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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
OF A NONLINEAR DIFFERENCE EQUATION
WITH A CONTINUOUS ARGUMENT

ACHMIITOTHYHA ITIOBEJIHKA PO3B’S3KIB
HEJIIHIMHOT'O PIZHUIIEBOI'O PIBHSIHHSA
3 HEIIEPEPBHUM APTYMEHTOM

We consider the difference cquation with continuous argument
X(142) = 2hx(r+ 1) + A2x(0) = f(r, x(n),

where L > 0, 1€ [0. =), and [: [0, =) x R = R. Conditions for the existence and uniqueness of
continuous asymptotically periodic solutions of this equation are given. We also prove the following
result:

Let x(r) be areal continuous function such that

lim (x(r+2) — J—ox(r+1) — ax(r)) = 0

[ = oo

forsome ae R.
Then the boundedness of x() always implies

lim (x(H-I) — x(:)) = 0

I =4 o
ifand only of cce R\{I}.
Posruisnyro pistuiene pinitdin 3 encpepiinsM apryMeirromM
X(1+2) — {1+ 1) + A2 = £(1, x(1),

ne A >0, re [0.e0) Ta f: [0.2) x R = R. Hanejierio yMon# iclyBamis ‘ra €)iocti nenepepiimx
ACHMITTOTHYIO NEPIOJIMMIIX PO3n’ #3Kil Jianoro pinnsuis. [loBe/lenio TaKoXK HACTYITE THEp/(KellIs:
Hexait x( 1) — jtificua nenepepmina (pynkitis raka, wo

lim (x(r+2) = U—o)x(r+1) — ax(n)) = 0

1= e

Juis ieskoro o€ R,
Y npomy Bunajiky 3 ofmexkenocti x(f) 3ansJu1 BHNJHBAE, WO

lim (x(r+1) — x(r)) = 0

e B
Toyti i rismkn royti, koo oce R\ {1},
1. Introduction. In [1], G. P. Pelyukh investigated the problem of existence and

uniqueness of continuous asymptotically periodic solutions of the following nonlinear
differencc equation with a continuous argument:

x(r+ 1) = x() +£(1, x(1)), (€))]
where f: [0,) x R — R is a continuous function such that
(@) f(1,0)=0, |f(t,x)=f(t,y)| < 6(Nx -y | x,y eR, where o(1) is
nonnegative on [0, =),
(b) ®() = Z;U &(t+i) is a uniformly convergent series on [0, =) such that
P(N<o<l1.
It is natural to investigale the same problem for the difference equation

A(1) = F(t. x(1)), (2)
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1096 : S. STEVIC

where Ax(t) = x(t+ 1) —x(¢).
In Section 2, we consider the problem of the existence and uniqueness.of,
continuous solution of Eq. (2) for t =0, Wthh sattsﬁcs thr: conclmon

lim (x() — o) =,0, +. '_ e

where ®(¢) is a continuous function peuodmc mth pcnod one. Wc assume that thc
function f satisfies (a) and tthollong condlt:on O S o '-_"’

(b); @i(n) = Z” (z+1)¢(r+:) is @’ umformly comerocnx serigs on [0,-00)
such that (1)< 6 < 1.

Note that, from condition (a), we have

|7 x| = | £ x(0) —£(1, 0)| < ¢(8)] x(2)].

Since it follows from (b) that ¢(t)— 0 as r— e, we obtain that [f(t, x(1))| =
= o(x(t)) as t—> oo, .
It is easy to see that if x(7) is a continuous solution for the problem (2), (3), then

x(t+1) = x(t) = = Y, f{t+i, x(t+0))
. i=0
and, consequently,

x(1) = o(f) + z (z+1)f(t+z x(t+1)). 4)

i=0
The convergence of the last sum follows from t.he boundedness of x(f) and from
conditions (a) and (b),. Conversely, if x(¢) is a bounded and continuous solution of

Eq. (4) on [0, gw). then it is a solution of the problc]ﬁ (2), 3).
In Section 3, we give conditions under which every solution of a difference
equalion satisfies the condition

lim (x(t +1) = x(1)) =
[—reo

2. Existence and uniqueness results. In this section, we prove the following
result on the existence and uniqueness of solution of Eq. (4). In the proof of the rcsult
we follow the lines of the proof of Theorem 1 in [1].

Theprem 1. Asswmne that candmons (a) and (b), are .s'artsﬁed .Then Egq. (4)

has one and.only orie continuous and bounded sa!urw.f; on [0, ).
Proof. Let xg(t) = o(r) and

x,(5) = o) + ): G+ Df(t+i, %, ,(r+;)) n=12... (5)
i=0

For every n 2 | and te [0, c-o), we show lhat
| 34() = x,_ ()| < .M6", (6)

where M = max, g ll|m(t)|. We have

|5 (®) = xp(0)] < i i+ 1| f(r+i xp (e +D)| =

i=0
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= 3 (+D|f(e+ix®) — Ft+i0)| =
i=0 '

= Y, (+Do+D)|xo(5) =P, 0| x(8)| < Me.
i=0
Suppose that we have already proved (6) for some m e N. Then

| %1 (8) = X ()] S 3, GHD|F(t+i 2,0 +0) = F(E+i Xy +1)| =
: E=0 . <

= i (E+ DOt +0)| x, (2 +1) — X,y (t+10)] <
i=0

< MO"®(r) < MO™H.
Hence, (6) follows by induction. From (6_) we have

M
1-6
Thus, the sequence x,(¢) uniformly converges to a bounded continuous function x(t).
Letting n — oo in (5), we obtain that x(¢) is a solution of Eq. (4).
We now prove that this solution is unique. Let y(¢#) be another bounded
continuous solution of (4). Then the function x(t)—y(¢) is bounded and continuous

on [0, =). By conditions (a) and (b),, we have

|x, (O] < MA+0+...40") <

() = ¥ = 3, G+DIF+ix(t+D) = fe+i (¢ +D)| <

i=0 .

< i(i+1)¢(x+i}|x(t+i) — y(t+i)| <
i=0

< DN x®) = yB o,y < Ol %)= yB licpo, =)
and, consequently, '
[| x(£) = y(8) ”c[o, o) < 8| x(t)— y(®) HC[U' o)

whence the required result follows.

Similarly we can prove the following theorem:

Theorem 2. Consider the difference equation

A'x(t) = f(t, x(D). )

Assume that condition (a) and the following condition are satisfied:

(b)y, @,(1) = 2;0 G+D"" ot +i) is a uniformly convergent series on [0, )
such that ®©,(t) < 6 < 1.

Then Eq. (7) has one and only one continuous solution on’ [0, =) which
satisfies (3). )

Using the change x(#) = A'y(t), we obtain the corollary.

Corollary 1. Consider the difference equation

20 = f(t, x(0), ®
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where A > 0, Ayx(t) = x(t+ 1)—Ax(t). Assume that the function

At y) = Xf(r Ny)

satisfies conditions (a) and (b),.
Then Eq. (8) has one and only one continuous solution x(t) on [0, =) such
that
lim (A x(t) — @(f)) =
f—3oo

3. Variation of solutions. By Theorem 1, we have found a solution of problem
(2), (3). It is clear that the solution satisfies

lim (x(t+1) — x(£)) = 0. ©)
—ye

On the other hand, we see that every bounded continuous solution of Eq. (2)
satisfies

lim A%x(#) = 0 (10)
I—3eo
if (a) and (b), are satisfied.

The following natural question arises: Is property (9) characteristic only for the
solution of problem (2), (3)? The answer is negative. Moreover, difference equation
which satisfy (10) have the property that every bounded solution of these ones satis-
fies (9).

We consider a somewhat generalized version of Eq. (2), namely, we consider
second order nonhomogeneous difference equations with constant coefficients such
that the sum of the coefficients of the corresponding homogeneous difference equations
are equal to zero. There are many papers concerning discrete difference equations of
this type. These equations appear in a large class of Mathematical Biology models, for
example: Discrete delay logistic difference equation [2, 3], Generalized Beddington —
Holt stock recruitment model [4—7], Mosquito.population equatians [8], Perennial
grass model [5, 9], Flour beetle population model [10, 11] (see also [12]). The
following result is the main in this section:

Theorem 3. Let x(t) be a real continuous function such that

‘Iim (x(t+2) — Q1—a)x(t+1)—ox(?)) = 0 (11)

for some o € R.
Then the boundedness of x(t) always implies

lim (x(¢+1) — x(8)) =
t—poo

ifand only if o.e R\{1}.
For the proof of Theorem 3, we need an auxiliary result which is contained in the
lemma which follows.

Lemma 1. Let x(t) be a bounded continuous complex-valued function such that
lim (x(t+1) + ox()) =
t—poo
Then the following statements are true:
(a) if v e C\{zl |z| = 1}, then x(t)— 0 as t— +co;
(b) for each «o, |C€| = 1, x(t) need not be convergent as t — +co.
Proof. a) Suppose that |o| < 1. Let b(r) =x(t+ 1)+ ax(r) n e N. By

standard procedure, we obtain
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[1-1
x(2) = () x{th) + Y, b({t}+ k) (—a)l D, (12)
k=0 .

where {t} is so-called rational part of number ¢, that is {t} = t—[£], where -[{] is

the integer part of .
Since lim, ,,..b(f) = 0 and |o | < 1, itis easy to prove that the sum

n=1
2, b{f}+ k)=o)l EHD
k=0
tends to zero as t— +co. It follows from (12) that lim,_,,., x(#) = 0.
Let || > 1. Since x(t) is bounded, there exists M > 0 such that |x(¢)| <
for each te [0, ). Hence,
! p{ey+k M
x({r}) + 2 (;{Ot})k-H) s ral[r]_’

k=0 (

forall te [0, o). (13)

Replacing ¢ in (13) by t,=n+ t;, n € N, where ¢, is a fixed number in [0, 1),
and then letting n — =0, we obtain

Yoo
) = - 3 2oth (14)

o (—U.)k+l
Taking {t} = t#, and then substituting (14) in (12), we obtain

1 *Z": b({t}+k)

x(t) =
- 0 G’

Since lim, ;.. b(f) =0 and |a| > 1, we obtain

< b{t}+k)

lim Y =1

=+ Th (—ou)-
whence the required result follows.

b) If || =1, ie, o = e, 0 e [-m, 7], then the function x(t) = ef®-7/2) is
bounded and satisfies the condition x(t + 1) + ox(t) = 0, t € [0, o), and the limit
lim,_,., x(¢) does not exist.

Remark. The last example shows that x(¢) in Lemma 1 need not be convergent.

Proof of Theorem 3. The case o = 0 is trivial. Suppose o ¢ {-1,0, 1}. Put
b(t) = x(t+1)—x(t). Then, from (11) it follows that b(t+ 1) + ab(f) — 0 as t—3 oo,
The boundedness of x(t) implies the boundedness of b(¢). Since o ¢ {-1, 1}, by
Lemma 1 we obtain b(t)— 0 as t— ==, as desired.

Let oo = —1. Hence,

lim (x(2+2) — 2x(t+1) + x(2)) =

f—3oa
Now assume that

limisup (x(t+1) — x(t)) = a > 0.

t—3eo
Hence, for every € € (0, a), there exists ‘0 > 0 such that
x(tg+1) — x(ty) > a—¢ (15)

and
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1100 STEVIC

x(t+2) — x(t+1) — (x(t+1‘)—x(r)) >-¢ for t2t. (16)

For a fixed ky € N, wechoose € = a /2(ky + 1) and, for such g, find fg = to(e)

such that (15) and (16) hold. Then we have

k+1

x(t0+k+1) = .?C(to +k) > a—-(k+1)e = a - ma 2 5

" forevery ke {1,2,..., ky}. Hence,

x(tg+ko+1) 5 x(tg+1) + kgg,

which contradicts the boundedness of x(t).

The assumption

liminf (x(¢+1) — x(#)) = a < 0

t—yoo

‘leads to a contradiction by a similar argument.

Let oo = 1. Then the function x(t) = sin7t is bounded, x(t+2)—x(t) =0, and

the limit

lim,_,,, (xr(t +1) — x(1))

does not exist,
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