v € Wy Lys(€2), v is an admissible test function
in (P,). Then

Un

0
/a(x,un,Vun)V —e(G(“”))/h(s)X{s<l} ds | dz+

Un
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0

Q Un

< /f (e(G(“"))/h(S)X{KZ} ds) dr,

Q Un

which implies that, by using (3.5), we have

0
/a(w,un,Vun)Vunh(un)e(G(“”))/h(s)x{3<l} ds dz+
a

Q Un

+ [ a(z,up, Vun)Vune(fa(“"))h(un)x{un<,l} dx <

SEg

0
< / PP (Jup])el =6 / M) qs<y ds dut
Q o

0 0
+ [ )M (Tt [ hs)xey ds do— [ 100D [hs)qoey ds da,
Q Un, Q Un

0 -1

h(8)X{s<—1y ds < / h(s) ds, we get

— 00

By using (3.4) and since /

Un

/a(m,un, Vun)Vune(_G(“”))h(un)x{un<_l} dx <
Q

(HhHil(R)> -l ( . )
<e h(s) ds P "P(lup|)+ [ fodx|.
[row\rr]s

—00

Applying Young inequality, (3.10) and using Lemma 2.7, one has

/a(x,un’ vun)vune(_G(un))h(“n)X{un<—l} dr <

Q
Il 1 g, 7 )
<o sy s (2 [ ar(ualy o+ K2+ [ podr ).
o) Q Q

By using again (3.4) and the fact that u,, is bounded in W Ly (2), we obtain

-l

/ h(un)M(|Vun|)dx§C5/h(s) ds,

{un <1} oo
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and, since h € L*(R), we deduce

lim sup / h(un)M(|Vuy|) de = 0. (3.24)
[—+400 neN
{un<—I1}
Otherwise, considering v = u, — e(_G(“"))/ h(s)x{s>1} ds as a test function in (F,). Thus,
0
similarly to (3.24), we deduce
lim sup / h(un)M(|Vuy|) de = 0. (3.25)
=400 neN

{un>1}

Un

Moreover, on the set {u,, > [} we have 1 < 7 then

__ 1 [——

P ' P(juy|) dz < l/P P(Jun | un da.
{un>1} Q
Applying Young inequality, one has

PP () do < / (P(Junl) + P(Jun])) da.

2

{un>1}

In view of (3.10), we get

{un>1}
By using Lemma 2.7, we have
— 2ed
P P(|un) dz < 5/ (M(Vun) + K. d.
{un>1} Q

By (3.14), we obtain

— 20 Q
P 1P(\un]) dr < 5(0;;\0())7
{un>1}
then we conclude that
lim sup / P 'P(jup|) dz = 0. (3.26)
l—=+00 neN

{un>1}

Combining (3.5), (3.22), (3.24), (3.25), (3.26) and Vitali’s theorem, we get (3.23).
Step 2. Passing to the limit.
Let v € WLy (Q) N L2(R), we take up, — Tj(un, — v) as test function in (P,), we can write
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/a(x,un, Vun)VTi(u, —v) de + /gn(:):, Uny V)T (up — v) do <
Q

Q
< [ fTi(up — ) dzx
/

which implies that

CL(.’L‘, Un,, Vun)Vun dx + / a(a;, TkJr”/U”OOUn, ka+||/U||Oo (un))Vv dx+

{lun—v|<k} {lun—v|<k}

+/ In (T, Up, V) Ti(uy — v) dz < /ka(un —v) dx.
Q Q

By Fatou’s lemma and the fact that

(%, Tt oo (Un)s Vg o) se (Un)) = @@, Tip oo (), Vg o)l (0))

weakly in (L77(€2))" for o(I1L57, IIE)y), one easily see that

/ a(x,u, Vu)Vu dx — / a(, Tt o e (W), Vg o) oo (w)) Vo dz+
{lu—v|<k} {lu—v|<k}

+ [ g(z,u, Vu)Ti(u —v) de < | fTi(u—v) dx.
/ /

Hence,

/a(:r, u, Vu)VTi(u —v) do + /g(x, u, Vu)T(u —v) dz <
Q Q

< / fTu(u—v) de Yo € Wy Ly (Q) N L>®(Q) Vk > 0.
Q

Theorem 3.1 is proved.
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