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LONG-RANGE ORDER
IN LINEAR FERROMAGNETIC OSCILLATOR SYSTEMS.

STRONG PAIR QUADRATIC n—n POTENTIAL"

OAJIEKUN HOPSIOK Y ®EPOMATHITHHUX CUCTEMAX
JITHIMHEUX OCHUAJISATOPIB. CHJILHUNA IMAPHUIA
KBAPATUYHUHA 6 —c HOTEHIIIAJI

Long-range order is proved to exist for lattice linear oscillator systems with a ferromagnetic potential energy
containing a term with a strong nearest neighbour (n—n) quadratic pair potential. A contour bound and a
generalized Peierls argument are used in the prool.

,CLuuenenn WO JIaieKui TOPJHJIOK icnye y 1'pa1“xonm cueremi Jiinifingx ocruATOpin 3 npeponarumlom no-
Tellianhiton eneprielo, SKa MICTHITT JIO/IAN0K i3 CHIILIHM NAPIHM KBaJIPATHYINM NOTeNiaj oM nasemojiii
GamsbrHX eycijin (6—c). [pu jone/ienni BHKOPHCTOBYIOTLES KOITYPHA Hepintiers Ta ysaraisienyi apry-
merrr [Matieparca.

1. Introduction and main result. The corner stone of a generalized Peierls argument,
which a scheme for proving existence of Iro (long-range-order) in different n—n (nearest-
neighbours) systems, is a contour bound (see [1]). For ferromagnetic linear oscillator
systems with n—n pair quadratic interaction potential Bricmont and Fontaine in [2] pro-
posed a remarkably simple derivation of the contour bound based on an application of the
Griffiths — Kelly — Sherman (GKS) inequalities [3, 4]. But they did not prove existence of
Iro with its help.

In this paper we prove existence of Iro in ferromagnetic linear oscillator classical
systems with n—n pair quadratic interaction potential applying the generalized Peierls
argument and the BF (Bricmont—Fontain) contour bound (see Remark). We assume that
the strength g of the n—n interaction is large and that it determines the depth of minima
(wells) of the effective external field u® which is a bounded from bellow polynomial.
Lro is proved to occur at arbitrary temperature for sufficiently large g. Our argument s
based on determining an asymptotics in g of the integral in the right-hand side of the BF
contour bound.

For the linear oscillator systems in which the oscillator variables g, € R are indexed
by the sites z of the hypercubic lattice Z¢, characterized by the potential energy U, the
contour bound is given for the set I" of n—n by

< 11 x;'x;> < FIE, (1)
<z,y>€l A

(-)a denotes the Gibbs average for the system confined to compact domain A (hyper-
cube) with |A| sites

Fdam 0 / Fx(gx)e-PUNdg,,  Zp = / e~PU g,

XF = X(0,00)(%z)s Xz = X(—00,0)(qz);

B is the inverse temperature, the integration is performed over R, x(, 4 is the char-
acteristic function of the open interval (a,b) and Fy is a measurable function.
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For the BF contour bound, the following equalities are valid (the proof is given in the
end of this paper):

E = gB(cd’),
"loo’) = Z_I(Q) -/q1QQB_£u(QI‘q2)dQ1dQ2, ZfZ} . /B—ﬁu{m,qa)dqldqz,

where g is the strength of the n—n pair quadratic interaction, u(g,g") is the potential
energy of two oscillators, containing only the sum of the external potentials u(q) and the
n—n pair quadratic potential,

u(q1, g2) = u(q1) + u(g2) — 99192 = u®(q1) + 1%(q2) + %(QI — @)%

Let 0;(ga) = g; then the ferromagnetic Iro occurs in the system if, for a positive

a” independent of A, the following inequality holds for all z,v € A :
(f(oz)f(oy))a > a”, (2)
where f is a measurable function. In simplest cases f(g) = g (see [1]) and f(q) = %

The derivation of (2) from (1) is easier for the latter option and if one proves (1) for it
then there are bounds which allow to prove (2) for the first one (see [1]).

Inequality (2) indicates that there is no decrease of correlations. It does not hold for
the systems at high temperatures or weak pair interaction with the following potential
energy:

U(qa) = Z u(gz) + Z: Ug—y(gz, qy), (3)
zEA z,yEA
where the external field w, pair (binary) potentials ug satisfy certain conditions [5]
which are stronger then the condition of superstability [6]. In [5] a reader will find a
proof that in the high temperature phase there is a decrease of correlations. for such the
potentials.
We consider the following ferromagnetic potential energy (as in [2]):

Ulga) =Y u(gz)—9 Y, =0y —U'(qn),

TEA {z,y)EA
C))
Ul = > Janaqdy 904 = &
(Amna)ACA zEA

where u is an even growing at infinity entire function, the summation in (A4,n4) (finite
in ng), na = (N, z € A) is performed over subsets A of A and positive integers 7y,

Tk 2D, Z ne =2n(A4), ng,n(4) € ZT.
TEA

In the last line the intermediate condition implies that the potential energy is invariant
under the change of the signs of all the oscillator variables.

In order to guarantee finiteness of the partition function and correlation function we
require that n € Z*

u(q) > ng®™, n>0, supn(4) <n, maxy Jan, <00, n>1.
= * zEA
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Theorem 1. Let the potential energy of the linear oscillator system be given by (4)
and u(q) = ng®™, n > 0. Then (2) holds for f(q) = % and sufficiently large g if
d>2, 1<neZt.

The proof of this theorem is based on application of the generalized Peierls argument
and the fact that the average in the expression for £ tends to infinity together with g.
The generalized Peierls argument can be formulated as the following theorem.

Theorem 2. Let (1) hold with sufficiently large E then there exist positive numbers
a,d’ independent of A such that

Oy )a < ae®F. - (8)
Moreover, if the Gibbs average is invariant under the change of signs of all variables then
(2) is valid for f(g) = ﬁ
The proof of Thcore.l% 1 follows from Theorem 2, the equality
4o0’) = (0 +0)?) = ((c — o')?)

and the following lemma.
Lemma. There exist functions Cy, C_ in [ independent of g such that

{(e+0)) 2 C‘+9_l(60_ 1% ((e-)) < (@h)'C., (6)

where eq = (g™(2nn) 1)o7,
This lemma and Theorem 2 are proved in the second and third sections, respectively.
2. Proof of Lemma. Let’s rescale the variables by g";" and subtract the constant
term 211.3 (2ep) from the potential u(g_%ql,g_%qﬂ . Now in the averages in (6) we
have to substitute the potential u, instead of u

g (31, 02) = (@) +u(a2) + 5 (a1 — @2)? — 2u3(eo),
Uug(q) = %(2??9"“9’2“ ~¢°) =’ (g‘%q) ;

It is not difficult to check that eg is the minimum of uJ.
After the rescaling we obtain

(cror') = 9_1351(2) /qlqze_ﬁu”(q“%}dqld(_h, Zg(g) _ /e~ﬁug(Q1,qz)dq1dq2_
‘We easily derive the following inequality:

Z3(2)
9~ k=supge 7, e
29(2) r.'égq i

((0=0")%) <2(98) '
where

2
Z(2) = ( / e~ Blug(a)—ug(e0)) dq)

Now we have to show that the integral in the expression for Zg(2) is uniformly bounded
in g. In order to do this we have to rescale the variables in®he integral by eq.
Recollecting the expression for ey one checks that

S n—1
uS(q) = %(50 Int3gin —ng?), uE(eo) == €- (8)

As aresult
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1 _
—e2(¢®™ — ng® + n— 1) = egii(q).

0 0 —
ug(enq) — ug(eo) = v

It's clear that for £ << 1 the integral is equal to

l—e 14= L

eo / —ﬂew(Q)dq = 2ep / / / / e~ Beaila) gg. (9)

l1—e 14¢ qn

where for ¢ > gn the follow inequality is valid ¢®™ > (n+ 1)¢2. For |g| < e << 1
from the expansion
_ i = si( 2n —s)!
#(g+1)=(Mm-1)+p(e), Hlg=n lz d@n -2,

J=3

we derive the inequality Gi(g+1) > (n—1—&)g?, £ << 1.
As a result the second integral in (9) is estimated in the following way:

€ €
Zeufe—ﬁﬂﬁﬁ(f?+l)dq < 260/8~Bz§(n~1~€)q2dq Z 2eofe—ﬁ¢ﬁ(“—1—s)qqu=

ZE —€

=2vm(B(n—1-2))"%.

The function % is positive and grows in the complement of the interval [1 —g, 1+ &].
This implies that the sum of first and third integrals is less then

2qne()e*geﬁ‘-‘“’£) < co.
The last integral in (9) is less then
2806"5%35/ e~ Pesa’ dg < 2e7 P /T < oo,

since the integral in.the left-hand side of (3) is uniformely bounded in g. Thus we proved
that there exists a constant C? such that

Z3(2) < CL. (10)
From the representation

ul(g + e0) — ud(eo) = (n — 1)¢* + py(a),
2n
_ siZn—s)! , o
Po(g) =171 3:——( = L ysez—s,

it follows that the polynomial p, tends to zero when g tends to infinity.
As aresult for q1,q2 € [eo — 1,e0 + 1], eo > 1, the following bound holds:
ug(q1,02) < ugleo +1) —ug(eo) +2 < n+1+n772"
Here we took into account that e is the zero of the nonnegative function ug — uJ(eo)
and that it increases if |eg — ¢| increases.
From the previous inequality we derive that
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Z4(2) = /e—ﬁug(rh.q:)dqldqz S

> e~Pu(@92) g, dgy > de—2Bln+14n"127]
(x[eo—1,e041])2
This inequality together with (7) and (10) yield the second inequality in (6) with
O = 40 HBlmtinize],

This proves the second inequality in (6). To prove the first inequality in (6) we have to
apply the inequality

Z@(e+oPz [ et gt ) g 2
(%[eo—1,e0+1]2)

> 2-4(99 — 1)2e— 260 (o)~ uf(e0)+2] >
> 2%(ep — 1)%e 280 H1+3"] o) 5 1,
The last inequality, (10) and the inequality _
Z4(2) < 23(2)

(0 +0')%) 2 2497 (eg — 1)~ P +1+2](Z20(2))~1 >
> g~ Yeg —1)328e~ ) (001 = g~ (g; — 1)30,.
Hence the first inequality in (6) holds with .
Oy = e 21427 (G0) 1.

Lemma is proved. .

3. Proof of Theorem 2. The proposed proof is a slightly modified version of the
proof from [1] and we give it for convenience of a reader. The set of all configurations gu
can be described by the set of configurations sy, s = 1, —1, or simply sz = +,—, asin
the Ising model. The set of all spin configurations can be classified by different contours
v(sa), i.e. connected union of faces of unit cubes, centered at lattice sites, which is a
boundary of a related connected union of the cubes. The main idea is to consider contours
Yz,y, enclosing z, separating it from y and with adjacent cubes, containing spins of
different signs from the opposite sides. So inside <y, there are spins of both signs.
The contours may be nonclosed ending on the boundary JA. There miay be seéveral such
the contours in a configuration. In this case the smallest contour is chosen. We have to
estimate the 1. h.s. of (1) in terms of such the contours. With this aim we express it as
a sum over s, and then transform this sum into the sum over the contours 7., € A,
summing over all configurations, characterized by the contours. So, at first we have to
insert the equality

1=TJ0d +x)
leAa .
under the sign of the Gibbs average. As a result

e = 0@y [Txda =
LT leA
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Proof of the contour bound (1). -

XIX; 7 8—%503:%8‘%56:%}{:){; < e—%ﬁﬂ'a-o‘yxix; < e~ gho=oy

As aresult

- —-ﬁg- z Ty 5'2' z Tx0y =3
< H Xz X, —‘> S<3 (=) eT > :<E. .(=.u)er‘ > ‘_<_
A : A* A[T]

{z,W)ET

~p§ T o20y)
sl T (z.u}er‘( o e—EBr

where (-, ) A[r] is the average corresponding to the potential energy
Ur(qa) = QA)"‘ D G20y
z,y€l

In last line, we applied the Jensen inequality. From the second GKS inequality

A R NI D R (11)
it follows that the average (gzgy)a(r] is a monotone increasing functionin J4,n,) since
its derivative in J( 4,5 ,) coincide with the right-hand side of this inequality multiplied
by B for B = (z,y). In the second n—n term in (4) the coefficient J((g,y),1,1) under
the sign of the sum is equal to the unity. Hence,

(0209)Alr) = (0209 Ay
where the average in the right-hand side is gene,rated by the potential energy
UIQ(QA) = Z U(Qﬂ: Z QxQy-
z€A <== y>€r
Applying the GKS inequality again we have
(020y)ry 2 (00")
and
(frzcry)A[r] > (od’), Er > |I|E.

Contour bound is proved.
Inequality (11) is proved reducing its left-hand side, at first, to the following form:

(gzimrl-/(qﬁ - m) (Q?B% 4[3]) —.ﬂ[Ur(m\} Ur(ai)) dgy dgl (12)

where Zr) is the partition function corresponding to the potential energy Ur. Then
it is necessary to expand the exponent in (12) with interaction terms into a series. As a
result (12) will be the sum of the following terms with positive coefficients:

fH Gag + (- ”1’1 ) PE el @)+ @l dgsdg) >0, A; CA.

An elegant proof of this inequality can be found in [4] (Theorem VIII,14A).
Remark. Another application of the Peierls argument for proving Iro can be found
in [8] and references there.
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