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A NOTE ON THE UNIQUENESS OF CERTAIN TYPES
OF DIFFERENTIAL-DIFFERENCE POLYNOMIALS

ITPO YHIKAJIBHICTbD JEAKHUX THUIIIB
JUOPEPEHIIAJIBHO-PI3HUIEBUX ITOJIIHOMIB

We study the uniqueness problems of certain types of differential-difference polynomials sharing a small function. In this
paper, we not only solve the open problem occurred in [A. Banerjee, S. Majumder, On the uniqueness of certain types of
differential-difference polynomials, Anal. Math., 43, Ne 3, 415—-444 (2017)], but also present our main results in a more
generalized way.

BuBUYAETHCSI MOXIIMBICTH PO3B’SI3aHHS 3a/1ad €MHOCTI JJISl JICAKUX THIIB JH(EpEHIIaTbHO-PI3HUIICBUX TOJIHOMIB, SKi
MaroTh CIJIbHY Maiy (GyHKILi0. Y 1iif poOoTi He JuIIe HaBeCHO PO3B’ 30K BiAKpuTOi 3a1adi 3 [A. Banerjee, S. Majumder,
On the uniqueness of certain types of differential-difference polynomials, Anal. Math., 43, Ne 3, 415-444 (2017)], a #
3aIPOIIOHOBAHO OLIBII 3arabHUI BUIIISI OTPUMAHOTO OCHOBHOTO PE3YIIBTATY.

1. Introduction, definitions and results. In this paper by meromorphic functions we shall al-
ways mean meromorphic functions in the complex plane. We adopt the standard notations of value
distribution theory (see [8]). For a non-constant meromorphic function f, we denote by T'(r, f)
the Nevanlinna characteristic of f and by S(r, f) any quantity satisfying S(r, f) = o{T(r, f)} as
r — oo possibly outside a set of finite linear measure. A meromorphic function a is called a small
function of f, if T'(r,a) = S(r, f). We denote by S(f) the set of all small functions of f. Also we
denote by p(f) the order of f.

Let f and g be two non-constant meromorphic functions. Let a € S(f) N S(g). We say that f
and ¢ share a counting multiplicities (CM) if f(z) — a(z) and ¢g(z) — a(z) have the same zeros with
the same multiplicities and we say that f and g share a ignoring multiplicities (IM) if we do not
consider the multiplicities.

Let f be a transcendental meromorphic function and n € N. Many authors have investigated the
value distributions of f™(z)f’(z). In 1959, W. K. Hayman (see [7], Corollary of Theorem 9) proved
the following theorem.

Theorem A [7]. Let f be a transcendental meromorphic function and n € N such that n > 3.
Then f™(z)f'(z) = 1 has infinitely many solutions.

The case n = 2 was settled by Mues [13] in 1979. Bergweiler and Eremenko [3] showed that
f(2)f'(2) — 1 has infinitely many zeros. For an analog of the above results Laine and Yang [11]
investigated the value distribution of difference products of entire functions in the following manner.

Theorem B [11]. Let f be a transcendental entire function of finite order and ¢ € C\ {0}. Then
SJor n e N\ {1}, f™(2)f(z + ¢) assumes every a € C\ {0} infinitely often.

In 2010, Zhang [19] considered zeros of one certain type of difference polynomials that was not
studied previously and obtained the following theorem.
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Theorem C [19]. Let f be a transcendental entire function of finite order, o(# 0) € S(f),
ce C\ {0} and n € N. If n > 2, then f"(z)(f(z) — 1)f(z + ¢) — a(2) has infinitely many zeros.

In 2012, Chen and Chen [5] further extended Theorem C as follows.

Theorem D [5]. Let f be a transcendental entire function of finite order, a(Z£ 0) € S(f),
cj € Cand d,m,n,v; € N, where j = 1,2,....,d. If n > 2, then f"(z)(f™(z) — 1) Hil(f(z +
+¢))" — a(z) has infinitely many zeros. ’

Chen and Chen [5] also found the uniqueness result corresponding to Theorem D. In 2014, Zhang
and Yi [18] treat the above investigations into a different way that was not dealt earlier. They paid
their attention to the kth derivative of more generalized difference expression and obtained a series
of results as follows.

Theorem E [18]. Let f be a transcendental entire function of finite order, a(# 0) € S(f),

¢; € C be distinct and d, m, n, v; € NU{0}, 7 =1,2,....d. If n > k + 2, then the differential-
(k)
d
difference polynomial (f”(z)(fm (2) —1) H . (f(z+ Cj))”f> — a(z) has infinitely many zeros.
]:

Theorem F [18]. Let f be a transcendental entire function of finite order, a(#£ 0) € S(f),
¢; € C be distinct and d, m, n, v; € NU{0}, j = 1,2,...,d. If one of the following conditions
holds:

(i) n>k+2, when m < k+1;

i) n>2k—m+3, when m > k+1,

(k)
then the differential-difference polynomial ( f(z) —1m H (z+¢j)) ) — a(z) has
=1
infinitely many zeros.

Theorem G [18]. Let f and g be two transcendental entire functions of finite order, (% 0) €

€ S(f)NS(g), ¢; € C be distinct and d, m, n, v; € NU{0}, where j = 1,2,...,d and 0 =

d d U (F) n m
= v A = 2kmeots and (1)) -) [T (Fe+e)) L (9" ()™ ()
d A (k)
-1) H 1(g(z + cj))”J> share a(z) CM, then f = tg, where t™ = "7 = 1.
]:
Theorem H [18]. Under the same situation of Theorem G if n >4k —-m+ o0+ 9 and
(k) (k)
<fn z)—1) mH f(z+¢j)) ) , ( —1mH 9(z+¢j)) ) share o(z)

CM, then f =g.
In 2017, with the notion of weighted sharing as introduced in [10], Banerjee and Majumder [1]

1

rectified the errors occurred in Theorems G and H and generalised the results as follows.
Theorem I [1]. Let f and g be two transcendental entire functions of finite order, c; € C, j =
=1,2,...,s, be distinct and let a(# 0,00) € S(f) N S(g) with finitely many zeros. Let m, n, j; €
S m .
_ — , — Y
eN, j=1,2,...,s, such that n > 2k +m+ o +4, where 0 = E i1 pj and P(w) = g jzoajw

be a polynomial, where ag(# 0),a1,...,an(# 0) € C. If (f”(z)P(f(z)) H;Zl(f(z—i-cj))“f)(k) —
—a(z) and (g”(z)P(g(z)) szl(g(z + c]))“J)(k) — a(z) share (0,2), then:

(I) when P(w) = Zm 0 ajwj is a non-zero polynomial, one of the following two cases holds:
J:
(I1) f=tg, t € C\{0} such that t* = 1, where d is the GCD of the elements of J, J = {k € I :

ar #0}and I = {n+on+o+1,...,n+0+m},
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(1) fAPEE) L (FE+ e =a"@PeE) ] (o +ep):

(I) when P(w) = w™—1and n > c+2s+3, then f = tg, t € C\{0} such that t™ = t"*7 = 1;

(1) when P(w) = (w — 1)™(m > 2), one of the following two cases holds:

() f= 97

() f(z) —1mH flz+ e = g"(2) —1mH 9(z +¢j))

In the same paper, Banerjee and Majumder [1] emerged the followmg question as an open
problem.

Question 1. Whether Theorem I can be obtained for any small function a € S(f) N S(g)?

Our first objective to write this paper is to solve Question 1. Throughout this paper we use P (w)
as follows:

’P(w) = amwm—|—am_1wm_l + ...+ aiw + ap, (1.1)

where a; € S(f)NS(g) fori =0,1,2,...,m such that ay #Z 0, a,, Z 0.
Let ¢ € C such that P(¢) # 0 and let wy = w — ¢. Then P(w) = P(wy + ¢) = Pi(w1), say,
where Pj(w1) is of the form

Pl(wl) = bmofl” + bmflw;n_l 4+ ... 4+ biwy + b, (1.2)

b; € S(f)N S(g) fori =0,1,2,...,m such that by = anc™ + apm_1¢™ 1 + ...+ aic+ag Z 0,
b, = a; Z 0. Throughout this paper we use Pi(w;) defined as in (1.2).

Our second objective to write this paper is to solve the following questions.

Question 2. 1s Theorem I hold for P(w) instead of P(w)?

Question 3. Can one deduce more generalized result in which Theorem I will be included?

In 2017, with the notion of weakly weighted sharing and relaxed weighted sharing as introduced
in [12] and [2], respectively, Sahoo and Karmakar [15] obtained the following results.

Theorem J [15]. Let f and g be two transcendental entire functions of finite order and o(#
# 0) € S(f) N S(g). Suppose that n € C\ {0}, k € NU {0} and m,n(> k) € N satisfying
n > 2k+m+ 6, when m < k+ 1, and n > 4k — m + 10, when m > k + 1. If (f"(2)(f(z) —
—1)"f(z+0)*) and (" (2)(g(2) —1)"g(z+n))*) share “(a(z),2)” and if f, g have no 1-points
with multiplicity less than or equal to k/m, when m < k, then either f = g or f and g satisfy the
equation R(f,g) =0, where R(w1,w2) is given by

R(w1,w2) = wi'(w1 — 1)"wi(z + 1) — wy(we — 1)™wa(z +n).

Theorem K [15]. Let f and g be two transcendental entire functions of finite order and o(#
#£0) € S(f)NS(g). Suppose that n € C\{0}, k € NU{0} and m,n(> k) € N satisfying n > 3k+
+2m 48, when m < k41, and n > 6k—m~+13, when m > k+1. If (f"(2)(f(2) = 1)™ f(z+n))®)
and (g"(2)(g(z) — 1)™g(z 4+ 1)) *) share (a(2),2)* and if f, g have no 1-points with multiplicity
less than or equal to k/m, when m < k, then the conclusions of Theorem J hold.

Now our third objective to write this paper is to solve the following question.

Question 4. Can one remove the condition “f, g have no 1-points with multiplicity less than or
equal to k/m, when m < k” in Theorems J and K?

In this paper, taking the possible answers of the above questions into back ground we obtain main
results as follows.
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Theorem 1. Let f and g be two transcendental entire functions of finite order, c € C, ¢; € C

Jj=1,2,...,s, be distinct and let a(# 0,00) € S(f) N S(g). Let k, m € NU{0}, n, 0 € N,

pi € NU{0}, j=1,2,...,s, such that n > k+1 and o = Z,_luj. Suppose that

< (k)

((f(Z) —o"P(f(2) [ [(f(z+¢j) — C)“J) —a(z)
j=1

and

. (k)
((9(2) —)"Pg(2) [J(9(= + ) - C)“J) —a(2)

j=1
share (0,2), where P(w) is defined as in (1.1). Now:

(I) when P(w) # (w—¢)" — B, (w—c—B)"(m > 2), where € S(f) N S(g) and n >
> 2k +m + o + 5, then one of the following two cases holds:

(1) f—c=t(g—c), t € C\ {0} such that t® = 1, where d is the GCD of the elements of J.
J={kel:by#0}and=1{0,1,...,m};

1) (F() =" PN ] (Fz+e) =) = (a(2) =" Plo) [ _, (o= +e5) =

(Il) when P(w) = (w—c)™—p, where 8 € S(f)NS(g) and n > max{2k+m+oc+5,0+2s+3},
then f —c=1t(g —c), t € C\ {0} such that t™ = "7 = 1;

() when P(w) = (w—c—B)™, m > 2, where B € S(f)NS(g) and

2k+m+o0+5, if m<k+1,
n >
dk —m+0c+4+9, if m>k+1,

then one of the following two cases holds:
(HII) f =9,
() (f(= ) —o)"(f(z) — ¢ = B(2))

)™ H (z+¢j) —c)h.
Corollaryl Let f and g be two transcendental entire functions of finite order, c € C, ¢; € C

j=1,2,...,s, be distinct, a(# 0,00) € S(f)NS(g) and k,m € NU{0}, n,o € N, p; € NU{0},
3=12 ... s, suchthatn > k+1 andozz‘ i Suppose that
j=

TG + ) — 0 = (o) - (o) - c -

j=1

. (k)
((f(»?r) —"PUE) [[(F e+ e) — C)’“‘J) —a(2)

and

J=1

. (k)
((9(2) —)"P9(=)) [J(9(= +¢5) = C)“J) —a(z)

share “(0,2)”, where P(w) = (w—c— )™ and € S(f) N S(g). Now when
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2k+m+o+5, if m<k+1,
n >

4k —m+o+9, if m>k+1,

then one of the conclusions (1111) and (I1l2) of Theorem 1 holds.
Corollary2. Let f and g be two transcendental entire functions of finite order, c € C, ¢; € C,

j=1,2,...,s, bedistinct, a(# 0,00) € S(f)NS(g) and k, m € NU{0}, n, 0 € N, u; € NU{0},
1=12...,s, suchthatn > k+1 and o = ZFI ;. Suppose that
s (k)

(f(2) = )"PUE) [[(f+e) =) | —alz)

j=1
and

S

(9(2) = )" P(9(2)) [[(9(z+¢j) =) | —a(z)

j=1
share (0,2)*, where P(w) = (w—c— )™ and € S(f) N S(g). Now when

3k +2m + 20 + 6, if m<k+1,
n >

6k —m+ 20 + 11, if m>k+1,

then one of the conclusions (1111) and (11l2) of Theorem 1 holds.

2. Lemmas. Let F' and G be two non-constant meromorphic functions. Henceforth we shall

denote by H the function
F// 2F/ G// 2Gl
H = — — — . 2.1
(+751) (& ¢5) e

Lemma 1 [16]. Let f be a non-constant meromorphic function and let a, (% 0),an—1,...,a0 €
€ S(f). Then (1,37 aif) = nT(r, f) + S(r /).
1=

Lemma 2 [4]. Let f be a meromorphic function of finite order p and ¢ € C\{0} be fixed. Then
for each € > 0, we have

The following lemma has little modifications of the original version (Theorem 2.1 of [4]).

Lemma 3. Let [ be a transcendental meromorphic function of finite order, ¢ € C\ {0} be fixed.
Then T(r, f(z +¢)) = T(r, ) + 5(r, f).
Lemma 4 [6]. Let f be a non-constant meromorphic function of finite order and c¢ € C. Then

N(r,0; f(z +¢)) < N(r,0; f(2)) + S(r, f)  and  N(r,00; f(z+c¢)) < N(r,00; f) + S(r, f).
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/
Lemma 5 ([8], Lemma 3.5). Suppose that F' is meromorphic in a domain D and set f = —.

F
Then, for n € N,

F(Tb) n nin —1 e n— n—
7 +(2)f 2+ Anf" 4 Buf TN + Pass(f),

1 1 . . .
where A, = 6n(n - 1)(n-2), B, = gn(n —1)(n —2)(n — 3) and P,_3(f) is a differential
polynomial with constant coefficients, which vanishes identically for n < 3 and has degree n — 3
when n > 3.

Lemma 6. Let f be a transcendental meromorphic function of finite order such that N (r,00; f) =
=S(r,f) and ¢; € C, m e NU{0}, n, 0 € N, puj e NU{0}, j = 1,2,...,s. Then, for each
e > 0, we have

S

T (T, M P [+ Cj))“]) =T (r, f"7(2)P(f(2))) + S(r, f).

J=1

Proof of lemma follows from the proof of Lemma 6 [1].
Lemma 7. Let f and g be two transcendental entire functions of finite order, c, c; € C, and k,
m e NU{0}, n, 0 €N, pu; e NU{0}, j =1,2,...,s, such that n > k + 1. Suppose that

(k)
(e —om)

Y

(@) =omPUEN T

a2)

F(z) =

((g(z) — ¢)"P(g(2)) Hsﬁzl(g(z +¢j) = C)”j>(k)
G = (2 |

where o € S(f) N S(g) and H = 0. If one of the following conditions holds:

(1) Plw) # (w—c—B)™, where p € S(f)NS(g) and n > 2k +m +o+5,

(2) Plw)=(w—c—pB)", where p € S(f)NS(g) and n>2k+m+oc+5 when m < k+1
and n >4k —m+o0+9 when m > k+ 1,
then one of the following two cases holds:

W (1) - PUE T (Fle+ e — )" x

k
W2 a2,

% ((9() = PN T

ozt e) —om)

i) (f(2) =) PUED [ (Fetep) = e = (o)~ )" Pla) [ _ (o= +ep) = .

Proof. Note that when P(w) = (w — ¢ — )™, where § € S(f) N S(g) and m > k + 1. Then

J=1

Ni11 (r, 0; (f(2) = )" P(f(2) [ [(f (= + ¢j) - C)“J> +
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= N ( 05 7Py (f1(2) T [ (fa (= + cw) -

Jj=1

= Niw ( 0; f1() (i () = )™ TL (= + q))ﬂa) =

j=1

= N1 (1,05 /1) + Nia (05 (f1(2) = 5(2))™) + Niya (7”7 0: [[(f(=+ Cj))“ﬂ) <

J=1

<2(k+1)T(r,f1)+ N (r,O; H(fl(z + cj))“f) + S(r, f1),

=1

where fi = f — c. Similar expression holds for (g(z) — ¢)"P(g(z)) szl(g(z +¢j) — ). We
omit the detail proof, since proof of lemma follows from the proof of Lemma 7 [1].

Lemma 8 ([1], Lemma 8). Let f be a transcendental meromorphic function of finite order and
c; €C,j=1,2,...,s Suppose that n,oc € N and pn; € NU{0}, j = 1,2,...,s. Let ®(z) =
= f7(z) szl( F(z+¢;))". Then (n— o) T(r, f) < T(r,®) + S(r, f).

Lemma 9. Let f and g be transcendental entire functions of finite order, o (£ 0,00) € S(f)N
NS(g), ¢, c;eCandn, m, s, c €N, k,pu; e NU{0}, j=1,2,...,s. If n > k+1, then

(k) (k)
((f(Z) —)"P(f(2) [[(f(z+¢j) — c)‘”) ((9(2) —)"Plg(2)) [J(9(z + ¢5) — c)u;) +

J=1

£ o?(2).
Proof. Suppose on contrary that
. (k) . ()
((f(2> —o)"P(f(2)) Hl(f(z +¢j) - C)“J) ((g(z) —o)"P(9(=) [ [(a(z+¢) - @“J) =
i=
= a2(2).
Then

. (k) . (k)
(fln(z)Pl(fl(z))H(fl(z—l—cj))“]) (g?(z)Pl(gl(z))H(gl(z+c]~))“f) =a’(z), (22)

J=1 J=1

where fj = f — c and g1 = g — c. Note that S(r, f) = S(r, f1) and S(r,g) = S(r,g1). Since
n > k+ 1, from (2.2), we have

N(r,0; f1) < N(r,0;a”) = S(r, f1). (2.3)
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Since f and g are transcendental entire functions of finite order and so are f; and g;. Therefore we
can take f1(z) = y(2)e’® and g1 (2) = 1(2)e¢®), where v(2)(# 0), 17(2)(z 0) are entire functions
such that N(r,0;v) = S(r, f1), N(r,0;n) = S(r, f1) and §(2), {(z) are non-zero polynomials. We
now consider following two cases.

Case 1. Suppose that k € N. Let

S

Fi(2) = bi(2) f74(2) [[ (1 (= + ) =

j=1
= bi(2)y"(2) H (Y(z + ¢;)) e(M)8(2)+3 251 nyd(z+ej) _ Py;(2)ef2i), (2.4)
j=1
where Pyi(2) = biy" (2) [[52; (v(z + )" and Py(z) = (n + )d(2) + Z 5(z + ¢;)

for i = 0,1,2,...,m. Let J; = {j € I1:bj(2) # 0}, where I = {0,1,.. m} Note that
N(r,00; F;) = S(r, f1) for i € J;. Using (2.3) and Lemma 4, we obtain N(r,0, Py;) = S(r, f1) and
N(r,00, Py;) = S(r, f1) for i € J;. By Lemmas 1 and 6, we have T'(r, F;) = (n+i+0)T(r, f1) +
S(r, f1) and so S(r, F;) = S(r, f1) for i € J;. Note that y(z) # 0 and so H . (y(z +¢)) £
]:
# 0. Therefore, we have Pj;(z) # 0 for i € J;. Let

_F _ Ry

for ¢ € J;. Clearly,

F! F! — —
T(r,h;) = N(r, Fl> + m<r, Fl> = N(r,00; F;) + N(r,0; F;) + S(r, F;) =

= S(r, fr) + S(r, Fi) = S(r, f1) (2.5)
for ¢ € J;. By using (2.5), we obtain
T(r,h")) < (p+ DT (r,hi) + S(r,hi) = S(r, f1), 2.6)
where p € NU {0} and ¢ € J;. From (2.6) and Lemma 1, we get
T(r, (BN = ¢ T(r, ") + S(r,h;) = S(r, 1), 2.7)
where ¢ € NU {0} and 7 € J;. By Lemma 5, we have F = Q;F;, ie.,
(Fi(2))" = Qi(2) Pri(2)e™®),
where Q; = h¥ + th—ghg + ARhF 3R + Brht 4 (hl)? + P_3(h;) and i € J;. Since f(z)

is a transcendental entire function, it follows that F;(z) is also a transcendental entire function for
i € Jy. Consequently, Q;(z) # 0 for i € J;. Then, from (2.5) and (2.7), it follows that
k k - 1 / "
T(r,Q;) = T(r, h¥ + (Q)hf_th + Aghf 3Ry + Bphi A (R))? + Pkg(hi)) <
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T(r,h¥) + T(r, hE=2) 4 T(r, hy) + T(r, BE=3) + T(r, by )+

+T(r, by ™) + T(r, (1)) + T(r, Pi—a(hi)) + S(r, f1) = S(r, f1)

for i € J;1. Note that, for ¢ € Jq,

(k)
(f{b(z)Pl(fl(z)) H(fl(z + cj))“J) -

= 7(2) [T 1z + ) O EI 1) 37 (1) (2)e5)

j=1 i=0

s

= 4"(2) H (Y(z + ¢;))H e0(2)+27521 (2 +c)) Z b;Qi(2) i (2). 2.8)

j=1 =0

Also, from (2.2), we have <f1”(z)771(f1(z)) HJ (fi(z +¢j))H ) # 0 and so

. (k)
N| 7,0 (f{l(Z)Pl(fl(Z)) [IhG+ Cj))’“) < N(r,0;0%) < S(r, f1).

j=1

From (2.8), we obtain

N(ﬁo;zbiQiﬁ) = S(r, f1)- (2.9)

Since b;, Q; € S(f1), from Lemma 1, we get m T'(r, f1) = T(r, ZZO biQiff) + S(r, f1). This

shows that S(r, f1) = S(r, S b f{). Similarly, we have S(r, f1) = S(r, S b ff).
Now we claim that Zwil b; Q; ff is not a rational function. If possible suppose that Znil b; Q; ff
is a rational function. Since b;, Q; € S(f1), we obtain

T(r, 1) = ( Zb%)%( f1) = Ollogr) + S(r. f1) = S(r, f1),

m .
which is not possible. Hence, E - b;Q; f{ is a transcendental meromorphic function such that
1=

N<r, <, > b@-ff) = S(r, fr). (2.10)

i=1
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Note that T'(r, boQo) = S(r, f1) = S(r, ZZ biQi f{), which shows that byQq is a small function

of Zm biQ:f:. Then, using (2.3), (2.9), (2.10) and Lemma 1, we get from the second fundamental
1=
theorem for small functions (see [17]) that

T(r, fr) = ( Zbe1>+S(7“ fi) <

=1

§N< 0; Zleﬁ) —|—N<r 00; ZszJﬁ) —|—N<r 0; Zme) +S(r, f1) <

i=1 =0

< N(r,0; f1) +N<T,0;sz‘@i f_1> +8(r, f1) <

=1
T<Tuzszz f_1> + S(T’ fl) = (m - 1) T(Tv fl) + S(T7 fl))
=1

which is not possible.
Case 2. Suppose that £ = 0. Then, from (2.2), we get

EPUAE) [T GE+e)) et (2)Pigi1(2) [T (912 + ) = a®(2). (2.11)

J=1 J=1

Now, from (2.11), we have
N(T’,O;P1(f1)) SN(T,O;O&Q)iS(T,fl), Le., (7’ 0; be1> - T f1> (212)

m .
One can easily prove that g - b; f1 is a transcendental meromorphic function such that
1=

(r 00; Zb f1> =S(r, f1) (2.13)

and by is a small function of Z"il bifi. Now, by using (2.12), (2.13) and Lemma 1, we get, from
the second fundamental theorem for small functions (see [17]),

T(r, i) = ( Zb f1> +S(r, f1) <

=1

§N< 0; be1>+N<roo be1>+N<7“0 be1>+5(7’ f) <

i=1 =0

_N(T’,O;fl) +N<T,O,szf{_1> +S(r7f1) <

i=1
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(be ) (r, f1) = (m = 1) T(r, fr) + S(r, f1),

which is not possible.

Lemma 9 is proved.

Lemma 10. Let f and g be two transcendental entire functions of finite order, c, c; € C, and
m e NU{0}, n,oc € N, u; e NU{0}, j =1,2,...,s. Suppose that

(f(2) = )" P(F () [ [z + &) = )" = (9(z) — )" P(g(2)) [ [ (9(z + ¢j) — o).
Jj=1 Jj=1

Now:

(D) when P(w) £ (w—2¢)" — B, (w—c— )", m > 2, where 5 € S(f) N S(g), then one of
the following two cases holds:

(1) f—c=t(g—c), t € C\ {0} such that t® = 1, where d is the GCD of the elements of J,
J={kel:b,#0}andI={0,1,...,m};

1) (£ =" PEEN ] (Fete) = = (9() =" Pla() [T _ (9= +5) = 0

(Il) when P(w) = (w—c)™—f, where B € S(f)NS(g) and n > 042542, then f—c = t(g—c),
t € C\ {0} such that t™ = t"*7 = 1;

(1) when P(w) = (w—c— B)™, m > 2, where 3 € S(f) N S(g), then one of the following
two cases holds:

(HII) f =9, s

1) (1(: > () e~ BE T UG + )~ = (60) — 9"(9(2) — e -

mH g(z +¢j) — ).

Proof Suppose that

S S

(f(z) = )"P(f(2) [[(f(z + ¢j) = )" = (9(2) — &)"Plg(2)) [ [(9(z + ¢j) = )5, (2.14)
j=1 j=1
P (2) [T (2 + )" = g (2)Pr(g1(2) [ [ (91 (2 + ), (2.15)
Jj=1 =1

where f1(z) = f(z) — ¢ and g1(2) = g(z) — ¢. Now, from (2.15), Lemmas 1 and 6, we have
T(r, f1) + S(r, f1) = T(r,g1) + S(r,g1) and so S(r, f1) = S(r,g1). We consider the following
cases.
Case 1. Suppose P(w) # (w —¢)™ — for (w—c—F)™, m > 2, where 5 € S(f) N S(g).

Leth="".Ifhisa constant, by putting f; = hg; in (2.15), we get
9

bmgl (hn+m+a _ 1) + bmflginil(hn—Fm—Fo—_l _ 1) o+ blgl(hn—i-a-‘rl _ 1) + bo(hn-i-a _ 1) =0,

which implies that h% = 1, where d is the GCD of the elements of J, J = {k € I: by # 0} and
I = {0,1,...,m}. Otherwise, by Lemma 1, we have T(r,¢91) = S(r,g1), which is impossible.
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Thus, fi = tgi, ie, f —c=1t(g —c), t € C\ {0} such that t* = 1, where d is the GCD of the
elements of J, J ={ke€1l:b;#0}and I ={0,1,...,m}.
If h is not a constant, then we know by (2.14) that

S S

(f(z) = )" Pf(2)) [[(f(z+ ) = ) = (9(2) = )" P(g(2)) [ [ (9= +¢5) — ).

Jj=1 J=1

Case 2. Suppose P(w) = (w—¢)"™ — 3, where 8 € S(f) N S(g). Clearly 8 € S(f1) N S(g1)-
Then, from (2.15), we have

S S

U (2) = B) [T+ e = i ()9 (2) = B(2) [[(gr(= + i)y, 2.16)

j=1 j=1

Let h = ﬁ Clearly, from (2.16), we get
91

91" (2) (h”m(Z) [L(nGz + ey - 1) = B(2) (h"(Z) [TG+ e — 1) - @17

J=1 Jj=1

First we suppose that / is non-constant. We assert that both A" (2) HS 1(h(z +¢;))"(#0) and
]:
h™(z) szl(h(z + ¢;))" (# 0) are non-constant. If not, let A" (z) szl(h(z +c)) =d; €
€ C\ {0}. Then we have
dq
5 -
[T, (= + i)y

R (2) =

Now, by Lemmas 1, 2 and 4, we get

dy
(n+m) T(r,h) =T(r, """+ S(r,h) =T | r, == + S(r,h) <
( 11 ) )

j:1<h(z + ;)M

1
<ZMJ ’I“th-i-CJ +ZMJ < h(z_'_cj)>+5(’l“,h)§

7=1

<ZM (r,0; h(z +Zu] ( )>+S(rh)

<o T(r,h)+ S(r,h),

which is a contradiction. Similarly we can prove that h™(z) HS 1(h(z +¢;))" is non-constant.
]:
Thus, from (2.17), we have

) [ (4 ey -1

fi'(2) = B(z)h(2) =
' w2 [T (b= + e —1
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and

I'(2) = B(2) POIL 0t o) (2.18)
T e ) T (e ey —1 |

First we claim that A is a transcendental meromorphic function. If not, suppose that h is a rational
function. Then, from (2.18) and Lemma 1, we have m T'(r,g1) = S(r, g1), which is impossible.
Hence, h is a transcendental meromorphic function. Note that T'(r,h) < T'(r, f1) + T(r,91) =
=2T(r, f1)+ S(r, f1) and so T'(r,h) = O(T'(r, f1)). By Lemmas 1 and 3, we obtain

S S

T\ r,h™(2) [J(h(z+ep))s =1 <T | r,h"(2) [J(M(z+ )" | +0(1) <

j=1 j=1

s

ST ™)+ T [[(Mz+e)) | +0(1) <
j=1

T(r,h") +ZM] (r,h(z+¢j))+0O(1) =

T(r,h") +Z,uj T(r,h)+S(r,h) =

=(n+o)T(r,h)+ S(r,h).

Similarly, we have T'(r, h" T (2) HS 1(h(z + i) —1) < (n+m+o) T(r,h) + S(r, h). Now,
=

from (2.18) and Lemma 1, we get m T'(r,g1) < (2n+m + 20)T(r,h) + S(r,h) + S(r,¢1), i.e.,

T(r,g1) = O(T'(r,h)). This shows that S(r,g;) = S(r,h) and so 8 € S(h). Let zy be a zero of

Rt (2) Hs 1(h(,z +¢;j))" — 1 such that 5(zg) # 0, 00. Since g; is an entire function, it follows
‘]:

that zg is also a zero of h"(z) Hs 1(h(z + ¢;j))" — 1. Then clearly A" (zp) — 1 = 0 and so
J:

(7" 1; h”+mH h(z+¢j)) ) < N(r, ;™) <m T(r,h) + S(r, h).
So, in view of Lemmas 1, 4, and 8 and the second fundamental theorem, we get

(n+m—o0)T(r,h) =

=T r, 2" () [J(h(z + ) | + S(r,h) <
j=1

< N|r,0;pt™ H(h(z +¢;)H | + N | r,00; A" H(h(z +ei))H | +
j=1 j=1
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J=1

%JV(nlﬂﬁ+mIiUdz+(gDW)+SO@h)<
< N(r,0;h) + iﬁ(r, 0; h(z + ¢;)) + N(r,00; h)+
j=1

Z (ryoo;h(z +¢5)) +m T (r,h) + S(r, h) <

< N(r,O;h)—i—Zs:N(r,O;h(z))+N(r,oo;h)+ZS:N(r,oo;h(z))+mT(r,h)+S(r,h) <
=1 =1

< (m+2s+2)T(r,h)+ S(r,h),

which contradicts with n > ¢ + 2s + 2. Hence, h is a constant. Since g; is transcendental entire
function, from (2.17), we have

K™ () ﬁ(h(z Fe)) —1=0 <= h"(2) ﬁ(h(z e —1=0
j=1 j=1

and so h™(z) =1 and h"*7 = 1. Thus, f =tg, t € C\ {0} such that " = "+ = 1.
Case 3. Suppose P(w) = (w—c— )™, m > 2, where 8 € S(f) N S(g). Then, from (2.14),
we have

(f) =" (f(z) == B ’”H (24 ) — ) =

S

= (9(2) — 0)"(9(2) — c = B)™ [ [ (9(z + ;) — ), (2.19)

=1

1.e.,

@GR = BEN TIiG + )t = gl @) (gi(z) = BE)" [[ (91 + ). (2:20)
i i=1

Let h = ﬁ First we suppose that h is non-constant. Then we know from (2.19), that
g1

(f(z) = "(f(z) == B ’”H (24 ¢j) = ) =

S

= (9(2) = 0)"(9(2) — ¢ = B()" [ [ (9(z +¢) — )"
j=1

Next we suppose that A is constant. Then, from (2.20), we get

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 5



A NOTE ON THE UNIQUENESS OF CERTAIN TYPES ... 693

S m

TG+ ) S Coi f77(2)Bi(2) =

j=1 =0

s

9t () [Tz + ) Y " Crumigi™ ' (2)8(2). (221

j=1 =0

Now substituting f; = hg; in (2.21), we get

m
S i Bigl i (2) (T () — 1) = 0,
i=0
which implies that h = 1. Hence, f1 = g1, 1€, f =g.
Lemma 10 is proved.
3. Proof of Theorem 1. Let

and

((9(2) ~ " PlaN TT_, o= + ) — )"
G = ) -
s NG
CROLACHOIN | RCACERMEY
a(z) ’

where fi = f —cand g1 = g — c. Clearly F' and G share (1,2) except for the zeros and poles of
a. Note that when P(w) = (w — ¢ — )™, where 8 € S(f) N S(g) and m > k + 1, then

Nig42 (r, 0; (f(2) = &)"P(f(2) [ [(f (= + ¢) = C)’“) =

j=1

= Ngio (T,O; ()P f1(2)) H(fl(z + Cj))#g) _

J=1

= Nit2 (T, 0; f(2)(f1(2) = BE)™ [ [(f1(z + Cj))“]) <

J=1

<2(k+2)T(r, f1) + N("SO; [T(AG+ Cj))“”) + S(r, fr).

J=1
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Similar expression holds for (g(z) —c¢)"P(g(z)) HS . (9(z+c¢j)—c)". So we omit the detail proof,
.

since when H # 0 we follow the proof of Theorem 2 [1] while for H = 0 we follow Lemmas 7, 9
and 10.

Theorem 1 is proved.

Proof of Corollary 1. When H # 0 we follow the proof of Theorem 1 [14], while for H = 0
we follow Lemmas 7, 9 and 10. So we omit the detail proof.

Proof of Corollary 2. When H % 0 we follow the proof of Theorem 2 [14], while for H = 0
we follow Lemmas 7, 9 and 10. So we omit the detail proof.
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