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ON THE RELATION BETWEEN FOURIER AND LEONT’EV
COEFFICIENTS WITH RESPECT TO SMIRNOV SPACES *

PO CIIIBBIIIHOI]]EHHH MIZK KOEOIIIEHTAMH OYP’ €
TA JIJEOHTHEBA CTOCOBHO IIPOCTOPIB CMIPHOBA

Yu. I. Mel'nik showed that the Leont’ev coefficients Kf(l) in the Dirichlet series f -
zxm k(M) —— % (1) of a function feE"(D), 1< p <eo, are the Fourier coefficients of some

function Fe L ([0, 27n]) and that the first modulus of continuity of F can be estimated by first
moduli and majorants in £ In the present paper, we extend his results to moduli of arbitrary order.

10. I. Meuinnik nmokasas, 1o koedpinienrn Jleorrrnena x(A) » psyrax Hdipixye f ~ me k() x
A .
2

b3 m Juist pynxudi f e EN(D), 1 < p < e, e koedinienramy @yp’e ju geskol dynkuii Fe
1S LP([O. 27]) 1 mwo mepiuHil MojyJiL llenepepniiocti F MOXKIa ONMIHHTH NMEPIIHMH MOAYJIAMH Ta
MadkopanraM B f, Y janiit erarri foro pesyJIyTaTH MOMMPENO 12 MOJIYJIi IOBI/ILIIOr0 MOPAAKY.

1. Introduction. Let D be a closed convex polygon with vertices ay, ..., ay, N >
>2, D itsopen part, and 9D = D\D the boundary of D. We assume that the origin

belongs to D. As is customary, we denote by EP(D), 1 < p <<, the Banach space
of all functions f(z) which are analytic in D and satisfy

I£1, := sup _[[f(z)‘ﬂidz| < e,
MENT‘"

Here, (Y,)uen 1S a sequence of closed rectifiable Jordan contours vy, < D which
convergesgto dD. The sPace;E*’.’(D) is called Smirnov space.

Consider the quasipolynomial L (z) = Ef;idkeakz, where dpe C\{0} and ax
are the vertices of D, k=1,...,N. Let A= (A, )en be its sequence of zeros. We

can expand functions fe EP(D) with respect to the family &(A):= (¢*%),cy into a
series of complex exponentials, the so-called Dirichlet series

e i!l'
f(z) ~ 12 K (M) 77— HOL | 1
where
K (Ay) = }:d e“*"mjf(n)e Fallg, @)

44

The indexing of A is chosen such that (A, |),en is nondecreasing. The coefficients

Kf(lm) are called Leont’ev coefficients. Many results on these series are due to
A. F.Leont’ev [1]. B. Ja. Levin and Ju. I. Ljubarskii showed in [2] that, for p = 2, the
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family &(A) forms a Riesz basis of EZ(D) and, hence, the series (1) converges uncon-
ditionally in norm. In [3], A.M. Sedleckii proved that, for arbitrary 1 <p <ee, the

Dirichlet series (1) converges in norm since &(A) forms a Schauder basis in EP(D).
To estimate the rate of convergence of these series, Yu. I. Mel’nik studied the rela-
tion between Leont’ev coefficients and Fourier coefficients, since, for the latter, many
results on approximation and rate of convergence of the Fourier series are well-known
(see for example [4]). He showed that, under certain conditions, the Leont’ev

coefficients of fe E(D) are the Fourier coefficients of some function F e L”([0,
27w]). He estimated the regularity of F with first moduli of continuity. In the
following section, we will state his results. Extending his Theorem 1 to moduli of
smoothness of arbitrary order, we obtain Theorem 2 in Section 3. The last section
contains the respective proof.

2. Yu. I. Mel’nik’s results. Yu. I. Mel’nik considered in [5] and [6] the relation

of Leont’ev coefficients of fe E (D) to the Fourier coefficients of some suited func-

tion Fe LP([O, 27t]) for first moduli’of continuity. His first step was the reduction of
the integral in (2) to a Fourier transform:
Lemma 1 [5].

(i) Let ® e I°([0,2n]), 1<p<oe, and R(v)> 0. Denote
D) 1= > dy(®)e™,
m=n(j)

where
2n
dy(®) 1= [ ®E)™EdE,  m 2 n().
0

Then ® e L”([0,2n]), and ||®@| < const:||®| for some positive constant only
depending on p.

(ii) Let fe EP(D), 1 <p<co, For fixed 1 <j <N, the Leont’ev coefficients
(Kf(a'(:{;}))mzn(j) are the Fourier coefficients of some function F; e (o, 2n)),

and "FJ”H, < const - || f|lge-

This result was extended in [6] using first moduli of continuity. Consider the para-
metrization z: dD — [0, T] of dD

a-_,_l-aj .
z(u) = a; + u—T;,) for T;_ Su<T;, j=1,..,N,
] laj+l"aj|( J V) -1 i

where To:=0, Tj= Zi=1|“k+i““kl and T :=Ty := 2f=1[ak+1—ak|. For

fe EP(D) and 0 <h<2m, let
P Up
deJ +

8i(F, h)p 1= ﬁ‘,{[

in
]
n-h

The function &,(f, h),, is continuous, nonincreasing, and vanishing for h— 0+.
Theorem 1 [6). Let fe E'(D), 1<p<ee, andlet 1<j<N be fixed.

o ISSN 0041-6053. Yip. mam. #ypin., 2004, m. 56, N* 4



ON THE RELATION BETWEEN FOURIER AND LEONT'EV ... 519

Then the Leont’ev coefficients K p(X: N, m 2 n(j), of f are Fourier coeffici-

ents of some function F;e ([0, 21)). Furthermore,

®,(F}, h), < const-(©(fez h), + 8,(f, h),)

The proof can be dedyced as a special case of Subsection 4.2. Yu. I. Mel’nik used
his results in [6] to proof direct approximation theorems for first moduli. As we will
see in the following Section 3, Théorem 1 can also be proved for moduli of arbitrary
order.

3. Extension to moduli of arbitrary order. For an extension of Theorem 1, we

have to define moduli of smoothness of order k for functions fe E”(D). This can be
done using best-approximation with algebraic polynomials.

Let fe E’(dD) andlet IcdD besome arc. For ke Ny, the equation
B D) = ipflf = Blpq,

defines the algebraic best-approximation on the arc I. Here, the infimum is taken over
all algebraic polynomials P of degree at most k. The modulus of order k is defined
as follows.

Definition 1. Let fe E’J(D), l < p < e For h > 0, consider all partitions
aD = U::=| I; with h/2 < IIJ-| < h. The k-th metrical modulus of smoothness
of the function f is defined by

Wi (f ), = @ 5(f, h)'p = sup[%i}r:lkf"f—f’k]b,uﬁ] = sup(%ﬁ'k(f,fj)].

Here, the supremum is taken over all such partitions.
One can show that these moduli are equivalent to usual moduli of smoothness de-
fined on finite intervals [7]. We can formulate Theorem 1 for -th moduli.

Theorem 2. Let fe EX(D), 1 <p <oe, and let 1<j<N be fixed Then the
Leont’ev coefficients Kf(%,{)), m 2 n(j), are the Fourier coefficients of some func-

tion F;e L’ (10, 2x)):
O = LIF(%D ™40 =: ,(F)).

The k-th modulus of F; can be estimated by

. ©(Fj, k), < const-(@(f, k), + 8k (f, 1)), 3)

ip
P

Qi —a;
[aj—i—“——ieﬂ ao| +
J=l n=t \ 11 n

I Up
in s P
a a;
Jrl Y
+{j f(aj-— = e)l deJ .
2r—nh

The function 8;(f,h), is continuous and nonincreasing for 0 <h <2n/h and
satisfies limy_;04 8,(f, h), =0.

where

£
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This result enables us to transform the Leont’ev coefficients (2) in the Dirichlet se-
ries (1) into Fourier coefficients of certain functions F. Since Theorem 2 provides
information on the regularity of F, classical Bernstein theorems can be applied on the
respective Fourier series. This can be used to proof new results on the rate of approxi-
mation of Dirichlet series (1). '

The term 8,(f, h) , cannot be omitted from the theorem, as the following example

shows. Let p=2, f(z)=1. Suppose that L(0)=1. Then w.(f, k), =0, whereas
8¢ (f, h)y = O(y/h) for h— 0 and all k e N. For the Leont’ev coefficients, we have

oy = L - ofL -
K (X)) =T O(m) for m — ee.
We know from Lemma 1 that F;= Emzn(j)'{f(}%))em e L*([0,2n]). The Bern-

stein Theorem [4] yields ,(Fj, h); = O (y/h) since the approximation with partial se-

aN\1/2
J :O[ﬁJ for n = ee.

Thus, the term 8, (f, k), is necessary in (3) (see also [6]).
4. Proof of Theorem 2. 4.1. Preliminaries. Let us first have a closer look on the

n

ties Sy(F) = 3,00 rA8)e™ gives

m>nzn(j)

1

15 -5, = o

Z ﬁe:‘m-

m=n>n(j)*m

%, where d, € C\{0} and a, are the vertices

quasipolynomial L(z)= Eildk e
of D, k=1,...,N. Let A= (A,),en be its sequence of zeros. The entire function
L has the following properties [1] (Chapter 1, § 2):

i) For sufficient large C, the zeros A’ of L with [AY’|> C are of the form

2D = 3D + 89, where AW = 2, qjemf, and 8| < ™™ Here, 0<a=

A —a;
J+l
=const, j=1,...,N, n>ny, and ay,; :=a;. The parameters b; and g; are defined
arer ugis ™ ;
by e%ls1=ape =—d;/dj,;, where dy, :=d;. Hence, there zeros A are

simple. The set of zeros A can be represented in the form

N It
A= {ln}n=l ..... ng U [U {?"(hn}n=n(j),n(j)+l,..‘}
Jj=1
ii) There are positive constants A; and ¢, such that, forall n2n(j) and all § e

e 3G e~ 3
e E-a) _ M E-a) | < 4 o7 Here, [a;, a;] denotes

€ [aj, a,], we have

the line between the vertices a; and @, in the complex plane.

For simplicity reasons, we assume that all zeros of L are simple. We will use i) and
ii) to treat the zeros of L and to estimate the complex exponentials in the Dirichlet
series (1). In addition, we need the following result on multipliers:

Theorem 3 (J. Marcinkiewicz, [8], Theorem 4.14). Let (an)nem0 c C be some
series such that

2!’!1‘]_1
j=2"
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forall ne N6 and some suited positive constant M. Let f= z:=0cne"”" e I7([0,
21]), 1 <p<eo, ;
Then there exists a function h e LP([0,2n]) with i

h=Y cae™ and |h] < coYM|S]

where the constant C(p)>0 only depends on p.
Now we have all means for the proof of Theorem 2.

4.2, Proof. The existence of a function Fe (1o, 2m)) W1th the the prementi-
oned properties is shown in Lemma 1 (ii)- Thus we just have to examine the regularity
of F;. Using conditions i) and ii) of Subschon 4.1, we can'write

K (AP) = 2: dy j F@e G- ~4K) gy
k—.
aj

Mz‘

& | e e + 0@ ”) =
a . .

k=l
s 8 1 —a; 2n i a: —'—a.+l qjemfﬁﬂ"_ .
= d; .L"'__._-!_Jf e s TR g .o gim8gg 4
f +1 ‘f+1 0 . ¢
2n 0 2n )
g
N Fﬁ_; 1 —ni o ]
aj —dy gje 2] . —a
+ 42 g + L —g e e TN 4o +
% At o 2] |
k#j, j+1
+ 0(e™™).

The first term is obviously the n-th Fourier coefficient of some function with modulus
of order ®, 5(f, h),. Using Lemma 1 (i) for the second term, we just have to analyse

the regularity of & with respéct to the regularity of some funétion ® e L([0, 2x])

since o
a; —a
gt —L—F_ 15 0.
aj+17 4
Then the assertion follows from ml’f(fl[aj,aﬁ_,]’ h), S Wi (f, 1),

Let h>0, M(v)>0, ooe R, and ® e L’([0, 2x]). We will show that the series
of coefficients (d,,(®))y2n( j) s the series of Fourier coefficients of some function

® e IP([0, 27]) with
@ (@, h), < const: (@x(®, k), + (D, A),),

k (ke nh p n p
84 (@, h), := 2[ J (j |<I)(u)|PduJ +[ | [q:cujif’duJ 4,
0

n=l1 2m—nh

where

Let ¢ € L({0,2n]). Then
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2n 2n
= J' (A‘k_|a](p)(u)e_mu" du — (ATu]e"mv’)(O)_[ ou)e ™ du =
0

n
2 (__I)k—n[ ]{I ':P u_nlaD —mui g, J' [P(u)e-mu(u+n!andu} -

n=0 0
2m+n| o
= Z( ) o ”{ j(p(u—n‘(ﬂ Mty — J' o(u—nlal)e™™ du =
n=0 nle|:

I

k Al 2m4n| ot
> (_1)k-r1_[ : I Qu—nlol) e ™" du — J ou—nla))e™"dup =
= njlL o ) ' 2

nlot

k k
- (I_e—?.mnu)z (_Dk—.r{ ]J’ (p(u—nia[)e_mmda.
n=0 nJo

‘With notation of Lemma 1 (i), we have

Ko®® = Y, du@@e™@) = Y, du(@) (8 e™)(0)e™ =
m=n{j) m=n(j)

e.g

- J(p(&} _muEdE_\(ﬂk im- )(0) imt
m=n(j) 0

e.a

e 5 ~mui (Aﬁx eim.)(ﬁ) imt _
- { j ( —]o:I(P) (u)e du + A] (_Ailcaie—_mu.)(o) € -

m=n{j)

i k _im
= 2 dm( ékhx[(p) (Age )(0) :'m:+

) m=n(j) ) ( Akq_}g_nw.)(o)
nlol 5
+ 2 Z( 1)"‘"( J | @(u=n|al)e™" du x
-m=n{j} n=0 j

x (l_e—ZKDm) (iﬁe’f)fo} eimr -
(=4 e™™)(0)

- E dm( A—]cx,lq))“m it
m=n{j)

k nlal )
) 2( D UI o (u—nlaf)e™ ™" dufl,e™, @

m=n(j) n= 0
where
(Ak e;’m-)(o)
(=& e )(0)

L= and fi, = (l—e"g“"’”)pm‘

We will show that W, and fi,, are multipliers in L”([0,2n]). Thus, the Fourier se-

ries weighted with (W,)2n¢yy and (L )mzn j) both converge in LP([0,27]). At
first, let us consider ,,. We have
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ON THE RELATION BETWEEN FOURIER AND LEONT’EV ... 523

. m+l k ix
. d _(Age™)(0)
Hont1 K = {d_x (‘“Afaie_m‘)(o)de (5)

and, in addition,

d_(&eMO | _d (-
dx (~Kfp ™)) dx (- @PTE

Let >0 be fixedand || <min{:M(v), 1}. We split the weighted Fourier series in

two parts.
First, let m|a|<8 For m<x<m+1, wehave
i e || _(HL)" _
dx (- A’i‘m[e"‘”‘)(o) dx (1 — ¢RIy

(1 . er',u:f. )k—l

=% (l_e—!xu|a[)k—l

(6)

i l_eixcl'.
dx 1_e—xu]c¢| ’

We investigate how this term behaves for |o| — 0, because for || >y with some

¥>0, the term is bounded in the domain m |a| < & for continuity reasons. For k=1,
it is easily seen that

d. I_e!'xﬂ'.
E l_e—.tu[a]

The second term converges to

—i(1— e el _ ysion (o) (1 — 2%l
(.1’_ e—xu]ot])l

= |o]

— 0. Since m<x<m+ 1 and

1~—ivsign(0c)| .
R e o]

m [oc| < g, we can estimate the whole term by some constant independent of o apd x.
Hence, || <const for m || <& and some constant independent of o. By induc-
tion and equation (6), we get

d _(Age")O <
dx(&A |e"'w)(0)

where the constant does not depend on x and c. Furthermore, |, | < const for
some constant independent of o. Using equation (5), we deduce
m+l
|Wpir = | < const J lot|dx = const |,
m E
and thus

Y Mt — Bm| < const.
m<ef|al

For ® e L”([0,2n]) and @ asin Lemma 1, by using Theorem 3, we conclude

Y c,n((ub)efm' < const- | @], (7

m<el/|al

< const

z Cn (‘i) My er'm-

m<ef|al

since (¢, (®)),ez is the sequence of Fourier coefficients of ®.
Second, let m|o|= €. We define

ISSN 0041-6053. Yip. mam. sxypit., 2004, m. 56, N¢ 4
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1

’ ' — e g
W o= (l_e—mv|cr.])k

and deduce

a __e—.'nulccf)k o _e—(m+I)ultx[)k
(1— e—mu|0r.i)k (1- e-(m-i-l)u|c:[)k

“'L:uH - l‘l‘:lll s [

k
Eﬁzl (_l)k~n (”] e—nmu!ui i e—nujab

(1~ e—muiabk {l- e—(mH)ulaf)k

=]
< e—miﬁ(u)i ol % n

(] _ ehmvial)k (I __e—(m—lvl)uil::i)k s

kYq_ ,—mlal
E:—I (*l)k_"( ]'——1 g
B n

< e*:rrﬁ(n){u[lal (l

Zk - l]k_" (k}(] _ e—nvlctl)

- e-muiu|)k O e-—(.u:-i-l)ufabk

C(k, v)

~m3R(w)|e|
S e |(1]\ e e—.-nulu])k (= B—(m+l)v|cz|)k

< Clkv,8) o] e mTwlel

for positive constants C(k,v) and C(k, v, €). Thus, since |o| <min {0 (v)

Z “J-:,*HI - “-:u| s %lpisﬂaﬂﬂﬂ - LLEE.’IHH—I—II =

mzef|a|

< Clk v, E)Jali g~{[s)‘|a|]+.’.)9§(u)fu| <
=0

) .
< Clk, v, E}|a|1—-9‘(TMe [eNla)oe] o
— &

< Clk, u,s}|o¢[l_—e_1§W < Clk v, )RW).

Obviously, |pj,| < C, for some positive constant C, only depending on €.

for ¢ e L'”([O, 2xw]) with &: as in Lemma 1, by using Theorem}, we conclu

< const- || @

Z Cn (qv)) efm-

mze|af™!

1A

2 CJH (q)) p“:ﬂ eim .

m2e|ef™!

const -

" Denote by

ISSN 0041-6053. Ykp. nam. sxypi., 2004, 1



ON THE RELATION BETWEEN FOURIER AND LEONT'EV ... 525

De(t) i= Y, (@™,

m=efaf™!

ie, cm(d’a) = cm(q)}u:n' Hence,

E Cm (qv)) Ho e Z Cm ((IU’) Mo (] - )k 2

mze|o|™” mze|a™
= E -‘C.tn((‘f)l':)(] _ehnu)kg:'m- = z Cm(Ak_q(vpe)eim' <
m2elof™! m2e]o ™
< |4 ®e] < k41D, < const- D], ©)
where we have used (8). Using (7) and (9), we can deduce
E cm(q))umef”b =
m=n{j)

= Z C,?,((I))p.me';”" o 2 Cm(q))“mehm s

mze|c|™

a(jysm<e|a|™

< const- [|5§>[[

Hence, W, is a multiplierin L”([0, 27)).
The same can be shown for fL,,. We have

|ﬁm+| = ﬁm[ s |(]"e_2ﬂ(m+uu)“m+l = {;_e—?.m!lll)llml < .

—2m (1) ] <

]p-m"'l - u”’l(l +e-'31‘(!!193(u)) + lum+1 ||e~?.ru.=w =g

N

A

Il-’-m-H “'I-lm|(1 W e—'lrl:mﬂi(u)) + ||‘Lm+lle_2m”g{(v)l1 5 e—Z?rul <

< const- ([ T “’ml + e—am)l

for some positive constant a > 0. Thus, fi,, is a multiplier in L7([0,2n]), too. We
have

oo

2 Cin (@) ﬁmemr.

m=n(j)
For |o.| <h, using relations (4) and Lemma 1 we get

< const- | ®|.

|ak®| < +

k s
d,, - A-I ol (D) Ko e
m=n{f)

<

&

ok k) nled )
p3 2(—-])}:_"[ ) J ®(u-n|ol)e ™ dufi, ™
n

m=n(j) n=0 0

2 dm (_ Ak—laf(b) g."m- +

m=n(j)

< const -
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- k k .,'1|C£j .
+ const-| 3 z(—l)k_”(] j ®(u—nlaf)e ™ due™| <
m=n(j) n=0 n/ o
< const-||Ak_|a|¢)H +

z Z(“l)k "[ )—J’( [D‘”Ea”(u)(D(u—"n['al))e_”m”dueim

m=n{f) n=0

+ const-

= const[” Ak—|a|¢|| +

5 S { ] it ) (=l

m=n(f) n=0
) <

i\ (el Vp
< const- mk(fb h), +Z[ J J | (u— n[rx|)|”du =
n

E

< const- (”Aﬁlufiﬁ" +

k k
I TR

n=l

< const- (@, (®, h), + 8,(®, h),),

where %, ;) denotes the characteristic function of the interval [a, b]. Passing to the
supremum leads to

W (@, k), = sup ”a"q)” < const- ((®, h), + 8(D, 1)),

O<|ot]<h
and the assertion is proved.
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