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COALGEBRA RELATED INTEGRABLE FLOWS

AJITEBPH XOII®A TA IHTETPOBHI IIOTOKMH,
IIOB’SI3AHI 3 KOAJITEBPOXO XEN3EHBEPTA — BEAJIS

On the basis of the structure of Casimir elements associated with general Hopf algebras, we construct
Liouville — Arnold integrable flows related with naturally induced Poisson structures on arbitrary
coalgebra and their deformations. Some interesting special cases including the oscillatory Heisenberg —
Weil algebra related coalgebra structures and adjoint with them integrable Hamiltonian systems are
considered.

Ha ocioni erpykrypu esiemenrrin Kasumipa, acoriiionanux i3 sarasusimmu amreGpamu Xomndpa, nobyjio-
saro irrrer'posin morokn JIiysiium — Aprrosinsjia, Wo MoB’ sisanli 3 MpHPOJINO iIJ[YKOBAIIMMH CTPYKTYpa-
mu [Tyaccona na JioBiJsnift Koasn'ebpi, Ta ix pedpopmartii. Posrursuiyro jiesiki nikasi cnerjannii pu-
MajiKK, B ToMy uncai KoasneGpaiuii clpyKTypH, Wo non’ s3aii 3 ocipuisiiinolo anre6polo Xefisen-
Bepra — Beitii, Ta cripsokell 3 HEMH iIrrelpoBIil I'amMiJILTONOBI CHCTEMIH.

1. Hopf algebras and coalgebras: main definitions. Consider a Hopf algebra A
over C endowed with two special homomorphisms called coproduct A: 2 —- 4 ® 4

and counit €: A— C, as well an antihomomorphism (antipode) v: A — A4, such that

forany ae 4
(id ® A)A(a) = (A®id)A(a),
(id ® e)A(a) = (e®id)A(a) = a, B (1.1)
m((id ®V)A(a))_ = m((v ® id)A(a)) = &la)l,

where m: A® 4 — A is the usual multiplication mapping, that is for any a,be 4
m(a ® b) = ab. The conditions (1.1) were introduced by Hopf [1] in a cohomological
context. Since most of the Hopf algebras properties depend on the coproduct operation

A: 4 — A4 @A and related with it Casimir elements, below we shall dwell mainly on
the objects called coalgebras endowed with this coproduct.
The most interesting examples of coalgebras are provided by the universal

enveloping algebras U(§) of Lie algebras G. If, for instance, a Lie algebra G
possesses generators X;e G, [ = Ln, n= dim@G, the corresponding enveloping
algebra U(G) can be naturally endowed with a Hopf algebra structure by defining
AX) =10X; + X;®1, A() =1®],
(1.2)
g(X;) = =X, v() = -L

These mappings acting only on the generators of G are straightforwardly extended to
any monomial in U(&) by means of the homomorphism condition A (XY) =

= A(X)A(Y) forany X, Ye G < U(G). In general, anelement Y € U(G) of a Hopf
algebra such that A(Y) = I® Y+ Y @1 is called primitive, and the known Friedrichs

theorem [2] ensures that, in U(G), the only primitive elements are exactly generators
X;e G, i=1n.

On the other hand the homomorphism condition for the coproduct A: 4 —- 4 ® 4
implies the compaltibility of the coproduct with the Lie algebra commutator structure:
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[;A(X)A(X )]Mﬂ = A([X X] ) (1.3)

for any X,, ¢ g i,j =1,n. Since the Drinfeld rcport 31, the coalgcbras deﬁned

above are also often called “quantum” groups due-to their importance [4] in studying
many two-dimensional quantum models of modern field theory and statistical physics.
It was also observed (see, for instance, [4]) that the standard coalgebra structure

(1:2) of the universal enveloping algebra U(G) can.be nontrivially exténded making
use of some its infinitesimal deformations, saving.the coassociativity (1.3) of the
deformed coproduct A : U.(G) = U,G) ® U,G) with U,G) being the
corresponding universal enveloping algcbra deformation by means of a paramctcr
z &€ C such that hm U,(G) =U(@G) sub_lcct to some natural topology on U,(G).

2. Casimir elements and their special properties. Take any Casimir element
Ce U/G), thatis an element satisfying the condition [C, U,(G)} = 0, and consider
the action on it of the coproduct mapping A:

AC) =.C({AXD,
where we put, by definition, C := C({X}) with a set {X} c G. It is a trivial
consequence that for A4 = U.tg) ‘ w e . .
[A(C) A(X,)]mﬂ = A([c;.‘xi']ﬂ) =

PR i I |

forany X;e G, i =1n.

Define now recurrently the followmcr N-th. coproduct A(N) ﬁl =¥ ® ﬁl for any.
Ne Z,, where A® = A and A —-1d and 3 > S g
A“‘” = ((1d®)~" ®A) - AW'“
or as F3
(A@(:d@)"""@nd@ld) AW‘”
One can straxghtforwardly venfy that - ' )

A = (A @ AN . A
— o N . (N+1) .

for any m = 0,N, and the mapping A ﬁl—) ® A is an algebras
homomorphism, thatis . : . . 3 5

[A(N)('LX)’ A(N)(Y)](Agf)? = A(N) ([X Y] ) SRR

for any X, Ye A. Ina particular case if 4 = U(G), the following cxactl é:xpreésion
AM(x) = x(@id)V! @id+id ® X(®@id)' ! ®id +...

: L+ @iV '®ideX.

holds for any X e G.
- 3. Poisson coalgebras and their realizations. As is wall known [5, 6], a Poisson
algebra P is a vector space endowed with a commutative rnu]t]phcatlon and a Lie

bracket {.,.} including a derivation on P in the form

{a, bc} = b{a, c} + {a,b}c
forany a,b and ce®. If 2 and @ are Poisson algebras, one can naturally define
the following Poisson structure on P ® Q;

{a®b,c@d}p 8Q = {a, c}p ® (bd) + (ac)®{b, d}Q
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forany a,ce P and b,d € Q. We shall also say that (P; A) is a Poisson coalgebra

if P is a Poisson algebraand A: P— P ® P is a Poisson algebras homomorphism,
that is

{A@), (D)} pop = A{a b}p) 3.1)
forany a,be P. _
It is useful to note here that any Lie algebra G generates naturally a Poisson
coalgebra (P; A) by defining a Poisson bracket on 2 by means of the following
expression: forany a,be P
{a,b}p = (grada, ©gradb).
Here P = CT(R";R) is a space of smooth mappings linked with a base variables of

the Lie algebra G, n = dimG, and the implectic (6] matrix ¥ : T*(P) - T(P) is
given as

8(x) = { icij:xk:f,j=l,7},
E=1

where c,f-, i, j,k=Tn, are the corresponding structure constants of the Lie algebra
G and x'e R" are the corresponding linked coordinates. It is easy to check that the
coproduct (1.2) is a Poisson algebras homomorphism between P and ? ® P. If one
can find a “quantum” deformation U.(G), then the corresponding Poisson coalgebra
P. can be constructed making use of the naturally deformed implccﬁc matrix U, :
T‘(.'P:) — T(P.). Forinstance, if G = so(2, 1), there exists a deformation Uz(so(2,
1)) defined by the following deformed commutator relations with a parameter z € C:
(8] = B[R, E]w-%,
(3.2)
[)_(3,)_(1} = ésinh(zﬁz),
where at z = 0 elements
)”(,-‘FG = X;es0(2,1), i=1,3,

compile a base of generators of the Lie algebra so (2, 1). Then, based on expressions

(3.2) one can easily construct the corresponding Poisson coalgebra ?,, endowed with
the implectic matrix

0 % —Llsinh(zd)
Z
9.(F) = % 0 %
Lsiohzi) % - 0
Z

for any point FeR?, linked naturally with the deformed generators J_(,- t=1,3,
taken above. Since the corresponding coproduct on U.(so(2, 1)) acts on this
deformed base of generators as

AXy) = 1®X, + X, ®1,

AX) = exp(——g-}-(g)Gl X + J?E®cxp(-§-)?3), (3.3)
A(X’g) = cxp(——-;- _2]®J?3 + )%@exp(%)?zj,
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satisfying the main homommphlsm property for the wholc deformed universal
enveloping algebra U, (30(2 3

Consider now some realization of the deformed generators X,- el,G), i=1n
that is a homomorphlsm mapping D, : U,(G)— P(M), such that

D;(X,-) = g d=1m LA (3.4)
are some elements of a Poisson manifold P (M) realized as a space of functi_ons'on a
finite-dimensional manifold M, satisfying the deformed commutator relationships
e &jlpun = Vui@
where, by definition, expressions )
o BE- |
generate a Poisson coalcrebra structure on the funcnon space P, 2 !P (c}) linked

with a given Lie algebra G. Making use of the homomorplnsm property (3.1) for the
coproduct mapping A: P.(G)— P.(G)®P,(G), one finds that for all /, j = Ln

”J(X) I_]—l.’l

{86, MGl 6o, 6) = ({x” J}{P @) - 9, ;(A®)
and for the corresponding copmduct A 'P(M)—)P(M) ®E’(M) ‘one gets smu]ally
(8@, 8@} unopan = A((E }?(M,) = 9,5(A@), ' @GS

where {., }@(M) is some, cvcntually, canonical Poisson structure on a finite-

dimensional manifold M.
Let g€ M be a point of M. We consider its coordinates-as clements of P(M).
Then one can define the following elements:

= U®yY lg@nM e ®9(M)

where j =1, N by means of which one can construct the. couespondlncr N—luple
realization of the Poisson coalgebra structure (3.5) as follows: e

~[N) = N] (N)y -
{er' }‘g’avcm (‘?' ) )
with i, j =1,n and
(N (N=1) = ~(N) T e
® DI(A (e,-)) = &G Gas s G- : 3.6)

For instance, for the U,(so(2, 1)) case (3.2), one can take [7] the realization Poisson
manifold P(M) = P( IRZ) with the standard canonical Heisenberg — Weil Poissonian

structure on it:

{a, ‘3’}:9(1111) =0 = {p P}__a_:(ml), {r, Q}Q(Rz) =l ' G7) -
where (g, p) eR?. Then explessmns (3.6) for N=2 give rise to the following
relationships: - i B

& (ay, @2, p1, p2) = (D, ® D)AK)) =
sinh [E pl) sinh ( ) .
w o A& Y ; z k. 3 _LH 5
= - COS g exp| —~ 2 + 2exp| - p, T .COS8 4y,
Z :

'37 Xa1 g2, 1 po) := (D, ®D)A(Xa) = p+ py’
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&), 42, 1y P2) = (D ® D)AK;) =

sinh (E p,) sinh (E pz]
o \27 ) (z J (_5_ J__A_JL___'
= singyexp| =p; | + 2exp P : - sings,
s z 2 2 z
where elements (g), g2, p).pP2) € P(R*) ® P(R?). satisfy the induced by (3.7)
Heisenberg — Weil commutator relations:

{a qf}fml)e?(n:) =0={m. f’i}?(kﬁwckz)’

{r f],:}?m:,@?m:) = &

forany i,j =1, 2.
4. Casimir elements and the Heisenberg — Weil algebra related algebrais

structures. Consider any Casimir element Ce U.(G) related with an R 3 z-
deformed Lie algebra G structure in the form '

L [RA]= el @
where i,j=1n, n = dimG, and, by definition, [E‘, f(,-] = 0. The following

general lemma holds.
Lemma 1. Let (U.(G); A) be a coalgebra with generators satisfying (4.1) and

Ce U.(G) be its Casimir element; then

(m) ¢ A (N) v -
[ @), & 1()(!.)](%”{}:@ =0 (4.2)

forany i =1,n and m =1, N.
As a simple corollary of this lemma one finds from (4.2) that

() ¢~ (N),~ s
[A"(C), A (C)]:%nu:(g) =0
forany k,me Z,. -
Consider now some realization (3.4) of our deformed Poisson coalgebra structure

(4.1) and check that
() - (N) = 51
- [a(c@), &M (ot @)]osy, = 0
forany m =1,N, Ne Z,, if C(€)el(®P(M)), thatis {C(@),q}py, =0 forany
g€ M, Since . _
HM(g) := &NV (H (@) ;. (4.3)

(N+1) .
are, in general, smooth functions on ® M, which can be used as Hamilton ones

: (N+1)
subject to the Poisson structure on & P(M), the expressions (4.3) mean nothing
else that functions

Y"g) = AN(C(@) - BENCYD
are their invariants, that is ' '

™)t Mg} =0 (4.5)
(Mel)
® P(M)

for any m =1, N. Thereby, the functions (4.3) and (4.4) generale under some
additional but natural conditions a hierarchy of a priori Liouville — Arnold integrable

(N+1)
Hamiltonian flows on the Poisson manifold & P(M). -
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Consider now the case of a Poisson manifold P(M) and its coalgebra deformation
P.(G). Thus for any coordinale points x;e P(G), (= 1,n, the following
relationships i '

{x,-, xj} = zc,fjxk = 1‘},}-(;:) (4.6)
k=1

definc a Poisson structure on P (G), related with the corresponding Lie algebra
structure of - G, and there exits a representation (3.4) such that elements
& = D.(X;) = g(x)

satisly the relationships {E;., i

Vo) = 9.y@® forany i =T, with the limiting

conditions
g n
i 3y = 'S oy imE0) = x
_]_.I_%ﬁ:u(e) - ,{g‘] CijXe 5 ig‘?}e;(-\-) X @.7)

forany i, j = I,n. For instance, take the Poisson coalgebra P,(so(2, 1)) for which
there exists a realization (3.4) in the following form: '

Si“h(;.lgj ; ) 3
g = D.(X) =—2"Lx, & :=D,k) = x,

ZXq

] &
_ smh[-z—xgj
Ea = DZ(X3) 205

(o

where x;€ P(so(2, 1)), i =f§ satisfy the so(2, L)-commutator relationships
{-VZ’-“I}?(sorz.l)) =x, {n, ‘x3}1’(so(2.l)} = =%

‘{’\.3’xl}£°{so(2.l)} = A

with the coproduct operator
A: U(s0(2,1)) = U.(s0(2, 1)) @ U_(s0(2, 1))

given by (3.3). Itis easy to check that conditions (4.6) and 4.7) hold.
The next example is related with the coalgebra U (w(1, 1)) of the Poincare algebra
nt(l, 1) for which the following nondeformed relationships

X1 X:] = X3, (X, %] =X, [X5,X] =0 (4.8)
hold. The corresponding coproduct
A: U(r(1, 1)) > U(n(1, D) ® U(n(1, 1))
is given by thc Woronowicz [8] cxpressions

AX) = I®X, + X, ®1,

Il

A()?Z) exp("%}?|]®irl + )?| ®exp(-§}?l], (4'9)

A(Xz)

I

cxp[~~z-)?, J X + X3 ® cxp[if, ),
2 2
where z€ R is a parameter. Under the deformed expressions (4.9) the elements
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: X et,(n(,D), Jj=13,"
satisfy still undeformed commutator relationships, -that is
O 5 (X) = 8|,z
forany ze R, i,j = 1,3, givenby (4.8). As aresult, we can state that
L &= DX = gx) = x;,
where for x; e P(n(l, 1)), i =1,3, the following Poisson structure
{"!»xz}@(nu.n) =3 {xl’x3}2’[n(1.l)} = %2
{x3’x2}59{7r(!;l)} =i
holds. Moreover, since
C = x3 ~ x5 I(P(n(1, 1)),
that is _
{c.x }59(1:(1 p =0
for any i=13, on can construct, makmg use of (4.3) and (4.4), integrable

Hamiltonian systems on ® T(ﬂ(l, 1)). The same can be done for the discussed above
Poisson coalgebra 2_(s0(2,.1)) realized by means of the Poisson manifold P(so(2,
1)), taking into account that the following element
C = x3 — xf — x2 el(®(s0(2, 1))
is a Casimir one.
Now we will consider a special extended Heisenberg — Weil coalgebra U ,(hy),

called still the oscillator coalgebra. The undeformed Lie algebra h4 commutator
relationships take the form: .

[na] =a, [mnal]=-a

la,a) =m, [m-]=0,
where {n, ay, m} c hy compile a basis of hy, dimh, = 4. The Poisson coalgebra
P(hy) is naturally endowed with the Poisson structure like (4.10) and admits its
realization (3.4) on the Poisson mamfold E’(R‘) Namely, on fP(I[{Z) one has

. ex = D(as) = pexp(¥q),
e, =D(m) =1, ¢ = D(n) =p,

where (g, p) € R? and the Pmsson structure on P( Rz) is canomcal that is the same
as (3.7).

Closely related with the relatlonshlps (4.10) there is a generalized U ,(su(2))
coalgebra, for which

(4.10)

[x3)x:t] = ixi‘) [yi"} = Ul
: ' (4.11)

. NB
X, x| = y.5in(2z2x;) + y_cos(2zxy)—,
[ X ] p ( 3), . ( .s)smz

where z € C is an arbitrary parameter, The coalgebra structure is given now as
follows: ;

ISSN 0041-6053. Y&p. mam. xypi., 2004, m. 56, N® ]



THE HOPF ALGEBRAS AND THE HEISENBERG - WEIL COALGEBRA RELATED ... 95

Alxs) = '?'11{—2} i3 ®xy + Xy ®c2i(!) Rl ,

Ax) = I®x; + 53 ©1, A = ¢ ®cF,
i el - -1
v(xg) = ‘(Cﬁz)] ¢ P xe ™ (é{])) g

-1 — =
v(c;i) = (r:-i) ) V(e“m-‘) = g 1,

I
where .:;-i eU.(su(2)), i = 1,2, are fixed elements. One can check that the Poisson
structure on P_(su(2)) corresponding to (4.11) can be realized by means of the

canonical Poisson structure on the phase space P(R?) as follows:

lg.p) =i, D.(x3) =g Dx5) = ePg(q),
I3 1

8:(q) = (k+sin[z(s—@)])(yssin[(g+s+1)] + y_cos[z(g+s+ 1)) i

where k, s C are constant parameters. Thereby making use of (4.4) and (4.5), one

can coustruct a new class of Liouville integrable Hamiltonian flows.

5. The Heisenberg — Weil coalgebra structure and related integrable flows.
Consider the Heisenberg — Weil algebra commutator relationships (4.10) and related
with them the following homogenous quadratic forms ;

5
XXy — XX = oy = 0, % :
R(x),-.w . . (S1)

XXy — Xqx = 0, XXz, — XgXy = 0 .
where ae C, x;e A, (= 1,3, are some elements of a free associative algebra A.
The quadratic algebra A/R(x) can be deformed via

il
XXy — leIa\fl = Of.).‘i' = O, o
) R.(x). (5.2)
XjX3 — X3y = 'D, AgXy — 22_1.:\:3):2 =0

where z;,2, € C\{0} are some parameters.

Let V be the vector space of columns X := (x, xé,.xg)T and define the following
action

hp: V=(VOVH RV,
where, by definition, for any X e V *
h(T) = T®X.
It is easy to check that conditions (5.2) will be satisfied if [9]
TuTys = TaTi Tl = & BT, Tl = Tah,
TnTis = Taln,  Thy = 2Twhy, Tuls = 4 Tl
ThWTay = 7Ty, BTy = 2110y,
T\ — 225271 = 72211275 — BT, ' (5:3)
T - a2l = 5T0Ty — 2015,
TuTn — Tl = 4T2h) — & Tyl

(T11Ts — 2iTiaTay) = 0T53 — 3Ty + 7T3, %
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Put mow for further convenience z; = 7 :=z2e€C and compute the “quantum”
determinant D(T) of the matrix T: (A/R,(x))* = (A/R,(x)):

D(T) = (1T = 2Ty Tj2) . (5.4)
Note here that the determinant (5.4) is not central, that is
p7'g, = 1,07, DT, = OG0,
D'y = TD™',  27°D7'T = T,D7,
; ; B (5.5)
D'y = TD™',  7PD7'Ty = D7

DTy = D7
Taking into account properties (5.3)—(5.5), one can construct the Heisenberg — Weil
related coalgebra T_(h) being a Hopf algebra W1th the following coproduct A, counit
€ and antipode Vv:

A(T) = T®T, A(D_l) = D“@D“I,
; (5.6)
8l = . ey =1 Wyt wib) = b
" Based now on relatiorfships" (5.3), one can easily construct the Poisson’ tensor

{A(T) A(T)}?.u.)@? (m ({T f}_@zm)) o ﬂZ(A(i‘))'

subject to which all of functionals (4.4) will be commuting to each other, and
moreover, will be Casimir ones. Choosing some appropriate Hamiltonian functions

H Ty = 4AN-0{31 ()
for N e Z, one makes it possible to present a priori nontrivial integrable Hamiltonian
systems. On the other hand, the coalgebra U,(h) constructed by (5.5) and (5.6)
possesses the following fundamental K-matrix [4] property:
R(@DT®NUBT) = IBT)TRNRK(2)

for some complex-valued matrix R(z) € Aut(C3 QC3 ), z € C. The latter, as is well

known [4], gives.rise to a regular procedure of constructing an infinite hierarchy of
Liouville-integrable operator (quantum) Hamiltonian systems on related quantum
Poissonian phase spaces. We plan to consider their special cases interesting for
applications elsewhere. '
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