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THE ENTIRE SOLUTIONS
OF THE EULER - POISSON EQUA’I‘IONS

LI PO3B’I3KHU PIBHAHD EMJIEPA - IIYACCOI-IA-

All entire solutions of Euler — Poisson equations are presented.

Hanejieno sei 11ini pose’ sskwu pisieim Eftiiepa — Myaccona.

Introduction. Solutions of the Euler — Poisson equations as-analytic functions can be
investigated by means of the properties of these solutions in_the singular points. But
besides, it is necessary to remember that there exist the solutions which have no
singular points. In [1], necessary and sufficient conditions for the existence of such
solutions were proved.

In this paper, we completely solve the pr oblem of searching of the entire solutions
to the Euler — Poisson equations. We prove that the sufficient condition for the
existence of the entire solutions formulated in [1] is necessary too. Then we present
the full collection of the entire solutions. -All these solutlons are the Euler {2],
Lagrange [2], and Grioli [3] well-known partial solutions.

1. Preliminaries. We analyze the Buler — Poisson equations in the following form:

Ap = ApXp +yxr,
. ()]
Y =vYXp _
where p = (p;, pa, Pa) € c?, Y= (1. Y. V3) € Ca, A symmetric ‘o_peral;or. A

R> > R, r=(r), r,r;)e R>. System (1) has the following first integrals:

5(z) = Z(Ap.p) + (1.1)
M = Ay -

() = (7. 7)
where

.3
} = ny,

is C-scalar product in C.

We use the notations: z (t) =(p(t),y(®), By =A;=A;, Ciy=24-Aj
L=, 243,

We use the circle permutation- of the indices ¢ = (1, 2. 3) for ertlnf’ the products
or sums (for example, 2 AjAy = AJAs + AsAs + AsA |, H A=A 14243) and
expressions which differ one from another only in the circle pcrmutahon of the indices
(Y =YX p, can be written as Y| = p3Y, —P3Y3, O)-

Let € act as a transformation group on CS in the following way:
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678 A, V.BELYAEV

8: (1, P2 P2 Y1a You V3) = (Bpy, B, Bp3, 827, 077, 673).

It is well known that the factor-space by this action:[4] denoted by B isa compact
holomorphic manifold. The canonical projection m: cé— B maps the foliation:[5]
-induced by flow (1) onto the-foliation F of the compact holomorphic manifold B,
The trajectories -(p(t), y(t)) are invariant under the action 8 because if (p(t),Y(t))
is a solution.of system (1), then (0p(61),8%y(6£)) is a solution too. :Hence, the
image 7(z(t)) . of any trajectory is the fiber of the foliation ¥ on.the manifold B,
Besides, .if z(t)— e, then w(z(t))— X% where X% = {n(z): H(z) = M(z) =
=7 (z)="0}. It means that all singular points of the solutions z(¢) .of system (1) are
.projected onto-the singular points of the-foliation F [ i of the manifold X2

" Definition 1. The algebraic system

ApPx p% + YOxr + AB° = 0,
- )
VOxp® +2¥y° =0

is called a characteristic system for the Euler — Poisson equations.

Proposition 1 [6). Let HU Biory # 0, then there exist two types of the nonzero
solution .(-,i’)ﬁ. 'f?c') of the characteristic system (2). '

The o-selutions have.a form

-

besides if ((ﬁ?, ;'53 ; .,5:? ), '?0) is a solution of system (2), then there exist three more
solutions of (2)
=0 =0 =0 =0 =0 _=~0 =0 _ =0 _ =0
(_.p|’u‘P2!p-3)» '(_Pls_p'_’.l_zu_'i)l (pl’__PZ‘—P3)'

The B-solutions have a form

s0 - [CA=PCA-p) oo _APXP
P — , 0, ’Y S (3)
: J By B, (p.r)
where p is aroot.of the equation
Z 1i(A = p) (24, —P)(2A3 —p) By = 0 4)
o

or a root of the polynomial

% :[ i B (A —p)* (24 —p)? (243 —p)* —

g
— 202 2By By (s —pY (A3 —p22A -] 24 ~p>] -0
= a
Proposition 2 [6]. Let A, = Ay, 15 =0, rr;(243—A,) # 0, then the
characteristic system (2), in particular, has the solutions of the following form:

24, +24 "
ntin’ mEin) -

B = (0,%£24,0), ¥° = [
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50 o (7240 24 o) co - (24 4245 o) &
G G 1 Ut

Proposition 3 [1]. All singular points of the foliation }'le have the form
n(ﬁo,'?o], where (ﬁo,’f'ﬂ) is a solution of (2), if

ag a

Proposition 4 [1]. The singular points of the foliation F, which have the form
n(ﬁo, '7{0), correspond to o~ or PB-singular points of the solutions of the Euler —

Poisson equations with the following asymptotics.
The asymptotics of the o-singular points has the following form:

2 , 4
p() = P + oquy + Y, yitLn't + Zafvi,f + o(1),
0 2

_ ) _
Y(t) = oy t72 + kpOLnt + kovy + 0gpT + Y xjLn't + asv_ it + o(2),

0
arg t = const; here, 0, ..., s are the free parameters, u;, v;, V;, %i, k; are
expressed in terms of A;, r;, and (_;"JG, ?0) is the o-solution of the characteristic

system (2).
The asymptotics of the B-singular points has the following form:

-— u-—
p(6) = P+ Bougt™ ! + B 4 Byuyt + Byust? +
F (20T yp . pihotiA =1
+ Byugtd 4.+ Y BoBOY yy et 4
i+j22 :
— — - u_
Y(6) = ¥ + Bougt 0™ + B0 2 4 Byuy + Baust +
i RONjn sihg+A0—2
+ BavgtZ 4.+, BB x0T +..
i+j22 ;
where B:, By, BY are free parameters, Ui, Vi, Vi, Xij are expressed in terms of
Ay, 1y, B 70, (ﬁo,'?o) is the B-solution of the characteristic system (2).

Theorem 1 [1]. For the existence of the solutions of the Euler — Poisson
equations (1) without singular points, it is necessary that

[18:3 nvVBs =0
a a

For the existence of the solutions of the Euler — Poisson equations (1) without
singular points, it is sufficient that

2 n -/ B23 =%
o .

Remark 1. 1t follows from the proof of Theorem 1 that the existence of entire
solutions of the Euler — Poisson equations is connected with the departure of the roots

of the characteristic system Z° to infinity. This takes place under the condition

> 1By = 0.
a0
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2. The criterion.of: the existens of the-entire solutlons to the Euler — Poisson
equations.

Proposition 5. Let some root 7° of the characteristic system tend to infinity if
Al - Az- Then !
lim 7(z°) = (1:£i:0:0:0:0).
A|—)A2

Proof. The condition A, = A, gives the possibility to assume without lost of
generality that r, =0. Therefore, we suppose that A; — A, -and r, — 0.
If aroot p of the equation (4) tends to infinity, then it follows from (3) that

n(z%) - (1:2i:0:0:0:.0) = z...

If p is bounded, then by (4), p tendsto A; orto 24, orto 2A,.
In the case when p — A, it follows from (3) that n(ﬁo)—) s
Let p— 2A,, then accordingly to (3) p3 — *%2i{, p, —~ =ip;. Substituting the
limiting values of p; and p,==+ip, into (4), we obtain
A= 3
311

and then we find ‘7(0 from (3). This values p°, ?0 coincide with solutions (6) of
the characteristic system. Thus, in the case p — 245, the condition of the proposition .

is not satisfied because Z° does not tend to infinity.
Finally, let p — 2A, if A = A,, r, — 0. We obtain

2A
(A = p)af (243 =p)Byy + 1(Ay — p)\[ZAI P (243 —p)Byy +

_ + 13(A3 —p)y/ QA —-p)Bj; =0
from (3).

Since the last term is much less than the first one, we have

¥ . J_r;_’ 2A,—p.
1

Thus, ;-J? = a(ﬁg) and pY = o(ﬁg)._ According to [6], ZG (ﬁP)z = —4,
consequently, ;"73 — +21i, ,5? — 0, ﬁg — 0, and we obtain root (5) of the
characteristic system (2). Again, we receive the contradiction with the condition of
proposition, which proves it.

Theorem 2. The Euler — Poisson equations have nontrivial entire solution if and
only if the following condition is satisfied:

Y 4By = 0. @)
o
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Proof. It follows from Remark 1 and Proposition 3 that the solution z(¢) of the
system (1) may be entire only if fiber 7 (z(t)) enters the singular point z_ and does
not enter the singular points 11:(20)‘

Suppose that condition (7) is not s_atiéfied. Let us consider the foliation F under
conditions A; =A,, r, =0 and prove that there do not exist nontrivial fibers entering
the singular point z., in this case.

Similar to [1], let us write the differential equation of the fibers of the foliation F
in the neighbourhood of the point z_:

APy = By pipy + 1i¥s — i3y — Aypaf,
A3ps = =11V, — Aspaf, (8)
Y = ¥Xp - 2fy,

where f=(~Bs pap3 + r3%)(Ap;)”", p) = const.

Let us consider linear approximation of system (8) in the neighbourhood of the
singular point z,=m(1:i:0:0:0:0). For the simplicity, assume p, = 1 and make
the replacement p; — i+ p,. T

‘We obtain the following system:

Aipy = riYs = 13Y) — ina,

Aspy = =11y,
Yy = —i%, )
Y2 = Yas

Y3 = i — Y-

Since (iy; — ¥2) =0, we have iy, =7y, for the trajectories entering the singular
point. Besides, r| #0, otherwise condition (7) holds. System (9) takes the following
form:

Apy = 1%,
Aspy = =1 Y, 10)
Y, = —ig,
Y3 = 0.

The system (10) of the differential equations has the solution:

Ya= Y0, V1= Yio — iYoh  P2= Pao * T Yaohs
in .
= — —L (v ot — iYapt2).
P3 = P3g 2A3( Yiot — ¥30t")

We see that the trajectories of all solutions do not enter the singular point. By
means of Picard iterations, one can obtain the asymptotic behavior of the original
nonlinear system and see that all trajectories do not enter the singular point z., too.

However, this trajectories do not form the full collection of the trajectories in the
neighbourhood of z_, "because there exists the plane of singular points of system (9):
N =N%=7=0. ;

Let us consider the domain U, in which the norm of vectors of speed to the linear
system (9) is much more then its nonlinear perturbation by system (8). Then the
trajectories entering the singular point are in the complement of the domain U. For
this trajectories, the following estimate takes place:
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¥ = ol p2|+1ps))- (i

* The system (8) of differential equations with the equation [L = —pf has three
integrals

. A 2
Ayipy + ;3;:3? + Y+ = opd (12)

Ay + Ajis + AipaYa + AapaTs = i,

I+ Y5 +73= 03}1 (13)
It follows from relation (13) that

u? = of| p2|+|psl)- (14)

Substituting (11) and (14) into (12), we obtain that p, = o(p;). Then we present
p- as the product ps,and infinitesimal € and substitute this presentation into original
system of the differential equations (8). We receive & ~ const but it is impossible.

The theorem is proved.

3. The entire solutions of the Euler — Poisson equations for the cases when
26 ri+/ By = 0. We now find all entire solutions of the Euler — Poisson equations
by means of the criterion which was proved in Section 2.

The case ry =ry = ry =0 (Euler). One can write the first integrals in the
following form: '

APt + Ap3 = DV? — Ayps,.

(15)
APpl + Ajpy = D*Vv? — Afp3.
If A #A,, then
2 3 3
A & B J DV*(D— Ay) + AyByyp} DV?(Ay = D) + AsBy p} -
A B, Ay B,

hence, the solution p(t), in general, has the singular points in C.
However, the solutions of (16) are expressed by the elliptic function not always.

First, the linear system (15) can have the null determinant relatively plz p-% when
A;= A,. Second on the ncrht hand side of (16), the irrationality vanishes under
condition D = A,.

Let A; =A,, then the solution

p3() = p3(0),  py(1) = cos[ﬁp3t+q!g]
' (7

. [ B
pa(t) = sm(ﬂpafﬂpn)
A
has not the singular points in €. The same is true for the solutions

= YXp.

It is well known (see for examp]e [2]) that Euler angles have the following
presentation: -

0 = arccosA3p3, Q= arctgA'p' ., Y= VDI ﬁﬂi’;}’"{” (18)
vD Arpy Arpi +A3p3
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and vector y(r) is the linear combination with the constant coefficients of the three
independent solutions

cos(@)cos () — cos(0)sin (@)sin ()
¥ = k| —sin(@)cos () — cos(0)cos(@)sin ()| +

sin(0)sin ()
cos(@)sin () — cos(8)sin (@) cos () sin (@)sin(0)
+ ky| —sin(@)sin(y) + cos(0)cos(@)cos(y) | + k3 cds(cp)sin(e) ! (19)
—sin(8)cos () cos(p)
~ In the case under consideration, the functions sin(8), cos(0) are constant,
sin(@) = "“‘“AIPI—,,',,; cos(Q) = gftng —
§ D*v:—Alp? DV - Aip3
(20)
Y= Qr +
Al Yo |

i. e., the solution of system (1) is explessed by the. entire functions.
In the case D= A5, we have
AIB_?'LP_'_)_:p __. I+C8
Aszs A 3 I = Ceﬂ'\!‘f *
where a is expressed by the parame.tcrs A; of the solid body and ¢ is arbitrary
constant. Thus, in lhe case D= A,, the solution has the singular point in the complex

plane.
The case Aj=A,;, ri=r,=0 (Lagrange)‘ Tt is known [2] that

AP () = Al(zﬂu'“‘ Ay “‘21'31’3)(% —Yg) -

— (Mo~ AspsoYs)® = P3(s). (21)

If roots of the polynomial P,(7y;) are simple, then the function y5(#) is expressed
by the Jacobi elliptic functions and, hence, has the singular points in C. Therefore, let

—ABy pt + AyByps = 0= p3 =

us consider the cases with the multiple roots (see [2]).
Since "v3 € [—-\,J'T ATy ], there are three cases: the multiple root of the

polynomial P;(y;) is equal to —/Ty, /Ty, or lies in the interval (—«;"ZJ ATy )
Let the multiple root be equal to ++/T, then My F Aypsg~/To =0 and 2H 5 —
~ Ay F 3Ty = 0. :
Equation (21) takes a form
. 2 .
AL(¥3)* = (T —¥3)(rs £ T +v3) — Aspso - (22)

Its solution is expressed by hyperbolic tangent, hence, the differential equation (22)
has the singular points in the complex plane.

If the multiple root lies in the interval (—q/‘l‘o, Ty ), then, taking into account

that Pa(iqr‘Td) <0, we get that P3(y3) <0 in the segment [—q}‘:_i‘o,-\a'TUJ
P3(y3)=0 atunique point. Since P;(y3) = A,z('if3)2, we have
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(12)* = 0, (23)
because the number (¥3)* cannot be negative. Then we substitute
' Pr =AY, Py =AYy (24)
into integral of angular momentum and obtain that
A = const. 25)

It means that, in the considered case, the Euler — Poisson equations become linear and
the solutions are expressed by the sines and cosines.

The case 1+ Byy + 1+ By =0, r3 =0 (Grioli). It is suitable to consider this
case in the special coordinates [3] in which the inertia operator has a form

I=|0 5 O
Jy 0 U

and two coordinates of the center of gravity are equal to zero: r; =r, =0,
Besides, the eigen-values of the inertia operator are equal to

7]
h,ﬁ+gt/m—&)+g_
2 4

They are real and positive if J; >0, J;J3> J3.
The differential equations (1) in this coordinates have a form:

Npy + Japy = (J1=J3)paps — Jop pa + 1372,
Bipy = Jopi = Jopi - (Jl—Jsijg -3,
Japy + J3py = Jypaps,

Y = P3%e — P2Yss
Y2 = P15 = P3Yis
Y3 = P2V — PiYe-

The first integrals are equal to

" _
-2-(flpf'+.f2p22+f3p?) + Jopps + 13y = A,

It + Ja(pivs+p3vy) + D\ + a3y = M,
2 2 2 .
Vi+YVa+v3="T
If the parameters of a solid body tend to the parameters such as in considered case,
then some pair of the conjugate solutions of the characteristic system tend to infinity:
7% > z... Inorder to find the coordinates z.., we use the relations

Yo = VPo,

(Apo, Po)=(Po, Po ) ={Po.7)=0,
which were obtained in the proof [1] of Proposition 3. We note that they are followed
from the conditions H =M =7T=0.
We get that p; = 0. Moreover, without lost of generality, one can suppose that
py =1, and according to (26), p, ==(. The case p,=( is similar to the case p, = —i,
therefore, we consider only first one. It follows from (26) that v, =V, =iV, y3 =0,
where v is some constant, which will be found below.

(26)

ISSN 0041-6053. Yip. atam. :xypit., 2004, m. 56, N® 5



THE ENTIRE SOLUTIONS OF THE EULER — POISSON EQUATIONS 685

Similar to [1], let us write the differential equations which present the foliation F
in the neighbourhood of the point z..:

Jipy + Japs = (J1=J3)pap3 = Jop P2 + 13%a — (1P = Jap3) [,
Tiby = Japi = Japs — (Jy=J3)pipa — 131y — Jipaf,
Japy + J3py = Jypaps — (ap) +3p3)fs ' (27)
Y2 = P13 = P3Nt — 2%/, '
Y3 = p3Yi — P1%a = 281

1l

here
P PaYs —PaYs:
: 2y,
It follows from the first equation, that J, = vr3. Now let us write the linear

approximation of this system with the replacement: p; = 1+p|, ps = i +py, ¥V —
=V, o= Vi+Y,:

Yi =V,

S1=2J5, Jz’Yz J 1‘1’3I
v 2y’

J1py + Japs = —=Jaip; — Jopy +

ur1f?'2 = 2J5p) = > + 2\; )
' Toi o Ioi : 2
Ly + hpy = Zpy+ 2D, @
Yz =0,

3= Vo + e+l
The existence of the first integral 7y, is the reason that only 3-parametric family of
the trajectories of (27) can enter the singular point. Besides; these trajectories touch on
the plane y, = 0. Now we consider system (28) in this plane:
' J =25, Jiyal -
2

+ Ll
3 2v

b + Japy = =Jyipy = Jopy +

. J, =27, J
Iy = 20ypy = =3 py 4 213

2 7 2y -
. . Jot Joiyy
Jopy + faps3 = TZP:’. + 22—:’3:

Y3 = Vpy + ivpy.

System (29) has also the integral v(J;p; + iJ,py + Jop3) + Jo¥3, consequently,
only 2-parametric family of the trajectories of (27) can enter the singular po;nt
Substituting

-V .
Y= J—(J|P|+‘J1P2+-"3P3)
2
into system (29), we obtain the system
J]P] + J"P} = —E—J"“(Jr] +2}7)Pl == g( Jl ‘{“2‘]')) =L 135})3,

2.

Jii
Jir+4J PR ALIP | ’
(1 a)Pl szv 3P3

Jip, =
1P2 Y

2
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Japy + Jyp5 = —El(mt—pz),

which also has the integral (J?‘ + 2J’§]p| + legpz +J5(J, +2J3)ps. Thus,only  1-
parametric family of the trajectories of (27) can enter the singular point.
Finally, the reduction of system (27) has the following form:

)

Jii —JP 0 + JEIZ + 40303 + 40,03 T

= “212(Jl+2.f§)p' T 20y (W= B +205) o
(30)
5 = J?J3+4J§J3+4J1J§'p p K .
2 250,00 +205) ©F 2J—,(J,+2J3) .

System (30) assigns the rotation, because the Jacobian squared of this system is
equal to .

oy +Js)
g 2
7y(I3—273)

and is negative always accordingly to the triangle inequality for the eigen-values of the
inertia operator A. In order to get the asymptotics of the fiber entering the singular
point, it is necessary to consider the solution of system (30) with the imaginary time.
In this case, the.Jacobian becomes positive and the singular point becomes the
hyperbolic. There exist only two Uajectories which enter the singular point in general,
but, in the considering case, there i is one solution w]nch has the both trajectories under
conditions f—> +iw and t——in."

Now, it is enough to test that the well-known Grioli solution considering in the

neighbourhood of the point 2= of the foliation , just assign the fiber, which enter
the singular point.
The par tial solution of the Grioli case is the followmcr

pL=Tsin(2), . py = cos(r), ps= L, (B1).

Y, = Jasin () = Jocos2 (), Y, = J3cos(t) + J,sin (t)cos (1),
_ (32)
Y3 = —J,sin(1).

The direct testing of this fact is simple, therefore, we omit it. Thus, the following
theorem is true.

Theorem 3. All entire solutions of the Euler — Poisson equations (1) are given
by the partial solutions of the Euler (17) — (20); Lagrange (23) — (25) and Grioli
(31), (32) cases.
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