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A GOODNESS-OF-FIT TEST FOR A POLYNOMIAL
ERRORS-IN-VARIABLES MODEL

IIEPEBIPKA AITEKBATHOCTI IIOJITHOMIAJIGHOT
MOJEJII 3 IIOXUBKAMH ¥ SMIHHUX

The polynomial regression models with errors in the variables are considered. A goodness-of-fit test is
constructed, which is based on adjusted least squares estimator and modifies the test, introduced by Zhu
et al. for linear structural model with normal distributions. In the present paper the distributions of errors
are not necessarily normal. The proposed test is based on residuals, and it is asymptotically chi-squared
under null hypothesis. We discuss the power of the test and the choice of an exponent in the exponential
weight function involved in the test statistics.

IMoGyoBano npoleaypy nepeBipKH ajleksaTiocTi noJinomiasisiiol perpecifinol Mopgeni 3 noxmubkaMu y
SMIIIIMX, O I'PYIITYETHLCS 1a aJ[arTHBIIA oriin maiMenmnx Kpajparis i € Momlq_)ixauiem npoueay-
pH. 3anponotosarol B podoti 2Ky Ta in. Ui nepesipkH ajlekpariiocTi JiiniHiol cTpyKTypHOI Moesi 3
rayccosumi nmoxubkamu, Y janift pobori e pumaraeThes, 1o6 posno/iis noxHBoK GYE rayccoBuM.
Banponononana nporie/lypa GasyeThesi 1a SalHUIKOBHX Wielax | XapaKTepH3yeTLes aCHMITTOTHYHHM
Xi-KBajipa1 poanojiijioM NpH 1yJLosil rinoTesi. Bubyelio noTyxIlicTh MpoUeNypH Ta NMHTaHHA NPoO
BuGip nokasiHKa excromeniainsiiol paronoi dynKIi, KA BHKOPHCTOBYETECH B NPOLEypi.

1. Introduction. Cheng and Schneeweiss [1] developed an adjusted least squares
(ALS) estimator of the parameters of a polynomial functional regression model with
errors in the variables. The estimator is consistent and asymptotically normal, and can
be viewed as resulting from the principle of corrected unbiased estimating equations
(see, €. g., Carroll et al. [2], Chapter 6). In Cheng et al. [3] a small sample modification
of the ALS estimator was constructed, which shows good results in small sample and
which is asymptotically equivalent to the ALS estimator. For a further discussion of
related models see Cheng and Schneeweiss [1, 4].

Errors-in-variables (EIV) models are widely used in practical applications.
Therefore it is relevant to develop appropriate goodness-of-fit tests. But most of the
literature in the EIV context dealt with estimation rather than testing. In Zhu et al. [5] a
goodness-of-fit test based on residuals was presented for a linear structural EIV model,
where the distribution of the latent variable and the error distributions were normal.
The normality assumption was crucial for correcting the bias of the test of score type.

In the present paper we modify that goodness-of-fit test for polynomial functional
relations. We assume that the measurement errors possess finite exponential moments
and use an exponential weight function in the test statistics. The bias correction of the
test is performed now on the basis of the exponential moments of the errors, which are
supposed to be known. The test relies on the ALS estimator and its small sample
modification.

Standard notations used in the paper are: Ee and var(e) for the expectation and
the variance of the random variable &, cov(§) for the variance-covariance matrix of
the random vector &, and 0,(1) for a sequence of stochastically bounded random
variables, and 0,(1) for a sequence of random variables which converges to 0 in
probability.

In Section 2 we describe the model and the ALS estimator. In Section 3 we present
the goodness-of-fit test and show that it is asymptotically chi-squared under the null
hypothesis. We introduce local alternatives and investigate the power of the test in
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528 C.-L. CHENG, A. G. KUKUSH

Section 4. There we also discuss an optimal choice of the exponent in the weight
function of test statistics. Section 5 distinguishes two important particular cases, where
the assumptions are simplified: a) linear functional model, and b) polynomial
structural model, where the latent variable is random and has unknown distribution.
Section 6 concludes, and the proofs of the results are postponed to the Appendix.

2. The model and the estimator. We discuss the polynomial functional
relationship

=GB + ¢, (1)

X = E.\f + 5;. (2)

with (; := (1, &, ﬁfz,,ﬁf), k=21, and B :=(Bg, By,..., Be)’, where the g;, i=
=1,...,n, are the n sample values of a latent nonstochastic variable §. The §;, i =
=1,...,n, andthe g, i=1,...,n, are two IID sequences of random errors, which are

independent from each other, with expectation 0. We suppose that o’g ;=Ee? < oo,
and we allow as a particular case that cg =0, which means that the response variable
y can be observed without error. However we suppose that c% := E8>>0. The

variance cg of & need not to be known, but it is assumed that all moments E(Si),
I=1,..., 2k, are known, moreover we will need some exponential moments of 8.
For the observable x, let ¢.(x) be a polynomial of degree r such that Et.(x) =

= Et_,.(ﬁ +8)=¢E" r=0,1,...,2k The t.(x) can be expressed via the moments

ES‘, [=1,...,r seeCheng and Schneeweiss [1]. Denote f=t(x) s=(rp(x), £1(x), ...
S t(x))’, andlet H=H(x) bea (k+1)X (k+ 1) matrix, the (p,g) element of

which is t,.,, p,¢=0,...,k The ALS estimator ﬁ of B satisfies the equation

HpB = 1y. ©)

Hereafter the bars denote averages, i. e.,
- 1 n
Ly s ;Z t(x;) v,

ete. For arbitrary function f we denote M ( f(€)) := hmn_,,,f(e) provided the limit
exists and is finite,
Lemma 1 [1]. Assume the followmg

() E&* < oo
(ii) the M(E") existsfor r = 1,...,4k;
(iii) the matrix. S:=M[C(E)C'(E)] is nonsingular.

Then H is nonsingular with probability tending to 1, and ﬁ =y B, as
n —» e, Moreover the ALS estimator

i’

82 := y* - (iy) B, )

converges in probability to 0’3, as n— oo,

3. Construction of the test and bias correction. For the response variable y and
the corresponding latent variable &, we consider the following hypothesis with ﬁxed
k=1,
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A GOODNESS-OF-FIT TEST FOR A POLYNOMIAL ERRORS-N—VARIABLES MODEL 529

Hy: forsome By,....Br, E(y—-Bo—Bi&—...—-BEH =0 (5
versus _ .
H,: for all BD,....,B,,, E(y—By—Bi1E—...—BE") isnotidentical 0. (6)

If we want to use the residuals in a test statistics for the hypothesis H, based on
observed y’s and x’s, we have to consider the expectation of the residual with x in
the place of £ in (5). However as discussed in Zhu et al. [5],

E(y—Bo—B1x—...—Bexh) # 0,

even if (5) holds true. Therefore a bias correction is needed.
We perform the correction as follows. Let w(:) be a weight function, then H,
implies an equality

E[(y-¢Bw®] =0 7
We want to construct polynomials sq(x), .Is‘l (x), ..., 5,(x) such that under H, .
E[(y—s(x)B)w(x)] =0, _ ®)

where s(x)=s= (50(x), ..., s,(x))". Itis possible to satisfy (8) if one choses w (x) =

= e™, with fixed A #0, provided the corrcspondlng exponentlal moments of & exist.
We assume the following:

(v) E[(1+]8]%)e?®] < e
Denote M, := E{Srem). For the chosen weight function, (8) holds if for each £
E'Ee™ = E(s,(E+8)e™), r=0..k 9)

We have sy(x) =1, 5;(x) =x—},L1ﬂ.L0 We look for s.(x) in the form s,(x) =
= Z;zo b,j xd. To fulfill (9), we have the relations .

1 ¥ J‘l ; .‘. i : |
b =1, brp =S 2 { )IJ—_;_Pbrj, p=r—-1,r-2,...,0, (.10)

Ko j=p\ P
WhICh enables us to derive all the coefficients in succession. In other words the vector
=(b,g, by, .-, b,,) satisfies the set of equations
Ab. = e, : _ ; (11)

Here e,=(0,0,...,1) € RYFDXL and A e RUFDXUHD) s an upper triangular
matrix with entries

J
ap = (p}.tjup, O<sp=j=r (12)

Then b, =A"'e,. Thus (8) holds with

r—l1
&i(x) = Ebcfo + x', . (13)

j=0

where b.;=b,;(1y /Ko, ..., Kr_j/Hg) are polynomial functions of the ratios.
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530 ' C.-L.CHENG, A. G. KUKUSH

Now, with the polynomials (13) we consider a statistic of the score type
1< A\ Ax A\ Ax
= =D (y—s(x)B)e™ = (y—s'B)e™. (14)

Remember that the bar denotes average, and B is the ALS estimator given in (3). We
need further assumptions to derive an asymptotic expansion of ~/nT.

™) E[(1+8%)e**] <
This condition is stronger that (iv).

(vi) The M(E"e*®) exists for r= 0, 1, ..., 2k
(vil) E — ME") = o(n™*), as n—s e, for r = 1,...,2k

Remark 1. If &; are IID random variables with E|§|8k+a < o, where o > 0

fixed, then (vii) holds a. s. Indeed, by the law of large numbers we have M(E") =
= E&r a. s., and by the Rosenthal moment inequality, [6],

n Atalr dr+on
1 . 5 constE|§
1Y (-ve) < EEL
R "
Therefore
1/4 4+oufr 1
E[n (ﬁ -E&" } < METTEI
and

— 1
= METT <9
n=|

and (vii) holds a. s. by Chebyshev inequality and Borel Cantelli lemma.

Remark 1 shows that the condition (vii) is realistic, it holds a. s. for a structural
polynomial EIVM if € has finite higher moments.

Lemma 2. Assume (i) to (iii) and (v) to (vii). Then

1 < 7
nTyy = —= ), gle " —t(x;) f) + n; + op(l), (15)
VnT ﬁg{ .f( f ) p’ J‘Z P
where 1; are independent random vectors with expectation 0, and
m; = (G- sG)e™ + (H; = Gitte)) S (16)
fi= S"M(C(&)e"@)uo,

where § comes from (iii) and g = Ee™®
Now, we introduce some more assumptions in order to apply the central limit
theorem in Lyapunov form to the sum of m;.

(viii) For fixed >0, E[(1+]8*"*)e®* ] < o, and E|e|***<

(ix) The M (E"e™) exists for r=0, 1,..., 3k and the M(&rengj exists for
r=0,1,..., 2k
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A GOODNESS-OF-FIT TEST FOR A POLYNOMIAL ERRORS-IN-VARIABLES MODEL 531

(x) Forfixed o> 0, |E[HH% 4 ARHOE 4 | 2eta A2+l < congt.

Condition (viii) absorbs conditions (iv) and (v), and condition (1x) absorbs
condition (vi). Condition (x) means that the higher empirical moments cf E are
bounded.

d

Lemma 3. Assume (i) to (iii), and (vii) to (x). Then [nT,, —— N(0,0%),
where

oF = GEM[E(eJ"‘—t’f)Z] +

H M ,
+ [P, ®p] [co{vec(ff)—vec(cr’)]] Fap

Fi=8"tam( Q(ﬁ)elé)ug, and ® is Kronecker product, and
M(cov (Z (&, S)j) := lim cov(Z(§;, 8)),
n—yes

Z(&, ) is avector function on & and 8.
Under the conditions of Lemma 3, the approximation of o“% is given by

A2 = SR +

' oy A .
+[.ﬁ',ﬁ’®éf]ﬁ[, thr e J[ B} (7)
S \vec(H)— vec(Ct’)_ ®@pB

Here f and Gov are approximations described below.

a) f=H 5™, because H —‘D) S, and

p lim s(x)e™ = lim - EE(S(& +5)gl(§.+8))
n—yes

npes By =]

= b lim E®M = poM(§(E)e™)

( (SO J [ (3] Em@]
cov = 3
vec(H)—vec (L) ) Zpn®)

and we describe the approximations flg to M(Z;;(8)). We'have

Ib) Now,

2

E“ - E(S():)S()C)! ZJ.X) + CC)nggEeZ\.S _ Ce_lﬁ _ E{S(I)’EZla) _
~ E(s(x)e*e? = U, + Uy - Us - Us.

Then an approximation to M (U, (€)) is given by U; = s(x)s(x) e We
denote by §.(x), r=0,1,..., 2k, the polynomials given in (13), but constructed for

the exponent A :=2A. Thus

EEe™ = E(5E+8)e™), r=01,...,2k
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532 C.-L. CHENG, A. G. KUKUSH

Then U, = ( ,+_,(x)en't]: 750" Now, the entries of U3 can be transformed to the
sums the values £ Een'x, and plimn_ﬁ.,,.?,.(x)ezh = M(E"ez“), r=0,...,2k. In
U; we replace the summands F;’Eenx for Er(x)en", and by this way obtain U.
Finally £,, = 0, + U, - Uy — U,. Next,
i, = E(vec(H)e™’) — B(vec (H)e™s(x)) — E(vec ({r)e™L’) +
+ E(vec (§t(x))e™s(x)) 1= V) = Vy — V3 + V.

Now, 1}2 = vec(H)elx s(x). Theentries of V|, V3 and V, can be transformed to
the sums of the values &’Ee;b’. But plim,_,.s.(x)e™ = M(Q’Eeh—), and we

construct further approximation by replacing ?;rEelx for s,(x)eh. Finally }3;3 =
=V, - V- V3 + V. Next,

%, = E(vec(H)vec(H)') — E(vec (H)(vec (L)) -
— E(vec (Et')vec (H)') + E(vec(gr’}vec(gr’);) =W, - Wy = Wy + Ws.

‘We have Vi’l = vec(H)vec(H) . The entries of W,, W3 and W, can be transformed
to the weighted sums of the values £’, and we construct the correspondmg

approximations by replacing &" for i t.(x). Then we set Ezz = W Wz - W + W},
Thus we described the way to construct the approximation of thc covariance matrix

in (17),
[Ell z"12 J
2;2 i|‘?.2
and A2 in (17) is well defined.

A test of score type is then defined by

2
T = %BZ (y;-—s(x,-rﬁ)e“f] . (18)
n L% =)
Denote
ga e (E---wék)’,
R TR )
7 Iy ot gy
H, = Iy I3 R ¥T
e By ot By
ﬁa = (Bys- P

Then the vector 1 presented in (16) equals 1 = [0, 5 ]’, with
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A GOODNESS-OF-FIT TEST FOR A POLYNOMIAL ERRORS-IN-VARIABLES MODEL 533

Ny = (5 =s55) + (H; “Ca")SuIM(Ce}'E)MO:

and we can rewrite the expression (15),

AT = \FZ (4 =ty £) + ﬂ;%Zna,f rop(1).  (19)
=1

A covariance matrix of Tm; can be expressed as follows, compare with cr% in

Lemma 3,
L = eav(n,) = cov[[k(Ca—sa)elx+(f’®fk)vec(ﬂa—§5 t')].

Hereafter I € R*** is unit matrix, and

~ 55 e?u I
B = [I;c,f'®fk]cov[ G =5) J[ g ] (20)
vec(H; — ;1) LS @I,

Since T2 = (/nT], o)?/A% and A2 is a consistent estimator of G2, we obtain by
Lemma 3 the next result,

Theorem 1. Let the conditions of Lemma 3 hold. Assume additionally one of the
following two conditions:

(xi) oM [E(™ —tf)] # 0;

(xii) By # 0, and a matrix

D = M[COV[ & _Sa)e:u ]]
veo(H; =)

Then under Hy, we have T> 8 Xz
4. The power properties of the test. Consider a sequence of models indexed by

n of the following form, with a given function g: R— R:

o ]- .
Hln: Yi = C;B + ﬁg(éf) + g, X = &; + 5;, s -, 1 (21)

is nonsingular,

We list the restrictions on g.

(xiil) M(ge™®) and M(gE") exist, r = 0,1,... , k.

(xiv) lgz(l_—H';M +en§) — 0, as n—> oo,
n

Under H,,, we have for certain C,

1 & .
Y, (3= sty Bl — N(C, 1), (22)
'\{;Aﬂ i=1
From (22), the next results follows.
Theorem 2. Assume the conditions of Theorem 1 and conditions (xiii), (xiv).
Then under Hy,, we have

72 & 5 ki, (23)

where
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534 . C.-L. CHENG, A. G, KUKUSH
C = B2 (ge™) M (81157 M (L), (24)
0

and xlz(C) is a noncentral chi-squared random variable with one degree of freedom
and noncentrality C.
Remark 2. To make the procedure more stable, it is better to use in the test

statistics T,, and 3’;3 given in (14) and (18), with the small sample modifications
EM and GE‘M instead of {3 and G2. Cheng et al. [3] showed that for small sample
size ]§M provides better approximation of [- than the ALS estimator, while
Jn (ﬁM - {3) —2 5 0. The latter relation implies that Theorems 1 and 2 remain valid

for the modified test TzM as well. In the tests considered below in subsection 5.2, it

is also preferable for stability reasons to incorporate BM and cre. u Tather than B
and 62

From Theorem 1 we can determine the asymptotic critical values by chi-squared
distribution. By Theorem 2 the asymptotic power of 'If against the local alternative
21)is 2— ®(Agjy = C) = ®(Ag/z + C), where @ is the standard normal d. f. and
Agyo is the quantile of normal law. The asymptotic power is an increasing function of

| C|. Therefore, the larger | C|, the more powerful test we will have.
First we discuss, for which g the power is the largest. Till the end of this sactmn
suppose for simplicity that &; are IID random variables, independent from {¢g;, §;, i =

2,...}. Then

o

: = E(ge™) - E(gt')(ELL) E(Le) = E(th(i)) (25)
0

where h, comes from the orthogonal expansion e;’Lt =pE) + hx(é), with a

polynomial p (&), degp(E) <k, and E(E Ay (E)) =0, r =0,..., k. The ratio

Cc* /) g® Hiz is maximal if g(&) is proportional to hy(E), g(&) = hy (&), say. As

the moments of & are unknown, we give a consistent estimator for &;. We have

Ba(8) = M — (BLL) V2B EE)(BLE)?,

and the desired approximation is given by
®) = & - (A1 st e ()
0

This is, up to a constant factor, an asymptotically optimal choice of g(&) in a local

alternative (21), when the weight function w(x)= e™ is fixed.
Now, consider an opposite problem. Let g be fixed, and we want to choose
optimally an exponent A. The function C = C(A) is given in (24), and we have to

maximize Cz(i\.) in the domain A € (—=, 0) U (0, ) (provided all the exponential
moments of & and § exist). This is a nonlinear optimization problem, and it can be
solved numerically. Of course one has to incorporate the approximations for Cz(%),
constructed by the given data.

Consider a border case A — 0. Then under regularity conditions the right-hand
side of (25) equals
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A GOODNESS-OF-FIT TEST FOR A POLYNOMIAL ERRORS-IN-VARIABLES MODEL 535

ktl 4 . .
¥ = 2 %[E(gaf)—E(gg}(ECCf)—lE(g&J)] oE O(lk+1),

j=0
But for j=0,1,...,k, the expression in brackets equals E(géj) - E(gﬁ')e_,- =0,

where e;€e R(k+1)’<l, J-th component of e; equals 1, and all the rest from 0

j
component to k-th component equal 0. Assume that E(g&’f"l) #0, where EXM1 s

orthogonal component from the expansion of £**! w.r.t. L., :=span(1,§, ...,£5
in the L, space of random variables. Then

x = E(g&") - E) N B TEEES) # o,

and ¥ = KlkHK(k + !+ o(?u“l), as A — 0. Now, investigate the behavior of
0%, as A — 0. For the value (16) we have the following expansion for small A,

Ni = (G —=s@))Ax + (H; = §it(x)") ST AE(Ex),

which has the order A. Then 6%- = var ([3'&5) + cg E(e’“ —#f)? has the order A7,

p=0 or 2, and from (25) we obtain that C>(\) has the order A Z*2/AP = 2 2%+2-P
therefore lim, ,, C*(A) =0, and for small A the test has trivial power.
~ Itis possible to show also, that for a polynomial g(E) with degg=>k + 1, and for
Gaussian &, lim,_,, C‘z(?L) = (. In this case there exists an optimal A € (—e=, 0) X (0,
+ea),
At last, suppose that £ is normal and g(§) = ™%, Then we observe a kind of
resonance effect, and for large X, the optimal exponent Aqp = Ag-

Sometimes the conditions of Theorem 2 can be valid only for |7\.| < const. Then
A gpt has to be searched at this finite interval.

5. Particular case. We specify the results in two important cases.

5.1. Linear functional model. We set k = 1 in the model (1), (2). Thus we
consider a linear model

yi=Po+PBi&i+te, x=§+8, i=1..n

where &; are nonrandom. Now, s(x) = (1, x — p;/R), and T, =

= (y = ﬁo —(x—p; /g )B1)9M’ where B = (ﬁa» ﬁl)’ is the ALS estimator. Now, in
(15) we have

n

s _ 1 2: [ oA ’ 1 Eﬂ g
H'I_:.,G - I?n pox e.‘(e t(xf.) f) iz Bl f—n e na,r + op(l)’
and

n; = [.Ei-a)e“ + (8,68 +8* - a3)f,

=[ L ME

-]
M(&) M(€2)J M(gelﬁ)uo, g = (1,‘;;);.

Now, see (20),
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536 C.-L. CHENG, A. G. KUKUSH

var(n;) = [L, f ]cov([::‘ 8)31“,8, §8+82—0§)[1, Y. (26)

A consistent estimator of f is given by

1 X b/ AR T T
f= — eh (x—&] :
5 x~ 0'5 . Ko/ .
The procedure for constructing the approximation cov ' of the covariance matrix in
(26) is described in Section 3. For this purpose one has to approximate M (E),

M(&z), M(e”:), M(&elg), and M(éeng)‘ The corresponding approximations are:

— S T
X, x° = CF%, Lel":, i[x——}—ji]elx, and E?_M.
Ho Ho Ho

Then it is easy to define A,%, which approximates G%,
a2 T B s ~ —1“?"
Ay = (By) [1 7 Jeov[L 7] + 82(eM -1y F)"
The proposed test statistic is given by

Ee

2

Iy = fi (y—ﬁo—(xmulfuo)ﬁx)e“]z-

And Theorems 1 and 2 hold true with k= 1.

For a linear model, we can compare the proposccl bias correction procedure and the
one from Zhu et al. [5]. In that paper in a structural mode:l under the normality
assumptions they had (in our notations)

E[y-Bo-(BB)x|x] =0 as,
for certain correcting coefficient B, and this implied -
E[(y—Bo = (BB)x)w(x)] =
for any weight function w(x). Instead, in the present paper we have instead for
w(x):eh, and s;(x)=x—l, /1Ly, that _
E[(y—Bo—Bs(x))w(x)|E] = 0 as,

which also implies the unbiased relation

E[(y—Bo —Bisi(x)w(x)] = 0.
Our approach uses less information about the distributions in the model, and our
procedure of the bias correction is totally different.
5.2. Polynomial structural model. In this subsection we assume the following
condition

(xv) {&, i=1,2,...} is IID sequence, independent from {g;, §;, i=1,2,...},
and the distribution law £ () is unknown.

Then by the strong law of large numbers, the limit values M (f(E)) in our

assumptions will be equal to Ef(E) a. s., provided the expectation of f(&) is finite.
All the explanations and results from Sections 2 — 4 are still valid if to understand there

the expectation as a conditional expectation given &, while the assumptions are
simplified. We give the corresponding statements. We consider the following

hypothesis with fixed k21,
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A GOODNESS-OF-FIT TEST FOR A POLYNOMIAL ERRORS-IN-VARIABLES MODEL 537

E[J’“BG"_BI_F;"-»_Bkékiﬁ] = O, ool 8. fdfsom_e B.U."f"ﬁk

versus local alternatives

Hi [y Bo—PB &~ —Bkékm --—g(ﬁ)fi:l = 0 a.s. for some Bo,“.,B,
; (27)

where g is a fixed Borcl measurable function.

The following Lemmas 17, 2’, 3 and Theorem 1’ assume that Hy holds true, while
Theorem 2’ is stated under Hj .

Lemma 1", Assume the following:

()Y E8% < o, and EE?*
(iii)’ the matrix, S :=E(L(&)L (&) is nonsingular.

Then B—)Bas,andcﬁﬁaas ; ] .
The proof follows from the central limit theorem for IID rahdom variables.
Remark 3. Condition (111) holds in each of the following two cases:

a) for certain interval (a, b) arandom vanable E-I (€ (a,b)) has posmve
density at (a, b), or

b) £(&) has atleast k+1 atoms
Now, T, is defined by (14), with the same polynomials s (x).

Lemma 2'. Assume (i), (i)', (v) and the following:
(i) BE* < e

iy E((1+E75e™) < .
Then

””'«FZ (o r(x,)f)-vB\F}:n,wp(l) (28)

=1

where m; are independent random vectors with expectation 0, and
A ‘
Ny = G =st))e™ + (H; =&it(x))f,

fi= ST B,

where § comes from (iii)’. :

In the IID case we need not Lyapunov condition for the central- 11m1t thaorem
therefore it is easy to take a limit in (28). ;

Lemma 3. ‘Assume (i), (i), (iii)’, (v), and the foﬂowmg conditions:

(vidi)’ E[(1+52")32’*5] < oo L
(ixy (1§|3’~ &%) < & and E[(1+§"‘)e”‘?] < os,
Then [nT,, —%s N(o oF), where |
- LA, _I hx
o7 = oé-E(e“~'rcx)'f.)2+[ﬁ’_,f'®B’-]cm{ Gl J[ 4 }
. o \veed) - vee(§r) L7 @B
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Fis S_IE(C(C;)eM)pU, and the covariance matrix is considered for a vector which
depends on random & and x=§E+ 8.
Let Ar be a consistent estimator of o7 introduced in Section 3, and T :=

2
= (‘\/;T;rﬂ) IA:?'
Theorem 1’. Let conditions of Lemma 3’ hold. Suppose also that one of the
Jfollowing two conditions holds:

. 2
(xi) crE(eM —¢f) # 0
(xii)" By # 0, and a matrix
A
(€5 —s5)e™
vec(H; —L;1")

o := cov

is nonsingular, where the covariance marrix is considered for random & and x.
Then under Hjy, we have T> —%— x
Remark 4. Inequality E(e ¢ f) # 0 holds in each of the following two

cases: a) when conditions a) of Remark 3 hold, orb) £ (E) has at least k + 2 atoms.
And then, under a) or b), condition (xi)* holds provided G§ # 0.

Remark 5. In the case k=1 we have a linear structural model. Then, see (26),
d = cov{[ EI -8 Je“, 8,8+ 8% — 0%).
0

IF cov (8, 52, els, de JLS) is positive definite (e, g., if & is Gaussian) then @ is also
positive definite, and condition (xii)’ holds for B, 0.

Now, we pass to the local alternative.

Theorem 2’. Assume the conditions of Theorem 1’ and next condition

ity E[(1+]E[f +e*)ge)] < o.
Then under H, ,, we have T" = xl (C), where

C = B[E(e™) - E(l)s E¢e],
T

and x?(C) is a noncentral chi-squared random variable with one degree of freedom
and noncentrality C.

6. Conclusion. Using an exponential we;ght function we constructed a goodness-
of-fit test lor a polynomlal EIV model. The distributions of error can be aubltrary, but
we supposed that certain moments and exponential moments of 5 are finite and
known. The test is based on residuals, and the bias correction 1s performed via the
exponential moments of 8. Though the structure of the test resembles the one
constructed by Zhu et al. [5] for a structural model, our idea of the bias correction is
totally different and free from normality assumption. The test relies on the ALS
estimator of the regression parameter, but for practical use it is better to utilize the
small sample modification of the estimator, which is more stable and does not differ
from the ALS estimator for large sample.

We proved Lhat the test is asymptolically chi-squared under null hypothesis. We
introduced a local alternative by adding an additional (small) summand to the
regression part, and showed that under the allernative hypothesis the test has non-
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central chi-squared asymptotic distribution. We discussed the power of the test-and
also two related issues: a).the optimal choice of the alternative for fixed weight
function, and b) the optimal choice of the exponent in the weight function for fixed
local alternative.

The test is applicable to the structural model as well, where the latent variable is
random, but its distribution is unknown. We reformulated the results for such a model
and showed, that we need weaker moment conditions than in the functional-case. In
the structural case the dlscussmn of the power of the test is more transparent.

It would be interesting to develop a goodness of-fit test in a structural EIV model,
where the distribution of the latent variable is known, say, Gaussian. This additional
information has-to improve the power of the test. It looks plausible in this case'to
incorporate the cost function or the score function of the corresponding consistent
estimator, e. g., the ALS estimator or the quasilikelihood estimator.. If all the
distributions in the model are normal, it is better to base the test on the quasilikelihood
estimator, because the latter estimator is more efficient than .the ALS oné, see
Schneeweiss and Nittner [7] and Kukush et al. [8]. .

Acknowledgement. The authors are grateful to Prof.-Hans Schneeweiss (Munich,
Germany) for fruitful discussions.

Appendix. Proof of Lemma 2. From (3) we have B = H (B +t€). We
substitute it into (14). _ e

Tpo = e[ — A se™) + p(LM T A 5e™) i= F+ B'Gr (29)
We divide the proof into several steps.

a) First we deal with ﬁﬁ; ‘Hereafter the apprommate. equahty = means up to
summands of order o,(1), as n— =" .

.We derive an expansion for H™'. For 0<r<2k we have
R 2 1~ 2 o ow
E(r,.~j = —22 (r (x,‘)—li}") -0, as n—yeo, ,

by conditions (i) and (ii). But &’ converges to M(E") by (ii). Therefore f, ey
L 5 ("), and B —£ S given in (iii).
Denote A := H-S, A =0. Then

B = (L +5"'R) st =57 - 57 RS i,
and ‘ _
lrall = 1 705D
We show that +/n|| A ||* = 0. Using (vii), (ii), consider for 0 < r <2k,

E[(E,.—M(&’))Z] = :—12 E(t,(x) &) + (E-M(gf_)f =
: =1, ' .
= o) , o)
= = + ,\/E
Then ~n(f—M(E7))° = 0, which implies n[| K[>~ 0, and ||5] =
=0,(1) / n. Now, [nef H- LseM = [ner S se™ — ner S Ase™. Butthe

last summands converges to 0 in probability, because -J;at’ = 0,(1),
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=0,(1) and A = 0. By the definition of s(x), we have

p lim s(x)e™ = lim E(se™) = hm Celgu

e ] i ]

Therefore

Jnef H- sel“' = Jr-&‘._f;S_iM(Cem)iio-
Thus '

ViE, = \ne(e™ — ¢ ST Cmo) = Vne(e ~1 7). 30)
b) Consider /nG,. We have | _ '
J7G, = ﬁ(?-—?S"seT+FS‘IXS'1F).
But similarly to :1”4” A||= 0, itis easy to show that 4/n(Lr'—5) = 0; we have

also se = »(1). Then

Jnlr SRS s = JnAS st = ﬁ(f_{S"'se“—sel"'),

NG, = n—-s)e™ +(H-Lr)S " st
Again, J n H-C = 0,(1), because E(H-{t') = Ee'—t't=0, and se™ wkliy
—L s M(Ese™) =M(Celg)ug. Therefore

JnG, = JnC- +H-L)F. (€3]

From (29) to (31) we obtain the representation (15), (16).
Proof of Lemma 3. By Lemma 2 we have

I 1]
TRy » % &

where :
Zj = a;(el""‘ —r(x,-)’f) + B’[(Ci = s(x))e™ + (H, "C;‘-‘(xf)’)f]

are independent random vectors with expectation 0. We apply the central limit
theorem in the Lyapunov form to the right-hand side of (32). We have to check the
following two conditions.

a) lim - EEZ“ o7

a1
n— =1

b) For fixed o> 0, Z E|Z *** < const.

J=l

For Z; we have the representation

l.r;-
z; = g™ —1x) ) + (B, f @) il }

 LveetH) —vee (G4
Then
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BZ! = cgE(e’“‘r‘ —:(x,-}’ff +

L% e el.\‘;
+ [B;’ ft ®B/]covli (g.' S(*"I)) . ]|i B ]’

vec(H;)—vee(§;t(x)) LA @B

and from this relation the condition a) follows. The limit exists due to conditions (i),
(i), (vii), and (ix).

The boundedness b) takes place due to (viii) and (x). Then by the central limit
lhcowm

”._'_1;2 i 2 —f N(O, 05’;),
i=l '

and Lemma 3 follows from (32) by Slutsky lemma."
Proof of Lemma 1. Additional conditions of Theorem 1 provide that 0’%— given in

; N 2 ; ;
Lemma 3 is positive. Then (J—T],o) /o2 —%5 x?. But  A? is a consistent

estimator of o7, therefore 7 n = (J_T,,U) ;’A” =Ly %%, under vahdlty of Hy.
Proof of Theorem 2. We assume now that H; , holds. Then -

B= g (r§’|3+re)l + H‘]ﬁfg(i)-' ' (33)

But ﬁ"'(EB+E) —P 5 B asthe ALE estimator of B iinder Hy; F"] = 0x(1),
and : ; ; :

L -5) - YGE) + L PEED
E(—ffgti)) = (ﬁg(i)) + g(E)E(f i),.

and this tends to 0 by (xm) and (xlv) Thclefore. (33) 1mplles that - [3 ey B under
H, , as well. ,

Now, y=§ + g(x)/ ﬁ ~with ¥ := y’ Hy» 1€, § s the value of "y under Hy.
We substitute it and (33) into (14) and observe that

Vo], = N0T0| y + (86— H 56, (34)

where T‘u[ H,, and 7;:0\ Hy, are the values of T, under H,, and HO,
respectively. Bul due to assumptions (xiv) and (xv) we have, as n— oo,

g™ = gBEM = pogtet — poM(ge™),

and ge?“ il ;LOM(CelE), see the proof of Lemma 2; }:1""'1 L2 557! and
gt’ = gEr = gl — M(gl’). Therefore from (34) we have

ViTo|m, = NGuGR). @5)
with C) = o[ M (ge™%) —M (85)S™'M (§e*%) ).

Conditions of Theorem 1 hold, and from the proof of Theorem 1 we have or# 0.
Therefore (35) implies
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[J_ 1102 Hy ) d xl(cw) (36)

Oor Or

P 2

Next, due to (xiii), (xiv), 65 —— 0, under H, , as well, therefore the estimator

A?' constructed in (17) corwcrges in probability to 0‘%- under H, , as well. Then
(36) implies 77| 5, —9 %{(C).

Proof of statement in Remark 3. We have to show that 1, &, ..., EF are linearly

independent in B~ Suppose that for certain constants ag,...,ay we have ap +
+aE+... +ak§k=0 a, s. Incase a) we have ag + a;u+... +akuk: 0 for ue (aq
b) almost everywhere w. r. t. Lebesgue measure, which implies ay=a; =...=a; =
=0, and 1,&, ..., ﬁk are linearly independent in 72,
In case b) we have a; + a, Up+ ... +ak(uj)k=0, J=1,2,...,k+1, where uf,...
, U are the atoms of the distribution £ (). And again this implies ay =
=agi=..=a,=0.

P:oof of Lemma 2" It follows the line of the proof of Lemma 2. . We only point
out the expansion of -l Now for IID 2';,, E(H)=.S, and by (1), (n)

Then ﬁ”K”z =0, and H!= ﬁ(S" —S~'As™"). The other computations are
performed similarly to the proof of Lemma 2.

Proof of Lemma 3’. We apply the central limit theorem for IID sequence to the
sums on the right-hand side of (28). Conditions (viii)* and (ix)’ provide the existence
of the corresponding second moments.

Progf of Theorem 1°. Under (xi)" or (xii)’ the asymptotic variance 0% is
positive, and Theorem 1’ can be proved similarly to Theorem 1.
Proof of statement in Remark 4. We prove by the contrary. Suppose that P
—t(xYf=0 a.s. Thena.s. we have 0= E[elx —t(x) fl &] = uoelg— C(EY S, and
- 2 f {:‘f
=0 Ho
In both case a) or b) we obtain that
-3 &
i—0 Mo
for at least k+2 different values of u. Then there exists a point ug, such that

gkt _ Pl [i i"—u"J

k+1 k+1
du du =0 Mo

at point ug, or A**! M0 =0, But this impossible for A # 0.
Proof of Theorem 2’. The ALS estimators |§ and 6% are strongly consistent

'estimators of B and oZ, respectively, under H {,n as well, and A,? — 0% a.s. under
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H, , also. Now, (34) holds true. And due to (xiii)’ by the strong law of large
numbers we have a. s. that '

lim [ge"-"—g?ﬁ'"lse?*-“) = E(ge™) - E(gr)S 'Ese™ := ¢,

fi—3ee

and

), e g(8) 2 g,

2| .
T;I | H[.n A?- I Hl.n xl
i

with C defined in Theorem 2’.
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