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STABILITY OF SOLUTIONS OF QUASILINEAR INDEX-2
TRACTABLE DIFFERENTIAL ALGEBRAIC EQUATION
BY LIAPUNOV’S SECOND METHOD

CTIMKICTE PO3B’SI3KIB

KBA3LITHIMHOI'O PO3B’SI3YBAHOTI'O 3A ITHIEKCOM 2
JAOEPEHIIAJIBHOI'O AJITEBPATYHOI'O PIBHSIHHS
SA JPYT'UM METOJOM JIAIIYHOBA :

Liapunov’s second method is an important tool in the qualitative theory of ordinary differential
equations. In this paper, we consider behavior of solutions of quasilinear index-2 tractable differential
algebraic equations (DAEs). By Liapunov’s second method, some sufficient conditions for the stability
of zero solution of such equations are proved.

Opyruit meroji JIsmynona € BaskJHIHM iHCTpYMerToM i sKicniil Teopii asHuaiinmx judpepeniaiibimx
piniimL. Y janii crarri posriisiyTo nope/inky posn’sskin Knasiiinifinux posn’a3ynaibx 3a injiex-
com 2 Jibeperniiaimninmx anrebpaiunmx pisisins. 3a jlonomMorolo Jipyroro MeTojly Jlxnynosa Jiosejieno
loctarni yMonn crifkoceti myJihonol'o posn’sisky TakHX pisisiin.

1. Preliminaries. The index-2 tractable DAE. Consider the following index-2
tractable DAEs: '

AOx" + BH)x = f(t, ), (1.1)
A(X" + B)x = 0, (1.2)

where
AeC\(1, L(R™)), _ (1.3)

BeC(I,L(R™), I={t:a<x<e}, xeR" f(t,0)=0, f(,x)eCy(IxR"),
detA()=0 forall tel, N(r)=kerA(r) issmoothon [ [I], and
A <= M forall tel (M>0 isaconstant). (1.4)

In the case of unboundedness of A(r), multiplying (1.1), (1.2) by suitable scalar
function k(t), ke C'(I), k()0 for all rel, we obtain the equivalent equations
in which the coefficient matrix of x” is bounded.

Choose P(N=AT (DA, Q@)=1-P(r), then P(t) is the orthoprojector onto
im(AT(t)) along N(r) [1].

Denote

AW = A + (BO=ADP' (D)0,  Ni(f) = ker A (D),
S¢) = {zeR": B)zeimAW)}, §() = {eR": B()P(NzeimA (1)},
R =1-0(n, tel,

where Q,(f) is the projector onto N,(t) along S§,(#). .
The DAE (1.2) is said to be index-2 tractable (shortly index-2) on [ if the
following conditions are valid [1]:

dimN,(f) = const > 0,  N() @ S;(1) = R™ forall tel. (1.5)
Suppose that
P, 0 eC\(1, L(R™)), (1.6)
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and the range of (A(t) P(1) (1)) is fixed, i.e.,
R(A(®) P(OR()) = R(A(a)P(a)P(a)) forall tel. (1.7)
Denote
R(A(a)P(a)P(a)) = EF cR", I1<k<m.
Now putting
Ay (1) = A + Bi(NQ(D, (1.8)
where B;(1)= (B~ A/(PR)')P(t), then the relation (1.5) is equivalent to det Ay()#0 -
forall tel [2,3]. Furthermore, we have
0 = QA'BP, Q=0
Denote
e = (I = (QQ)) — ORA;'B) PR, (1.9)
In that case, Ty, =T, and immg, () is the subspace of R™.
Let X(f) be asolution of (1.2), then we have [3, 4]
xXeimmg,(®, tel. (1.10)

Further, let the equation (1.1) have index-2 on [xR"™. This means that the
following conditions are satisfied [4]:

dimN,(t, x) = const > 0,

Nyt x) @ S(r,x) = R" forall (r,x)elxR",
where

Ni(t, x)=kerA(t,x), Si(t.x)={zeR"™: (B - fi(r, x)) P()z e imA(, )},
At x)=A + (B- fl(t,x)— AP)Q(1).
Suppose that
QAT () f(t, x()) = 0 (L

and there exists a matrix D e C(I, L(R™)) such that

Q(r)A;'(r)f(r, x(t)) = Q) D) P(t) (1) x(¢) for all solutions  x(r) of (1.1).
(1.12)

We will use the following decomposition:
I =PR +QR + 0. (L.13)
Since x(t) is asolution of (1.1), we have
AN X(F) + B(x(t) = f(t, x(1), tel.

Multiplying all members of the above identity by PRAS'(f), QRA;'(1), QA;'(®,
respectively, and due to (1.11), (1.12), (1.13), we obtain

x(t) = (1-(0Q)" - ORA;'B+ QD) PR()x(0), (1.14)
where P(t)F(#)x(#) = u(t) is a solution of the following equation [4]:
w = (PR) (hu — PRAS'B(t)u + f(r, (f ~(Q0) - ORA;'B+ QD)(I)H).

Putting
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T = (!*(QQ,)' —QaA;'B+QD)PP, (1.15)

we have 7> =7, which means that 7 is a projector. Moreover, we can see that 1
and any solution x(f) of (l1.1) is invariant for all matrices D satisfying the
condition (1.12) and

x(H)eimn(t), tel. ' (1.16)
Lemma 1.1. The following conclusions are valid:

(i) PR =A;'APR; (1.17)
(ii) if xeimn(t) or xeimmy,(f), then, Pﬁ(r}sz;'(r)A(r)x; (1.18)
(iii) An=APPR, Am.,=APH. (1.19)

Now, by (1.3) we can rewrite (1.1), (1.2) as the following equivalent equations:
(At)x)" = (A'(1)— BM)x + £t x), (1.20)
(A()x)" = (A'() - B(t))x. (1.21)

Dueto xeimmn(t), x=mn(f)x, thus, from (1.3), (1.15), (1.16) and (1.18), we can
see that, on imm(f), the equation (1.20) is equivalent to

(Anx) = (A'() - BO)TOA®x + f(t, T AM) ),
where
T() = (1-(0Q) —0RAs'B+ D) A5 (). (122
Similarly, on im7g,, () (1.21) is equivalent to
(A(t)x)" = (A'(t)— BOO) T,(H) A() x,
where
() = (T — QDA )(®). (1.23)

Hence, together with (1.20), (1.21) we consider two following ordinary differential
equations:

Y = (A0 =BO)T®)y + F&6. T®)), (1.24)
¥ = (A0 -BO)T(M)y, yeR"™, tel, (1.25)
and for solutions of (1.1), (1.2) we ask, respectively,

PR (ty)(x(rg) - x°) = 0, (1.26)
PR (1) (%(t)—x°) = 0, foel, x°eR". (1.27)

Obviously, because of (1.16), (1.26) and (1.10), (1.27) we have
x(tg) = T(ty)x°, (1.28)
F(fg) = Tecan(to) X’ (1.29)

Further, we always assume that (1.1), (1.2) have index-2, the conditions (1.3), (1.4),
(1.6), (1.7), (1.11), (1.12) are satisfied, and, for each (ty, z°) &/ x R™, the equations

(1.1), (1.2), (1.24), (1.25) have the unique solution which is defined on  [#y, =) and
satisfies the given initial condition.

We have the following lemma:

Lemma 1.2. If x(f)=x(t ty,x°) is a solution of (1.1) satisfying (1.26), then

ISSN 0041-6053. Yrp. sam. ypi., 2004, m. 56, N® 10)



1324 VU TUAN, PHAM VAN VIET

¥() = A x(t, tg, x°) is a solution of (1.24) satisfying ¥(tg) = A(tg) Pto) B (1) x°.
Conversely, if )'(t):_v(r, tu.y*), where y*eEX, is a solution of (1.24), then
there exists x* e R™ such that y* = A(ty) P(ty) PB(ty)x* and
x(t,10,x*) = (I-(0Q) - ORA;'B+0D) A7 1))
is a solution of (1.1) satisfying P(ty) R (ro)(x(ro) - x"‘) =0.
We also have the similar conclusions for solutions of the equations (1.2) and (1.25).
Proof. First, if x(f)=x{t,t5, x°) is a solution of (I.1) satisfying (1.26), then
x(f)eimn(r) for all +=t,. Hence, in case y=A(t)x(t), the right-hand side of

(1.24) coincides with the right-hand side of (1.20). This implies that y(f) = A(f) x(¢) is
a solution of (1.24) and, because of (1.19), we have

¥tg) = A(tg)x(ty) = APR(tp)x(ty) = APﬁ(ro)xO.

Further, let y() = y(t. 75, »*), »* € E*, be a solution of (1.24). Since (1.7), there
exists x* e R™ such that y* = A(fy) P(ty) B (tg) x*. Assume that x(t):x(r, .'g,x*) is
a solution of (1.1) satisfying P(fy) B(o) x(fg) = P(tg) B(fo)x*. According to the
beginning of this proof, we have that j’(r):A(r)x(r, ro,x*) is a solution of (1.24)
satisfying

F(to) = Altg) P(to) R(fg)x" = y* = y(f).
Due to the unique existence of solution of (1.24), we have ¥y(f)=)(¢#), whence
¥(t)= A()x(t, tg, x*) for all t21,. Multiplying all members of this identity by
A7'(1) and due to (1.18), we have P(t) (1) x(t, fo, x*) = A" (") y(). From this and
(1.11), (1.12), (1.14), we obtain )
x{t; i ) = (!—(QQ,)' - QP,A;'B+QD) SOy forall >t

The lemma is proved.
Lemma 1.3. The condition (1.7) implies

RANOPOR®) = RAOlimxn) = RA@|imnt) = B forall rtel.

Remark 1.1. (a) Let the following conditions hold:
(i) the equation v=Q, A-_,T'(.t)f(r, w+ 1+ Pv) has the unique solution v =0 for all

tel;
(i) there exists a matrix De C(I, L(R"')] such that the equation
W+ ((QQi ¥ QﬂA;'B}(r)u = QAT (1) F(t, w + 1)
has the unique solution
w =—{((00)) +ORA;'B-0D)()u

forall rel, where u=PRx, v=0x, w=0x,
Then, the conditions (1.11), (1.12) are satisfied.
(b) Due to (1.7) and the unique existence of solution of (1.11), we have

(At - B)x+ f(t, x)) eEX forall xeimm(), tel. = »
Definitions of stability.
Definition 1.1 [1]. The solution x(t)=0 of (1.1) is stable (in the sense of
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Liapunov) if for any € >0 and any tyel, there exists a 8§=358(t5,€)>0 such
that if x° €R™, || P(to) B(t)x°|| <8, [|x(t. 10, x°)| <& forall t=1,.

Definition 1.2 [1]. The zero solution of (1.1) is asymptotically stable, if x(t)=0
is stable and if there exists a 8y(tg)>0 such that, if ||Plto)Ri(te)x" || < 8o(to),
[ x(2. 1o, ):0)" =0 as t— ee.

‘We assume that @(f) is a continuous positive scalar function on [ and @(t) —

as f—» oo,
Definition 1.3. The zero solution of (1.1) is @-asymptotically stable, if x(t)=0

is stable and there exists a  Cltg,)>0  such that if |P(to)R(to)x°|< e,
”x(.t. to, ,\-9)” < C(t, a)%)— forall t=1,.

Definition 1.4 [5, 6]. The solution x()=0 of (1.1) is exponential-
asymptotically stable if there exists ¢ > 0 and, given any € >0 the exists 6(g)>0

such that if ﬂ P(rc)ﬂ(fu)xo “cﬁ(s), ”x(.', ro,xﬂ]u < eexp(—c(t—1ty)) forall t=1,.
Definition 1.5 [S]. Let E denote a subspace of R"™. The zero solution of

(1.25) is stable on E if (to,y°)e(XE), a solution y(t,15,y°) of (1.25)

satisfies y(f, ro,y”)e]E for all t=ty, and given any € > 0 there exists

8(tg. €)>0 such that if ||y° ] <8(tg. &), ||3(t 10, y°)| <& forall t=1,.
The zero solution of (1.25) is asymptotically stable, @-asymptotically stable,
exponential-asymptotically stable on E defined similarly.

Denote A={yeE*:|y|<MH}, where H>0, M is determined by (I.4), and

E" = R(A@|imza))-
Let V(t,y) be aLiapunov function defined on 7xA and y(r) be a solution of

(1.24) which stays on [ x A. Denote by V'(t, y()) the upper right-hand derivative of-
V(t, y(r)) and

Vian(ty) = Tim S (V(+h y+hG(r, ) - V1, ),

h—=0+ h

where
G(t,y) = (A= BO)TOy + £t T@)).

We have [6]

V(t, 3(®) = Va0t ). (1.30)

Incase y=A(Nx, xeimn(f) (|x|l<H), the right-hand side of (1.24) coincides
with the right-hand side of (1.20), therefore by (1.30), Lemma 1.2, Lemma 1.3 and (b)
of Remark 1.1 we obtain
V'(t, A)x(1)) = Vja0)(t, A()x) forall xeimmn(®), ||x|<H, tel,

where x(f) is a solution of (1.1).

Similarly, we also have V'(t, A()x(r)) = V(]‘:,_U(I,A(r)x), where x(f) is a
solution of (1.2) and xeimm,,, (1), re/.

In case V(t, y) has continuous partial derivatives of the first order, it is evident that

Vs 20y(ts A(D)x) = aa—‘: + (eradV, (4" = B)(x + £(t, x)))

forall xeimmn(), ||x]|l<H, tel.
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2. Sufficient conditions. _

Theorem 2.1. Suppose that there exists a Liapunov function V(t,y) defined on
I X A, which satisfies the following conditions for all x eimmn(t), |x|<H, tel,

(i) V(,0)=0;

(ii) a(|lx|]) £ V(t, A(t)x), where a(r)e CIP [6];

(iii) V20)(t, A)x) < 0.

Then the solution x(f)=0 of (1.1) is stable.

Proof. Since V(t,y) is continuous, forany €>0 (e<H), tye[, there exists

8, =8,(ty, €) >0 such that ” y° u<5, implies
V(to, ¥°) < a(e). @2.1)

Let x(f)=x(t, 15, x°) be a solution of (1.1) which satisfies || P(to) Fi(f) x° ]|<%,

M be the number determined by (1.4). Then, according to Lemma 1.2, y(f) = A(f)x(¢)
is a solution of (1.24) satisfying y(rg) = A(ty) x(fy) = A(ro)P(ro)ﬂ(ro)xO and
)
I3l < 1A Peo) Rto) 2| < M = 8. (22)
Thereby, from (ii), (iii), (2.1) and (2.2) we have

a(||x(t, 10, 2°)|)) < V@& A <
< V(to, Alto) P(tg) F(tg) x°) = V(tg, ¥(tg)) < a(e)
forall ¢2t,. Thisimplies ||x(t, 1, x°)|<e forall r>1y if ||P(t)R(tg)x°|| < &=

= 5—' That is, the zero solution of (1.1) is stable.

The theorem is proved.

By the same argument used in the proof of Theorem 8.3 in [6, p. 32], we can prove
the following theorem.

Theorem 2.2. Suppose that there exists a Liapunov function V(t,y) defined on
I X A, which satisfies the following conditions for all x eimn(t), ||x|<H, tel:

(i) a(|x|) SV, A(Ox)<b(||x]), where a(r)e CIP, b(r)eCIP;

(ii) vﬁ‘gm(ﬂ A x) £ —e(|xll), where e(r) is continuous on [0, H] and
positive definite.

Then the solution x(t)=0 of (1.1) is asymptotically stable.

Theorem 2.3. Suppose that there exists a Liapunov function V(t,y) defined on
I X A, which satisfies the following conditions for all xeimmn(r), |x||<H, tel:

(i) V(1,0)=0;

(ii) llxfi<V(r, A@)x);

(iii) 1"{’].20)(.', AN x) £ =AM V(t, A(NX), where A1) is a continuous positive

scalar function on I and J: M) dt = oo,

Then the solution x(t)=0 of (1.1) is @-asymptotically stable.
Proof. Due (o (iii) and Theorem 4.1 in [6], we have

!
V(r, A(r) x(r, 1 xa)) < V(1 A(tg) x(ty)) exp {-— I l(s)ds] =

Iy

!
= V(ty, Alto) P(to) A(to) x°) exp[—j x(s)ds]. (23) .

In
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Denote @(f) = cxp(rl(s)ds). Because of the feature of function A, we can see that
a

@ is continuous positive function on / and @(t) — o= as t— eo. Then the estimation
(2.3) leads to

V(t, Aty x(t, 1, x°)) < V(t, Alto) P(to) R(tg) x°) %’?}) forall +t21,. (2.4)
q) [
We define
Cltg, @) = | max, V(to, 5), 2.5)
where 0 <o < H, M is determined by (1.4).
Let || P(to) B(t)x°||< o, then
| Ato) Ptro) Ritrg) x° || < oM. @6
Therefore, together with (2.4), (2.5) and (2.6), we have
V(t, A1) x(t, g, x°)) < C(ro,a}%(;f—))-. 2.7)

Finally, from (ii) and (2.7), we obtain | x(t, to, x°) || < Cr, a}% forall r21g, if
(01§

[l P(ty) Pl(ro),\'n I] < ot. Thus, the zero solution of (1.1) is @-asymptotically stable.
The theorem is proved.
Example 2.1. Consider the following equation:

A x" + B(hx = f(t, x), (2.8)
where
1 0 0 FF 4 gy
An=|0 " of BH=|22 1 - d
0 0 0 0 | 0

and  f(,0)=(f fu £3), fi=—xln=20)%  H=—tTxcosxy,  f=-x13,
I=[l,e), x= (‘\.I? s -‘:3);!' = RB-

We can see that the equation (2.8) has index-2 and  f(r, x) salisfies the conditions
(1.11), (1.12) with

0 0 0
D=|0 0 0]
50 0

Moreover, imT(f) = {(0(, 0, (2 - r'j) a)T; oe IR}. The equation (2.8) is equivalent to

4 = i 2
X ; T II| +,\'2—‘2|' IX3“XI(X3—2X|)-
i ) oy
(') | = | —2r% = (1+172)xs + a3 — £ 2x cos x5 |- (2.9)
0 —=Xg—= Ig.l':;z

Since  R(A()|imne) = {(c.0,0)"; e R} := E', we choose V(t,3)=10|y],
where y=(y,0, O)T eE'. In that case, we can see that V(t,y) is a Liapunov
function defined on [ x IE‘.', and together with y=A(f)x, xeimmn(f) we have:
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1
V(t, Ax) = 10]x| = (1+(2+:“5)‘)2[x,| = I,

Vaoy(t, At)x) € =317 V(t, A(t)x) forall xeimm(r), tel.

According to Theorem 2.3, the zero solution of (2.8) is t3-asymptotically stable
and

| x(, 10, x°)|| < 108373
forall 121521, if | Pltg) Rit)x’ || =|xP +2£5°x8 | <27, x®=(x{, 3, A-_E,’)T.
Theorem 2.4. Suppose that:
I. There exists a Liapunov function V(t,y) defined on IxA, which satisfies
the following conditions for all x eimn(t), ||x||<H, tel:
(i) llxl=V(n A()x) < Kl x]);
(i) V{20t Af)x) € —cV(t, A(f)x), K21, ¢>0 are constants.

I. There exists Ly>0 such that ”(1-(QQ,)’~QP|A3”‘B+QD](r) “ < Ly for

all tel.

Then the solution x(t)=0 of (1.1) is exponential-asymptotically stable.

Proof. First of all, since x(r) is a solution of (1.1), x(f) eimn(r), this implies
x(tp) e imm(ty). Therefore, due to the condition II of this theorem, we have

Ixtto)ll = (71— (@) - QRAZ'B+ D) PR(10)x° | < Lo|| Ptto) itto) =

Further, this theorem can be proved by the same argument used in the proof of
Theorem 2.3. -

Theorem 2.5. Suppose that there exists a Liapunov function V(t,y) defined on
I x A, which satisfies the following conditions for all x e imn(t), | x||<H, tel:

(i) lix|=V(t, A()x) < K[| A(®) x]l;

(ii) Va0t AM)X) € —cV(t, A(H)x).

Then the solution x(f)=0 of (1.1) is exponential-asymptotically stable.

Lemma 2.1. Let the conditions (1.3), (1.4), (1.5), (1.7) hold and there exists a
L>0 such that

las'o] < L |(1-©@e) -eras'B)As' 0| < L sorant ter, @.10)
where A,(t) is determined by (1.8).

Then. the zero solution of (1.2) is stable if and only if the zero solution of (1.25)

is stable on EX.

We have the similar conclusions for asymptotically, @-asymptotically,
exponential-asymptotically stability of the zero solution of (1.2) and (1.25).

Proof. First of all, we assume that the zero solution of (1.2) is stable. In that case,
for all tyel, given & > 0, there exists &=358(f,€)>0 such that if

[ Pto) Rto)x° | <8, || (. ro,x°)|]<ﬁ forall t2ty, M is determined by (1.4).

Let y(H= )‘(r. tos yo] be a solution of (1.25), where yo e E¥. Then there exists
% eR™ such that y°=A()P(tp) B(t)x°. Due to Lemma 1.2, () =
zA(r)x(r. .'O,xo], where ):(r,rc.,xo) is the solution of (1.2) satisfying
P(to) (o) x(to) = Plto) A(fo)x".

Because of (1.17) and (2.10), we have
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| Ptto) Pitto) x°|| = || A5 (t0) Ato) Pltg) Ritg) x°|| <
< 4" @) 400) Peo) Pteo) 1| < L])5°]|

Therefore, if ”)__0 ”c%, then ” P(.-‘o),"l(ro)xEJ “<8, and hence, it holds that
£
M
Moreover, we can sce that, by the unique existence of solution of (1.25), y(¢) e EF
forall t=1#,. Hence, according to Definition 1.5, the zero solution of (1.25) is stable
of EX.

Conversely, let the zero solution of (1.25) be stable on EX. Then, for any tyel
and given €> 0, there exists 8, =8,(fy, €)>0 such that

[>( %0.0°)< £ - em

¥t 10, 5°) = [ A x(t, 19, X°)|| < AN x(t, 10, x°)|| < M g.

forall t21y if [»°]< 8, (° eE*).

Now, let x(r, 1o xc) be a solution of (1.2).
Denote

y* = Altg) Plte) Pi(fg)x°. (2.12)
By (1.7), »* € EX. Moreover, due to Lemma 1.2, we see that A(f)x(f, fo, .1‘0) is a

solution of (1.25) and y(t, tg, y*) = A(t)x(t, tg, x°). Since x(t, 79, x°) € im g, (1) for
all f21y, it holds that

x(t 19, 3°) = Tegn()x(t, 1, x°) =
= (- (@) - 0RAT'B) AT () ADIA(1 10, x°) =
= (1-e2) - QP,A;]B) AT O x(t 10, YY)
Thereby, together with (2.10), we obtain
I x(t. 20, x°)|| < L||3(t t0. ") (2.13)

On the other hand, if || P(t5) Pi(f) x° ||<%, (2.12) implies

Thus. because of (2.14), (2.11) and (2.13), we have ||x(r. fo, 2%)|| < Li—: ¢. That is,

Y| < M| Py Rtp)x°| < &, (2.14)

the zero solution of (1.2) is stable.
The lemma is proved.
Theorem 2.6. Suppose that:
(i) there exists N> 0 such that

[4s'0] < N, ITOI < N, IT@I < N (2.15)
forall tel, where T, T, are defined by (1.22) and (1.23), A, is defined
by (1.8);

(ii) there exists K, >0 such that
[x(t. 0. x%)|| < K| Pto) Rt)° | foratt t21, (2.16)
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where x(f fgs X ‘0) is a solution of (1.2);

(iii) [|(A"— B)QDP(t)x + f(t,x)|| < a®)llx|l. or |(A"—B)@DP®)x+ f(t,%)|| <
S o) meqn (x| forall xeimn(r), ||x|<H, tel, where the matrix D s
determined by (1.12) and o) is positive continuous on [a, =) satisfying

Ja(r)a‘r = O < . (2.17)

a

Then the solution x(1)=0 of (1.1) is stable.
-Proof. First, if xeimm,(t). then because of (1.18) in Lemma 1.1 and (1.9), we
have:

x = Tg(x= (1-(00) - QP,A;'B)PH(.'},\- =

= (1-(@ay - oRA;'B)As" Ax = TV AMx.
Because of (2.15), this implics
lxll < NIAGx]. (2.18)

Due Lo (i), (ii) and Lemma 2.1, we can sce (hat the zero solution of (1.25) is stable on
EX. By (1.4), (2.15), (2.16), (1.17) and Lemma 1.2, we have

Is(eron )] < KD @.19)

where K= MNK, forall t=1r,, _r(r. 19, _ru) is a solution of (1.25), )-U e EX.
Denole

V(t,y) = Nsup|y(r+T.6y)], »ye EX,
20

Since the equation (1.25) is linear, then, basing on (2.18), (2.19), Lemma 1.2 and

Lemma 1.3, we can prove that V(t, y) is a Liapunov [unction defined on [ x EX,
which satisfies

[Vt 3) =Vt y2)| € KN|yy =yl forall y B, ), eE, (2.20)
V(,0) = 0 andif xeimmg, (), tel, then |x| < V({, A(Nx),
Vi an(t A)x) < 0. @.21)

Thus, the zero solution of (1.2) is stable.
Denolte

4
Wi, ») = V(1. _\‘)eKNa" cxp(—- KNJ-a(.r}ds}
[

. We see that W(r, y) is also Liapunov function dcfined on /X EX.
Moreover, W(,0)=0 and in casce xeimn(r), x=7nx=T(HA()x, this

implies  ||x||SI T A x| N|AD x|, and hence, |l < W(r, A(t) x),
simultancously, we also have
[ Tean (x|l £ V(1 A(DX), |lx]| £ V(r A()x). (2.22)

On the other hand, because of (iii), (2.20), (2.22) and (2.21), xeimmn(t) we have

i
e KN W ooy (6 A(DX) € —KNoh) V(r, A1) x) cxp[—KN | a{s)ds) +

[
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+ {V(t, A@®) Toean () x) + KN|| (A" = B)ODP(t) x + £(t, x)| } exp (—KN jo:(s) ds] <

!
< —KNo(f)V(t, A() x) exp [—KN ja(s) ds] +

a

+ {V'(t, A(®) oo () %) + KN (1) V(t, A() x) } exp [—KN ja(s) ds] =

= V', A(D) Tt (D x) exp[—KN jot(s)ds] 5 1

This implies ‘H{, 20yt A(x)<0 for all xeimm(r), tel. So, W(, A()x)
satisfies all assumptions of Theorem 2.1, and this means that the zero solution of (1.1)
is stable.

The theorem is proved.

Lemma 2.2. Consider the following equation:

A()x + B(t)x = A(H) F(t, x), (2.23)
where |
F(t,0) = 0, F(t,x)eCo(IxR"™).
Let (1.2) have index-2 on I and
ANQNF(t,x) =0 forall (t,x)elxR"™. (2.24)

Then (2.23) has index-2 on IxR"™. Moreover, the conditions (1.11), (1.12)
are fulfilled and any solution x(t) of (2.23) satisfies x(t) e imm_,(f), tel.
Proof. Denote

S(t,x) = {zeR™: (B() - AF/(t, )z e im A(1)},
5i(t, x) = {zeR™: (B(r)— A1) F{(t, x)) P() z € im A (1, x)},
N(t, x) = kerA((t, x),

where
At x) = A@) + (B(t)— AW Fi(t, x) = AP) Q1) = A(t) — AW F(t, x)O(1).
: - (2.25)
Let arbitrary 1 € R™. Because of (2.24) and (2.25), for all te/, we have
ALMPOPRE = AWMPEOR® = AW PR, (2.26)
A F(t,m) = A(t) PR () Fi(t, ). 2.27)
Due to (2.25), (2.26) and (2.27), we obtain
imA[(t, 1) = imA(). (2.28)

It follows from (2.28) that dimﬁ,(r, n)=dimN,(t)=const>0 forany tel. Since
(2.28) and

(B — A(®) Fy(t, M) P(Nz = (B() — A(t, M) PR (1) F(t, n)) P()z € im A\ (¢, 1)
if and only if B(#) P(f)z € im A|(f), we have
SM=S8, ¢n)elxR™
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Further, let y e N;(t, M N S,(1). By yeN,t.n), ANy = o,' this implies
AWMy — AQPRMOF(tM)Y = AM(y—PREOF(tM)y) =

s & = (y=PROF(L M) €N
Thus, due to y e S|(¢), we have &=Q,()&=0;(¥)y=0, and hence,
= PR(OF(t,M)y.

From this we obtain
AWMy = AOPOROF(MY = ALMPOROFEEMY = A1)y = 0,

i.e., »eN (). Since (1.2) has index-2, y =0. This implies N,(#, 1)@ S,(t)=R",
for all te/. Because 1 is arbitrary, we conclude

dim?\Tl(r, x) =const > 0 and N(t,x)® () = R" forall (r,x)elxR"™,

this means, the equation (2.23) has index-2 on I xR™.

The second assertion of this lemma is proved by Ar' A(f)=P(t) and D=0,

Lemma 2.2 and Theorem 2.6 yield the following corollary.

Corollary 2.1. Under the same assumptions as in Theorem 2.6, if the conditions
(i) and (iii) are replaced by the following: S

There exists N > 0 such that ” A;J(r)”S N, ITMOISN for all tel and
AW F@ )| So®)|lx|| for all xeimmy,(t), |x|<H, tel, then the zero
solution of (2.23) is stable.

Theorem 2.7. Under the same assumptions as in Theorem 2.6, where the
condition (ii) is replaced by the following:

(i) there exists a K\>0 such that |x(t,t, x )”<KI }P(-'o)ﬁ(fo)xo “ lP(fo)

forall t2ty, where x(t,t,x°) is a solution of (1.2) and ¢eC\(I), (p(.t)>0,

O (>0 for all tel, @()—>e as t— oo, the zero solution of (1.1) is @-
asymptotically stable.
Proof. Due to the condition (ii)’, we have

I5(t 20, %) < K|y °|[‘p(r°) forall ¢ 1,

where K =MNK,, ¥ 0 ¢E* and y(r 15, ) 0) is a solution of (1.25).
Denote

i(P(f+T) 30 e BX
0@

We can see that V(f,y) is a Liapunov function defined on /X KX satisfying the
following properties:

V(t,y) = Nsup|y(t+7,t )|
=0

V(t,0) = 0, x|l £ V(& A@®)x), ‘Vﬁ‘?_]}{r, A)x) £ =AMOV(r, A(t)x)

o0

forall xeimm,(t), tel, where A(f)=
Let
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f
W, y) = Vi, y)efNeo exp[—KN ja(s)ds].
L4
We can prove that W(t, y) is also a Liapunov function which satisfies all assumptions
of Theorem 2.3.
In fact, W('ng)(r, A xX) S =AW, A(H)x) forall xeimmn(t), tel.
Thereby, the solution x(r)=0 of (1.1)is ¢-asymplotically stable.
Theorem 2.8. Suppose that:
(i) there exists N >0 such that ||A5'(®) [sN, ITOISN, ITOISN for all
tel, where T|, T are defined by (1.23) and (1.22);
(ii) there exist K;>0 and c¢>0 such that

[ x(t. 0. x°)|| < K| Ptto) B(t) x° || exp(—c(t — 1))

forall t=ty, where x(t,ty, x°) is a solution of (1.2); ,

(iii)  f(r, x)=g(t, x) + h(t, x), where g(t,x), h(t,x) satisfy the following
conditions for all xeimmn(t), |x||<H, tel,

+) [(A"-B)QDP@®)x+g(t. )= o(Ix) (Ix[|=0) and |At )< sl x|
or

+) llgtt. Dl=o(lx) (Ixll—0) and [[(A"~B)QDP()x +h(t, )| < eut)]x,

oft) satisfies (2.17) and the matrix D is determined by (1.12).

Then the solution x(f)=0 of (1.1) is exponential-asymptotically stable.

This theorem can be proved by the same method used in the proof of Theorem 2.6
with

!
V(t,y) = Nsuplly(t+ 630l and W(t,y) = V(1 y)eKNa” cxp[—KN_[a(s)ds],
120

o

where }'E]Ek, K = MNK;. )

Remark 2.2. (a). Under the same assumplions as in Theorem 2.8, where o(||x]f)
(Ixll=0) and o()|lx|| in the condition (iii) are replaced by o(|| e, (5 x][)
(| Tean(®)x]|— 0) and .o(t)]| Teqn(£) x|, the zero solution of (1.1) is exponential-
asymptotically stable.

(b). Similarly, from Theorems 2.7 and 2.8, we also have corresponding corollaries
for the zero solution of the equation (2.23).

(c). If the equation (1.1) has index-2 on [ X {x: [ x| <H, small H}, then, the
above theorems are true.

Example 2.2. Consider the following equations:

ABX + B(Hx = f(t, x), (2.29)
AN x" + B(Hx = 0, (2.30)
where
1 o A FE 3
AO)=]0 1 0| BO=|1 ¢ =
0 0 0 0- 1 0

I
and f(t,0)=(fi. i ). fi=(x=-x3)% fo=—t"x(1+x3)2, fy=—x,sin’xs,
= U, °°) , A= (I|, A9, X_';)T € RB.
We see that the equations (2.29), (2.30) have index-2 and f(f, x) satisfies the
conditions (1.11) and (1.12) with
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We compute,

1 0 0 1 @+ 0 1 3 @t-2)1"
P=10 1 0, AR=]0 0 0, A'=[0 0 1

0 00 0 -1 1 0 -1 -2
and

imn(t) = {(a. 0, (I+F3)0L)T; aER}.
Next, we have R(A(t)P(t)R(1)) = R(A()P()R(D) forall tel. Let (t,to, x°)
be a solution of (2.30), which satisfies P(tu)ﬂ(ro)(i(tn)wxa)———(}, where

K= (x?, ):»?, x—i) then,
%t 1, x°) =

= ((x +(3+")x3) exp(=2(t — 1)), 0, (x{ +(3+17")x3) exp(-2(¢ - ro)))
Hence, we have
[x(t 70, x°)|| < 2|2 +(3+¢7") 22| = 2| Prg) B(tg)x® ¢ 2~" (2.31)

forall t=1t;=1.
On the other hand, we have

lA®I <3, |AT'@| <11, K@l <11, (T®) <11 forall tel,
(2.32)

(A" -B) QDPx+ f@& | < 372x| forall xeimn(r), [x[<1. (233)

Thus, from (2.31), (2.32) and (2.33), we see that the assumptions of Theorem 2.8
are satisfied, hence, the zero solution of (2.29) is a exponential-asymptotically stable.
Moreover,

x(t tg, x°)|| < 22 exp(=2(t—1y)) forall 121521
(e )] € 2050201 iy
if

[ Ptto) Bt)x® | = |x +(3+55")x3 | < ™.
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