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SYSTEMS OF DIFFERENTIAL INEQUALITIES
WITH INITIAL TIME DIFFERENCE

CUCTEMU JUOEPEHIIAJILHIX HEPIBHOCTENA
3 IOYATKOBOIO YACOBOXO PISHHITEXO

Some comparison results are formulated for systems of differential inequalities starting from different
initial points.

Cq:dpmynbouano JlesiKi mopiBinoBaiLili pesy ibTaTH JLISA cHeTeM AU epeHianbHEX HepiBHocTel 3
PisIHMH TTIOYATKOBHMH TOYKAMH.

1. Introduction. Differential inequalities are important in the theory of differential
equations to obtain, for example, some existence results or to discuss the problem of
stability. The investigating of scalar differential inequalities with initial time difference
was initiated in papers [1 —3]. In this paper, we extend this discussion to finite systems
of differential inequalities with initial time difference to obtain more general results.
We need to use vectorial inequalities which are understood to mean that the same
inequalities hold between their corresponding components. Also when we deal with
systems of inequalities certain properties known as quasimonotone nondecreasing and
nonincreasing properties are necessary. _

Using such an approach we can compare two solutions of differential equations
starting from different initial points.. As we shall see there are several ways to obtain
corresponding comparison results.

2. Comparison results. Put

Ci = C(R,,R"), Cp = C(R,xR¥,RP)

with R, = [0, e). First we start from a compariscn result s:imjlar to the known
result [4].

Theorem 1. Let o, Be C;, Ae C‘([rg,ou) ['l:g, m)) A(rg) =1y, A(t) 2
for t 2 ty, M =1—ty >0 and Fe Cy. Let F(t, x,y) be nondecreasing in t
for each (x,y). Suppose that one of the following condzﬂons hold:

(Hp):

(i) F(t, x,y) is quasimonotone nondecreasing in x and y for each t and
there exists L > 0 such that foreach i =1,2,...,p

. ; "
Fi(t,x,31) — Fi(t,%3,3) € LY, (%= x5 +y;—y) foreach t
j= :

when x| 2 x5, y1 2 Y3,
(ii) , _ _
o’(t) € F(t,0t), at)), t=21220, oty < xp,
B'(2) < F(t,B(0), (1)), t2720, P(to) 2 xp;

(iii) if A(t) > 1 for te Q c [ty, =), then F(A(t), B(A®)), B(A®)) 2 0
te Q; ' ‘
(Hy):
(i) F(t, x,y) is quasimonotone nondecreasing in x for each (t,y)and
}zonincr‘easfng in y for each (t,x) and there exists L > 0 such that for each i =
1,2,...,p
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p
Fi(t,x1,9) = Fi(t,x3,9) € LY, (x;—x;) foreach (3,y),
o

. " . . f) ' . % .
Fi(t,x,y;) — F;(t, x,y) 2 =L E (ylj —yzj) foreach (t x)
j=1

when x; 2 x5, ¥1 2 Y2
(i)
o(2) < F(1, alt), BIAGEY), 21,20, alty) < xp,
B = F(8 B(E), o A7N(1), 27120, B(To) 2 xp;

(iii) if A(t) > 1 for te Q [to,m) then F(A(2), B(A(t), o(2)) = 0, te Q;
(H):
(i) F(t, x, y) is quasimonotoné nonincreasing in x for each (t,y) and
nondecremmg in y for each (i, x) and there exists L > 0 such that for each
=1 2w

; ; I P
Ff(rl xll J’) - Ff(rlxlay) 2 “LE (xlj_-xzj) for eaCh (f,y)‘
j=l A

=

Fi(tx,y) - Fi(tx, ) < LY, (w;=y;) foreach (tx)

when x| 2 X3, ¥ 2 ¥3;
(ii)
(1) < F(t, BIAW), (1), t21,20, olty) < X
B'() = F(t,o(A™1(£)),B(), t2720, PB(1) = xp;
(i) if A(t) > 1 for te Q [ty =), then F(A(L), o(t), B(A()) = 0, te Q;

(Hg):
(i) F(t, x,y) is quasimonotone nonincreasing in x and y for each t, and
there exists L > 0 such thatfgreach i =1,2,...,p X3 .o
p “ L
Fi(t,x;, 1) = Fi(t, x5, y;) 2 Z(xu %)+ —Yq) foreach t,

when x| 2 x5, ¥| 2 ¥s;
(iD)

o'(t) < F(1, B(A®), B(AM)), 121420, alf)<x,
B'(t) = F(t, (A~ (1), a(A (D)), t=21520, P(Tp) = xp;

(iii) if A’(t) > 1 for te Q c [ty, =), then F(A(r), o(t), o(t)) =2 0, te Q.
Then (a) olt) < B(A(2)) for t 2 ty, and (b) O'.(A"l(t)) < B(t) for t 2 1.
Proof. In view of the assumptions,

A() = A(ty) + AE)t—tg) 2 Tp+t—tfg=t+M >1 t21,

for some &, by the mean value theorem. i
Suppose that Assumption (H;) holds. Put By(#) = B(A(#)), so
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Bo(te) = B(A(t)) = ﬁ(‘tg) 2 xg 2 0(ty).
Let |,
Bo(t) = Bo(®) + E8PPHDH ¢ > 4,

forsome € > 0 and € = (g,¢,...,&). Note that Eo(r) > Bo() for ¢t = 15, and

Bo(to) > Bo(to) = o(ty). Hence, in view of Assumption (H,), for i = 1,2...,p we
have

Bor(t) = Boi(AMA'®) + 2p+1LeePPIH >
2 [A}(E)_I]Ff(ﬂ‘(r_)’ Bo®), Bo(®)) + F(A®), Bo (1), Bo(®) + @2p+1)Lee®PDL >

> F(AG), Bo(®). Bo(®) — F(A), Bo(®), Bo() + (2p+DLec®P VL 4

+ F(A®), By, Bo(®) 2
— — B §
> F(A®, Bo(0), Bo®) — 2L Y, [Bo; () —Bo; ()] + 2p+1) Lee?PDL =
j=1
= F(A®, Bo(®, Bo(®) + Lee®P*™ X > E(A®), Bo(), Bo(®), 1= 1.

We need to show that afl) < Eo(r) for t = t;. Assume that it is false. Then there
would exist anindex j, 1 <j < p and #; = t; such that

o(t) = an(fl), o) < Bﬂj(fl)a Lst<i,

and oy(t) < Boi(4y) for i # j. It then follows that of(;) = Bg;(#). The above
considerations and the quasimonotonicity of F yield

Fy(, oy, on)) 2 () = Bgyle) > (A, Bo(t), Bor) 2
. > Fj(A), aly), (1) 2 Fi(n, oty), o) (1
since F is nondecreasingin t and A(t) > t, t 2 t;. This leads to the contradiction
whlch proves that o(t) < [30 (), t = tg. If e =0, we conclude that

at) < Bo(®) = BA®), 2 1.

Conclusion (b) results from (a).

‘We shall next show that conclusmn (a) and (b) hold when Assumption  (H,) is
satisfied. In this case the proof is similar to the proof of the previous case and therefore
we only indjcate needed changes. Note that

Boi(e) = [A()-1]F(A®), Bo(®), ot) + F(AG), Bo(e), o(®)) —
~ F(A@), Bo(r), at) + F(A(), Bo(r), ou(t)) + (2p+1)Lee®P™DE >
> (A(t) Bo (), oc(r)) + (p+1)Lee®PLs,
Instead of (1) we now have
B, oda Bow) = o) > Fya) >
> F(Aw), Bo(t), alt)) + (p+DLee®POla >
> Fi(Aw), ), Bo() + (p+DLee®Pl >

2 F(Aw), on), Bo(w) + Lee®P D > Fy(1y, aa), Bo(n)-
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This proves that () < Bu(f) t 2ty andif € - 0, we conclude that (a) holds.
Indeed (b) results from (a).

The conclusion relative to (Hs) and (H,) can be proved using similar arguments.

The theorem is proved.

Remark 1. Let a 2 1 and A(t) = a(t—15) + 7Ty, t 2 t5. Then A(f) = Tp,
A(@)=az1,1t21t, and

AN = %(r—to) +ty, 121

In this case the assertion of Theorem 1 takes the form:
(@) at) < Blo(t—1ty) +10), t =1,

(b) 0:[ (t—1p) + ro] Bw), t=zm,.
If p=a=1, F(t,x,y) = F(t,x) and Assumption (H;) holds, then we have Theorem

2.1 [2] (see also [5]).
Remark 2. Let

t+m, ; t&[to, 1n);
L .
A = 4L ;') + & ‘1)2(“ L D e N
t+m +%(‘2—f1)3s . - >,

for n = 19—ty > 0. Then A(ty)'= 19, A€ C'([ty, =), [7p, =)). Note that

1, telty, 4];
A() = 4~ —1)* + (1) =) +], te(t, b))
1, : 21,

so A(t) =1 for te [ty ;] U [15, oa) and A’(t) > 1 for te (1, t,). Indeed, A
exists.

Also we can consider the case where t;.> 1. By (H;), (Hy), (H3), (Hy)" we
denote respectively Assumptlons H)p, (H2) (H3), (Hy) in which we replace condition
(iii) respectively by

(iiiy’ if 0 < A(f) < 1 for t€ Q, then F(A(2), B(A(t)), B(A_(t))) <0, teq,

(iii)" if 0 < A'(2) < 1 for te Q, then F(A(2), B(A(z), () <0, te Q,

(iii)’ if 0 < A'(f) < 1 for te Q, then F(A(t), o(t), B(A()) < 0, te Q,.

(i) if 0 £ A(t) < 1 for te Q, then F(A(r),a(r),a(r)) < 0 te Q.

Then we have the following theorem.

Theorem 2. Let o, B e Cy, Ae C([ty, =), [19,%)), A(fp) =1y 0SA (1)< 1
for t2ty, M =1Ty—~1ty <0 and Fe Cy. Let F(t,x,y) be nonincreasing in t
foreach (x,y). If one of Assumptions (H) or (Hy) or (Ha) or (Hy) holds,
then the conclusions (a) and (b) of Theorem 1 are valid.

Remark 3. Let the assumptions of Theorem 1 or the assumptions of Theorem 2
hold. Then, in any case of Assumptions (H;) or (Hj)' for i,j =1,2, 3,4, we have 16
possibilities of the systems of inequalities, for example,

o'(t) < F(t,a(), o), t21t20, oty < xp,
B'(r) = F(1, B(), B(1)), t27320, B(Ty) = xo,

or
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SYSTEMS OF DIFFERENTIAL INEQUALITIES WITH INITIAL TIME DIFFERENCE 143

o'(r) < F(&, BA®), B(A(E)), 2120, ofto) < xo,
B'(z) = F(t, a( A~1(2)), a(A-I(t))) 121,20, Bl = x

This rcsulr.s from the quasimonotonicity of F and conclusions (a) and _(b) of Theorem
1. _ i _ ) : ;

In the next theorem we assume that there exist minimal or maximal solutions of
corresponding equations instead of the assumption that o/ and B’ satisfy some
inequalities.

Theorem 3. Let o,Be C;, A e C'([ty, =), [19, =), A(ty) = Tp, F e Cp.
Assume that one of the following assumptions hold.:

(Hs): N(@®) =21 for t218, N ="T-1t >0, F(,xy) unondecreasmg int
for each (x,y), Assumption (H,) (i), (iii) holds and

(@) /() < F(t,a(t), o)), t 2ty 2 0, ou(ty) < xq, and there exwtsfor t =
> 1, the maximal solution B of equation B'(t) = F(t, B(t), B(t), t = 75 = 0,
B(T0) = Xo; -' -

(Hg): A1) 2 1 for t 21y, M = T9—1ty > 0, F(¢, x,y) is nondecreasing in t
for each (x,y), Assumption (H,) (1), (iii) holds and

®) B(t) = F(t,B(), B(t)), t =215 2 0, [3(1:0) xg, and there exists for t 2
> ty the minimal solution o of equation o/(t) = F(t, a(e), a(t)), t = tp 2 0,
oty) < xp;

(Hy): 0 AL 1 for t 24y, M =15—1y < 0, F(4, X, y) is nonincreasing
in t for each (x,y), Assumption (H,) (i), (iii)’ and condition (a) hold,;

(Hg): 0= A (1)< 1 for t =21y, n =Ty—1ty < 0, F(t,x,y) is nonincreasing
in t foreach (x,y), Assumption (H;) (i), (ili)" and condition (b) hold.

Then conclusions (2) and (b) of Theorem 1 are valid.

The special linear case of Theorem 3 is the Gronwall inequality in this framework
which we state as a corollary (see also [2, 3]).

Corollary 1. Let m, A € C(R,, R,), A € C'([t, =), [Tg, <)), A(ty) = 7o,

and

t + ! .
_m(t) < mitg) +.[ MsIm(s)ds, 215 20.
fo

IFA()y=2 1, t=2ty, n = 19—ty > 0 and A is nondecreasing, then =

A1) : t S
m(t) < m(ty) exp J' Ms)ds | = m(ty) exp IA’(S}?L(A(:))dS ; T2,

iy fn

and

: .
m(A7'(#)) < mty) exp J'x(s) ds | < mlty) exp [ Mo)ds|, t2.

T fo

If n =1y—1ty < 0 and A is nonincreasing, then

] t :
m(t=m) < mtg) exp | [ AMs)ds < mity) exp | AMs+myds|, ¢ 2 15,

T ' To

and
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t
m(t) < m(ty) exp j Ms)ds|, t21.
T
Also we can formulate the following corollary.
'+ Corollary 2. Let m, A € C(R,, R,), A € C'([ty, =), [tq, =)), A(ty) = 7o,
and

m(t) 2 mity) + [ Ms)m(s)ds, t 215 20.
To

If A'(ty =2 1, t 2 1y, \ = T9—1ty > 0 and A is nonincreasing, then

'
m(A(t)) 2 m(ty) exp [j A(s) d.s], t 21,

Iy
and

0] . ”
m(t) 2 mlty) exp jr As)ds | = mlty) exp j (A" (;)) x(A"(s)) ds

fo To

Jor t 2 15, If 1 =15—1y < 0 and A is nonincreasing, then

r
m(t+m) = m(ty) exp Il(.r)ds . 12T,
' L]

and
- f
m(t) 2 m(ty) exp J AMs)ds| = m(ty) exp I AMs—m)ds|, t=n1.
fn Ty

In Theorems 1 and 2, the monotonicity of F with respect to the first argument was
assumed. Now we formulate corresponding comparison results when we do not need
this assumption.

Theorem 4. Let o,Be C;, N = 19—ty > 0, and F € Cy, Suppose that

Assumption (H,) (i), (ii) holds. Let the condition
T
@v) [ F(s, 0s), o)) ds < 0
fo
hold. Then o(t) < B(1), t 2 7.
Proof. Note that
T
a(tg) < alty) + [ Fls, os), as)) ds < olty) < B(To).
n
Now, if we put

B(t) = B(t) + EPPHIL 4> g
then repeating the proof of Theorem 1, we obtain o(f) < B(#), t = Tp. Letting e — 0
finishes the proof.
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Remark 4. Let p = 1, F(t,x,y) = F(t,x). Suppose that condition (iv) and
Assumption (H,) (i), (ii) hold. Then we have Theorem 3.1 [1].

Theorem 5. Let o, pe C;, M = Tg—1ty < 0, and F € Cy. Suppose that
Assumption (H,) (1), (i) holds. Let the condition

y
™) | F(s,B(s), B(s)) ds = 0

™

hold. Then o(t) < B(t), t =
Proof. Indeed, in this case we have

B(to) = B(to) + | Fls, B(s), B(s) ds 2 B(to) 2 oulrp)-

The rest of this proof is clear.

Theorem 6. (A) Let the assumptions of Theorem 1 (without (H,)) and condition
(iv) hold. Then the conclusion of Theorem 4 holds.

(B) Let the assumptions of Theorem 2 (without (H,)") and condition (v) hold.

Then the conc!uswn of Theorem 5 holds.
Proof. This results from Remark 3 and 'I'he.orem 3 or Theorem 4, and therefore

the proof is omitted.

" The theory of differential inequalities is useful to discuss the method of upper and
lTower solutions, monotone iterative technique, global existence and stability criteria.
Corresponding results for differential problems with initial conditions are considered,

for example, in papers [1-3, 5, 6].
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