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FIRST-PASSAGE PROBABILITIES FOR RANDOMLY EXCITED
MECHANICAL SYSTEMS BY A SELECTIVE MONTE CARLO

SIMULATION METHOD

PO3PAXYHOK IMOBIPHOCTEMH IEPIIOIO OCSATHEHHS
JIJISI BAIATTKOBO 35YPEHHX MEXAHBIYHHIX CACTEM

3A JOIOMOT'0IO CEJIEKTHBHOT'O METO/TY MOIEJTIOBAHHS
MOHTE-KAPJIO

In this paper, Monte Carlo methods applied for the reliability assessment of structures under stochastic
excitations are further advanced, i.e., by leading the generated samples towards the low probability range
which is practically not accessible by direct Monte Carlo methods. Based on criteria denoting those
realizations which lead most likely to failure, a simulation technique called the “Russian Roulette and
Splitting” (RR&S) is presented and discussed briefly. In a numerical example, the RR&S procedure is
compared with direct Monte Carlo simulation method (MCS) demonstrating comparative accuracy.

ITpoyonxkeno Mojpudpikaitiio meroyiis Morrre-Kapuio jiis oninku najgifinocti cTpyKTyp HpH CTOXac-
THYHUX 36ypennsx, a came, srenepopani BMGOPKH 3BOAMTLCA [0 MHOXKHMHM 3Ha4eHL HeBeJHKOL
HmopiprocTi, 1o NPaKTHYHO HEMOXKJIHBO MPH 3acTOCYBaHHI NpAMEX MeTofis MonTe-Kapno. Ha oc-
HOBi KpHTepiin BUsnavens THX peatisaniit, o ckopiur sa Bee 3aKiNYyIOTLCA HeBJlavelo, OMHCAHO i
CTHCJIO Mpoaltajlizopalio MeTojl Mojiesnosarnis , Pocifteska pysieTka Ta posmennenns”. Hapegeno npu-
KJi1ajl, B sKoMy meTojl ,,Pociftcbka pyJsieTka ra posiuenJienua” nopiBHIOETLCS 3 MPAMHM METOMOM
mojiesnopais Morrre-Kapsio i Busiavaerscs X nopiBisiibia TOWIICTE.

Introduction. In the design of structural systems, safety is an important issue to be
considered. Reliability, which is defined as the probability that the system meets some
specified demands for a specified time period under specified environmental
conditions, is used as a probabilistic measure to evaluate the reliability of structural
systems. The performance function of a structure system must be determined to
describe the system’s behavior and to identify the relationship between the basic
parameters in the system. Simulation has been used to assess the reliability of
structural systems.

‘When making considerations about structural safety, it is essential to appreciate that
measure of safety based on a general probabilistic model in general does not express a
physical property of the structure in its environments of actions. Rather the safety
measure is a decision variable that embraces the applied knowledge about the strength
properties of the structure in relation to the actions on the structure. The value of the
safety measure therefore changes with the amount and quality information on the basis
of which it is calculated. With this philosophy in mind, the structural reliability theory
becomes a design decision tool based on scientific methods rather than being a
scientific theory itself aiming at a description “truth of nature™ [1].

The evaluation of the reliability of large technological systems such as nuclear
power plants, chemical plants, offshore platforms is of paramount importance. These
systems generally consist of various subsystems, such as electronic, mechanical and
structural systems. They are affected by external hazards, such as earthquakes, as well
as internal loading conditions. While the reliability of electronic systems, i.e., their
components, can be determined by experimental procedures, this is not feasible for
most of mechanical components and structures. For both mechanical components and
structures, analytical and numerical procedures to predict the failure rates have to be
utilized. For a view of the present state of development, i.e., the procedures used for
determining the reliability of mechanical components in various technological areas,
the reader is referred, e.g., to [2]. In developing procedures, it is important to keep in
mind that, for both mechanical as well as probabilistic modeling, the state of the art
procedures should be utilized .
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The concept of limit state. If a structural failure can be attributed to a single
uniquely defined mechanical cause, the corresponding mathematical model is said to
define a failure mode in the space of relevant physical variables. This failure mode
may be an idealization of the only possible way of failure of a single structural element,
e.g. as in the case of a tension bar. It may also be an idealization of just one of several
ways of failure of a structural element or system, e.g. as in the case of a reinforced
concrete beam, that essentially may fail in bending, in shear, or by sliding of the
reinforcement at a support (debonding). Usually it is possible to define the physical
formulation space such that the failure mode defines a division of it in two parts
separated by a smooth surface. The two parts are the safe set and the failure set relative
to the failure mode. The surface may usually be defined uniquely by a differentiable
function g of the physical variables as being the set of points for which g is zero.
Note that while the surface is uniquely defined by the failure mode, the function g is
not. In spite of this ambiguity, the function g is often called the failure function. The
unique surface of its zero points is called the failure surface or the limit state.
Conventionally, g is defined to be positive in the safe set.

Uncertainty modelling. The uncertainly sources that are relevant for the reliability
evaluation may be classified according to their nature into physical uncertainty,
statistical uncertainty, knowledge uncertainty, and model uncertainty. Physical
uncertainty may be subdivided into the inherent uncertainly of the physical properties
of the object itself (e.g., the natural fluctuations of the strength parameters through a
specimen of material or from specimen to specimen, fluctuations of the wind pressure
at a point of a building facade) and the inherent uncertainty of the measuring device.
Both types of uncertainty admit probabilistic modelling in the relative frequency sense
and theoretical distributions may be fitted to observed empirical distributions.

These various uncertainty sources, all being relevant for practical structural
reliability evaluations, show that it is philosophically most satisfying to consider all
input probabilities to a reliability model as being credibility (subjective probabilities)
assessed by the user of the model or by a code committee.

Another conclusion is that several of the distribution types of a reliability model
may, in principle, be unverifiable with respect to their detailed shape. They are simply
formal elements that serve as vehicles of the information fed into the model by the
user. This is a substantial argument for the requirement of having code specifications
of distribution types to be used in the reliability evaluation. Furthermore, the shape of
the asymptotic distribution depends on the very extreme tail of the generating
distribution. The physical mechanisms that govern the shapes of the extreme tails are
usually different from those governing the central part of the generating distribution.
Most often these extreme tail mechanisms are not know due to the rareness by which
they become active. Thus, the extreme value argument cannot be decisive for the code
standardization.

General remarks. When applying direct MCS, the cumulative distribution
function (CDF) of the response should be estimated from the statistics of all
realizations X, (#) as given in the following relation:

N
CDF(x1) = Fy(x6) = 3, I[X,(), x]-w,(®), 65}
n=1

where x denotes a state vector, ¢ the time, X, the state vector of the n-th realization,
w,(t) the weight and discrete probability of the n-th realization at time ¢, and N the
sample size. The indicator function I[X,,x] assumes the value one in the case where
all components of the n-th state vector X, are smaller than the components of the
vector X, ie., X, <X, k=1,...,n. Otherwise, the indicator function assumes the
value zero. In the case where direct MCS is applied, all weights are constant and
assume the value w, (f)=1/N. Hence, in order to obtain estimates also in the very low
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probability range, the procedure must be able to modify the weight to values much
smaller than 1/N.

Methods of computing element failure probabilities. Monte Carlo simulation is
occasionally the only practicable way of obtaining estimates of probability of failure.
The principle of Monte Carlo simulation is simply to interpret the integral of the
probability density over the failure set as the expectation of a random variable Z that
takes the value 1 for outcomes in the failure set and the value 0 otherwise. By
repeated random experiments performed by the use of a computer, a large number N
of outcomes of the vector of basic variables X are generated according to the density
function f(x) of X. The average of the corresponding sample of size N of values of
Z is an unbiased estimate of the failure probability P. Furthermore, the empirical

standard deviation of the sample divided by (N)”2 is an estimate of the standard
deviation of this estimate. However, the coefficient of variation of the estimator is
[a- P)J’(Pl\.v’)]hrz showing that if P is very small, as is typically the case in structural
reliability applications, this simulation procedure requires the generation of a very large
sample in order to give a reasonably accurate estimate of P. The RR&S simulation
technique allows to overcome this disadvantage and to receive estimations of small
probabilities of the first passage using considerably smaller sample size.

When solving problems of transport theory, the phase space can be divided into
“interesting” and “less interesting” areas with the help of the so-called borders of
splitting. It is desirable to restrict the number of realizations of random walks falling
into “less interesting” areas, as the probability of contribution of such areas in the
estimation is so small, or because of the nonrelevant realizations which may
significantly increase the variance of the sampling distribution.

The process of down-crossing from the more interesting area into the less
interesting is called the “Russian Roulette” technique. The later must not affect
seriously the statistics of the sample. Playing “Russian Roulette” means that each
realization survives with the probability P,(z)=1/m; (where m; is an integer) and
ceases to exist with probability 1— P,(¢). The survival probabilities might be either
constant for all realizations or variable. When comparing with equation (1), this leads
to a modified sampling distribution F;(x;1) # Fs(x; 1), ie.,

N
Ex(x;t) = ) I[X,(0), x), ()W, (0), @
n=1

where J,(f) are independent random variables expressing “survival” or “death” of the
realization X, (¢),

1 with P=PF,() (survival);
J,@) = { (3)

0 with P=1-F,(t) (death),

and w,(¢#) denotes the weight of the samples after playing ,,Russian Roulette™.
Then, it will be shown that the expectation of the sampling distribution after
applying ,Russian Roulette”, Fz(x;1), is equal to the sampling distribution of the

nonreduced sample, i.e.,

E{F(xn} = Fs(x0), )
provided that the weights are modified to
2 w, (1)
9N AN 5
w,(6) P.() )

Hence, taking into account the relation E{J, (1)} = B,(f), the validity of equation (4)
is easily verified:
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5
E{F(x;n} = E{Z1[Xn(r]._t]J”(r)W”(r]}
n=1

w (1) u
i = w, (D[ X, (1), x
i 2] (M 1[X,,(0), x]

N
= 21X, 0, ¥E{, 0}

=l

Fi(xn). (6)

Thus, the property of equation (4) shows that the sampling distribution  Fz(x;1)
similarly to the unreduced sampling distribution {Fg(x;7)} remains an unbiased
estimate for the true distribution function of the stochastic response CDF(x;1).
However, the variance of the sampling distribution Var{Fb—,(x; r)} of the reduced
sample will be in general larger than the variance Var{Fg(x;1)} of the unreduced
sampling distribution. Hence, reducing the sample size by ,Russian Roulette”
increases the variance of the sampling distribution. This is the price one hase to pay for
having the possibility to direct by splitting the realization into regions of interest [3].

Since the researcher is interested in increasing the sample functions in “interesting”
areas, the splitting procedure will be used as follows: when, during random walks in
phase space, the realization crosses the i-th border of splitting into the more interesting
area, the realization is splitted on #y; identical sample functions, where the weight of
each new generated realization is on  m1; times less than the weight of the initial one.
At further simulation, m; new independent sample functions will be obtained due to
the differences in random loading. Thus, the chances of crossing the following border
of splitting and falling into even more interesting area are increased on the whole, the
technique of splitting is able to increase considerably the number of sample functions
which are capable to cross into interesting areas [4].

The aforementioned RR&S simulation technique was proposed by von Neumann
and Ulam in 1945 [5, 6]. The procedure was intensively used in nuclear physics for the
numerical solution of the neutron transport problem and reactor shielding [7, 8].

Application: Flexural-torsional of a rectangular beam. As an application, the
first-passage probabilities of an elastic beam were determined during time [0,1] for
double-sided symmetrical barriers located at levels =3 -1 0%, +4.10™* and
+5-10"" m. The elastic beam is simply supported, uniform, narrow, rectangular of
length L subjected to a stochastically varying concentrated load P(r) acting at the
center of the beam cross-section as shown in Fig. 1. For nonfollower force, the lateral
deflection u(r) and the angle of twist () of a transverse cross-section z = constant
are governed by the equations of motion [9]:
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Fig. 1. Loaded rectangular beam in flexural-torsional deformation.
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*u az(M v) 9°u du
El,— + —F 4 + D= =0,
' ozt 0z* ot* ot
X @)
9%u oty 2 0%y oy
Mx—azz - GJ 3 3 + mr ‘-‘“—‘atz -+ WE =0
where
1 1
~P 0<z==L;
M ~ 2 zZ, Z 2 ]

1 1
Ypi—p, Li<e<y,
prib=m, glh=g

and EI)., GJ denote the relevant flexural and torsional rigidities of the cross-section,
r the polar radius of gyration of the cross-section, D,, D, the viscous damping

coefficients, and m the mass per unit length.
The conditions of simple support at the ends imply the boundary conditions:

u0,8) = u(L,) = u'(0,8) = u'(L,f) =
®)
y(0,1) = y(L 1) =

Considering the fundamental mode, the above boundary conditions are satisfied by
taking

u(z,t) = Krg (1) sin%z-. Yz, t) = gy(t) sin%. ©)

Substituting (9) in the equations of motion (7) and using the Galerkin method, we get

" : 1
g + 2B1gy + oiq - K L102 E®a, = 0,
(10)
Gy + 2Pady + 03g; — K00, &(t)g; = 0,
where
EI 4 2
PR AE N 26 MY
m \L mr~ \L m
(1
P(r) 8mrL0)1032
2B, = —¥, 7 P R
P2 mr? &0 = B € 4 + 72

Here, F,. is the value of the critical nonfollower at which static buckling will occur.
By choosing the constant K = —(,/®,)"/?, one obtains
G + 2By + ofgy + 0 kN = 0, (3%
Gy + 2Bags + @30, + Wokp &gy = 0,

where kip =ky; = (@,0,)"2 =ky, &@) is the Gaussian white noise with intensity
I=2mS; and zero mean, ®;, ®, are natural frequencies.

The following numerical data were utilized: ®, = 1,5 rad/sec, ®; =2rad/sec, [ =
= 1m?/sec3,

The cumulative distribution functions of the first passage probabilities of the system

response g() for barriers located at levels +3 - 10’4, £4.10% and +5-10% m are
presented in Fig. 2 in logarithmic scale. :
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In Fig. 2, the results obtained with the help of the RR&S technique are shown by
solid lines and the results obtained by the straightforward MCS are shown by dotted
lines.

0 2 4 6 8 10
t sec

Fig. 2. Estimates of first-passage probabilities versus time for the double-sided
barriers located at levels =3+ 10 m (), £4-10% m (b), and +5- 10 m (c).

In the first case (barriers at level +3-107*m), 6 borders of splitting were located
at £0,75-107%, +1,5-107%, £2,25-10* m, the number of splitting on each of the
borders m; =m,; =m3=35; the cumulative distribution function for this problem is
shown in Fig. 2 (curve a) by solid lines.

In the second case (barriers at level *=4 - 10~* m), 6 borders of splitting were
located at +1 - 10‘4, +2- 10’4, +3-107* m, the number of splitting on each of the
borders m; =my; =my =5; the cumulative distribution function for this case is shown
in Fig. 2 (curve b) by solid lines.

In the third case (barriers at level =5 - 1074 m), 6 borders of splitting were located
at +1,25-107%, £2,5-107%, £3,75-107%, the number of splitting on each of the
borders my =m, =my =5; the cumulative distribution function for this case is shown
in Fig. 2 (curve ¢) by solid lines.

In all three cases, the initial sample size for the RR&S procedure n =2 000 and, for
the straightforward MCS, N = 250000. The analysis of the Fig. 2 shows good
coincidence of the results of both procedures for all barriers. The following table
contains the time ratio Tycg/Tgrgs. Where T is the computational time necessary to
obtain the estimates P.

Time Ratio-MCS to RR&S

Barrier level +3.10%m +4.10%m +5.10%m
T
“——TMCS 11,80 3729 18,18
RR&S

Commentary. From the results mentioned in Table, we note that the RR&S
simulation technique offers a considerable gain in computational time to obtain the
estimates P, comparatively to direct MCS technique.
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Conclusion. The carried out research shows that the proposed “Russian Roulette

and Splitting” simulation technique allows effectively to access the failure probabilities
of construction in low probability range. It has been applied successfully to a structural
element with two-degrees of freedom subjected to stochastic excitation, showing the
feasibility of this approach to realistic engineering structures.
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