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HOPFICITY AND CO-HOPFICITY IN SOLUBLE GROUPS

XOII®OBICTD I KOXOII®OBICTD
Y PO3B’SJI3YBAHHUX I'PYIIAX

We show that a soluble group satisfying the minimal condition for its normal subgroups is co-hopfian
and that a torsion-free finitely generated soluble group of finite rank is hopfian. The latler property is a
consequence of a stronger result: in a minimax soluble group, the kernel of an endomorphism is finite if
and only if its image is of finite index in the group.

MMokaawiio, WO o3’ I3y Py na, 3K 30JL0n0Jiki e YMORY MiltiMaismocti just 1T nopMaihin nij-
I'pYT, € KOXOM(POBoIO i CKilMelonopojikena po3i’ {3yl 'pyna ckinyenoro painy fes ckpyry €
xondponoo. Ocranns puacTHBiCTh € nachijikom ciabiiwore peaynnrary: u Minimakeniil poa-
u’synanifl rpyni spo eiyomopepisMy erinvenne Tojti i TisinKn Toju, Kosu iiorro ofipas mue cKinvenn-
nmii injieke y rpyni.

1. Introduction and main results. Recall that a group G is said to be hopfian
(respectively, co-hopfian) if every surjective (respectively, injective) endomorphism
¢@: G— G is an automorphism. In other words, a group is hopfian if for every normal
subgroup H < G, the fact that G/H and G are isomorphic implies that H={1}. In
the same way, a group is co-hopfian if for every subgroup H < G, the fact that A and
G are isomorphic implies that H = G. As usual, we shall say that a group G satisfies
Min (respectively, Min-n) to mean that each nonempty subset of subgroups of G
(respectively, normal subgroups of G) contains a minimal element. Groups satisfying
Max or Max-n are likewise defined, by substituting “maximal” for “minimal”.

Il is every easy lo see that a group salisfying Min is co-hopfian and a group
satislying Max-n is hopfian. In Section 3, we shall give a more general form of these
results. On the other hand, a group satisfying Min-n is not necessarily co-hopfian.
For example, lct A (N) be the finitary alternating group on the set of natural integers.

Hence A(N) is the set of products of an even (finite) number of transpositions of N,
Consider the “I-right-shift mapping” ¢: A(N) = A (N), where for each element
fe A(N), the permutation @(f) is defined by

©(f)0) =0, and @f)(n) =1+ f(n—-1) when n>0.

It is casy to verify that ¢ is an injective endomorphism. But ¢ is not surjective since
e(A(N)) = {fe A(N)|f(0)=0}. Thus the group A(N) is not co-hopfian; never-

theless it satisfies Min-n for it is simple.

Our first result shows that the situation is different in the class of soluble groups.

Theorem 1. A soluble group satisfying Min-n is co-hopfian.

It is worth o point oul that a soluble group which satisfics Min-n is locally finite
[1] (Theorem 5. 25). Also nofe that in the class of soluble groups, the property Min-n
docs not imply the property Min [I, p. 152~ 153] (Part 1).

The property of co-hopficity is rather strong. For instance, even the infinite cyclic
group is not co-hopfian; however, in this casc, the image of each injective
endomorphism is of finite index in the group. It is not difficult to show that this result
remains (rue in any finitely generated abelian group. But in a finitely generated
metabelian group, the image ol an injeclive endomorphism can be of infinite index in

the group. For example, consider the subring Z[X,Y, x=t, Y“'] of QX,7Y)
generated by X, ¥, X~', ¥~ and denote by G the group of matrices of the form
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1336 B G. ENDIMIONI

Xyl f ;
, with ijeZ feZ[X Y, X, v
0 I

(in other words, G is the restricted wreath product of Z and Z?2). This group is

0 1 0 1 0 1

[X.-},j f} {X"Yj (X+Y)fJ
Q: =
0 1 0 1

is injective with an image of infinite index in G. It follows from our next result that
this cannot happen in a soluble group of finite rank. Furthermore, it is not necessary to
suppose that the endomorphism is injective but only that its kernel is finite. Recall that
a group is said to be of finite rank (in the sense of Priifer) if there is a positive integer n
such that every finitely generated subgroup can be generated by at most n elements; in
this case, the least integer n with this property is the rank of the group.

Theorem 2. Let G be a soluble group of finite rank and let @ be an
endomorphism. Then, if ker @ is finite, so is the index | G: @(G)|.

In this theorem, if we suppose in addition that G is torsion-free, we can substitute
“Iocaliy soluble” for “‘soluble”, since a torsion-free locally soluble group of finite rank
is soluble [1] (Corollary of Lcmma 10.39).

We remark that in Theorem 2, the converse property of ¢ fails, namcly the fact

that | G: @(G)| is finite does not imply that ker ¢ is finite. Indeed, consider for
example the direct product G of all quasicyclic p-groups when p ranges the set of

primes, and the endomorphism ¢ of G defined on each p-component by ¢ (x) = x.
Then G is an abelian group of finite rank I and ¢ is surjective, but ker ¢ is infinite.
Nevertheless, the converse property holds when G is a minimax group (thatis, G has
a series of finite length in which each factor satisfies either Max or Min).

Theorem 3. Let G be a minimax soluble group and let ¢ be an endomorphism.
Then, if the index | G: @ (G)| is finite, so is ker @.

A similar result was proven by Hirshon in the case where G is a finitely generated
residually finite group [2].

Corollary 1. Let G be a torsion-free minimax soluble group and let ¢ be an
endomorphism. Then, if |G:@(G)| is finite, @ is injective. In particular, G is
hopfian.

The quasicyclic p-group with the endomorphism x — x” shows that a minimax
soluble group can be non-hopfian.

In Corollary I, when G is metabelian, the property of hopficity is a consequence
of a more general result. Indeed, a finitely generated metabelian group is residually
finite [3] (Theorem 15.4.1) and so is hopfian [3] (Theorem 6.1.11). That follows as
well from the fact that a finitely generated metabelian group satisfies Max-n [1]
(Theorem 5.34). But on the other hand, a finitely generated soluble group of derived
length d = 3 is not necessarily hopfian [4].

Since a soluble minimax group has finite rank [I, p. 166] (Part 2), Theorems 2 and
3 imply the following result.

Corollary 2. In a minimax soluble group, the kernel of an endomorphism is finite
if and only if its image is of finite index in the group.

Note that a finitely generated soluble group of finite rank is a minimax group [1]
(Theorem 10.38).

2. Proofs of the theorems. We shall always employ the multiplicative notation,

X 0 Y 0 T |
metabelian, generated by ; ; . But the endomorphism ¢

of G defined by
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HOPFICITY AND CO-HOPFICITY IN SOLUBLE GROUPS 1337

even when the group is abelian. Let X be a class of groups in the usual sense (a trivial
group belongs to X, and for any group G € X, all groups isomorphic to G are in
X). We say that X is inductive if in any group G, for any chain of subgroups
(Ki)ie; With K; € X, theunion [ J,_,K; belongsto X.

Lemma 1. Let G be a group and let ¢ be an endomorphism. Consider an
inductive class of groups X, closed under taking subgroups, and such that for each
normal subgroup H < G containing ker ¢, if Hikero e X, then H e X
Under these conditions, for any normal subgroup Ky 1 G, with Ky € X and
©(Ko)< Ky, there exists a normal subgroup K; QG containing Ky, with
K, e X and @ (K|\)< K,, and such that the endomorphism induced by ¢ on
G| K, is injective.

Proof. Let @ be the endomorphism of G/K induced by ¢. Define inductively
the sequence (Kj ,),=0 of normal subgroups of G like this: Kp g = K and for
n>0, Ky, is the normal subgroup of G containing K, and such Kg,,,}'f(o =
= ker @". Since @(Ky ,) < Ko ,-1» @ induces a homomorphism from Kj, to
Ky, .- and so the quotient Kj ,/ker ¢ is isomorphic to a subgroup of Kj ,_; (note
that K , contains ker @ for n>0). It follows by an immediate induction on 7 that
Ko, belongsto X This class being assumed inductive, the union K; = U"MKO‘”

alsois in X. Then clearly K, satisfies all the desired properties of Lemma 1.

Proof of Theorem 1. Lel G be a soluble group satisfying Min-n and let ¢ be
an injective endomorphism. We must prove that ¢ is surjective. For that, we argue
by induction on the derived 1ength dof G If d=1, then G satisfies Min and so
the result is clear.

Now suppose that d > 1 and apply Lemma |, by choosing for X the class of
abelian groups, and for K, the (d — 1)-th derived subgroup gl Consequently,
there exists a normal abelian subgroup K; < G containing GYN with o(K))=K,,
and such that the endomorphism @ of G/K; induced by ¢ is injective. By the
inductive hypothesis, G/K, is co-hopfian andso @ is surjective. It follows that G =
=K, (G), and more generally that G = K, ¢"(G) for any positive integer n. Now
consider the descending sequence of subgroups ((p”(K, });wo' These subgroups are
normal in G. Indeed, forany xe G and ¢"(a) € ¢"(K,) (e € K;), we may express

x in the form x=b@"(y) (b€ K,, y€ G) for G=K,¢"(G); thus, using the fact that
K, is abelian, we can write

o"@x = @"O)ET0"(@be" () = ¢"0) " (@) = 9" a)
and so x"'¢"(a)x belongs to @"(K,). Therefore, since G satisfies the condition

Min-n, we have @"(K;)= ¢"*'(K,) for some positive integer m. It follows that
K, =@(K,) for ¢ is injective, hence

G = Ki9(G) = ¢(K})9(G) = 9(G),

as required.

The theorem is proved.

Lemma 2. Let G be a group, ¢ an endomorphism and H a normal
subgroup of G such that ©(H) < H. Denote by ¢ (respectively, ¢q) the
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1338 G. ENDIMIONI

endomorphism of G =G| H (respectively, H) induced by ¢. Then:

() If the indices |G:G§(G)| and |H: @y(H)| are finite, so is the index
|G: 9(G)].

(ii) If ker § and ker @y are finite, so is ker @.

Proof. (i) Wehave §(G) = Ho(G)/H, thus |G:§(CG)| =|G: Hp(G)|. If
r=|G: Hp(G)| and s = |H: @y(H)|, there are elements a,,...,a.€ G and
by,...,bye H such that

G= |J qHeG), H= |J bjo(H).

i=loar J=hes

Therefore, we can express any element x € G in the form x=a;h@(x") (with A=
=b;o(h’) € H), and so x=a;b;¢(h")9(x") belongs to a;b;¢(G) for some integers
i,j (with 1 <i<r and 1<j<5). It follows that |G: @(G)| < rs.

(ii) Since the quotient H. ker ¢ /H is a subgroup of ker @, itis finite. But this
quotient is isomorphic to ker¢/H () ker¢ and H () ker ¢ =ker ¢, is finite, so
ker ¢ is finite as well.

In the following, we shall use the (obvious) fact that the class of groups of finite
rank is closed under taking subgroups and quotients. The next lemma is a particular
case of Theorem 2.

Lemma 3. Let G be a soluble group of finite rank and let ¢ be an
endomorphism. The, if ¢ is injective, the index |G : ©(G)| is finite.

Proof. We argue by induction on the derived length d of G. First suppose that
d=1. For each prime p, denote by 7}, the p-primary component of G andby T =
=1IL,T, its torsion-subgroup. Since 7, is of finite rank, it satisfies Min [3] (Theorem
4. 3. 13) and so is co-hopfian. It follqws that q)(T',,) = T,, therefore we have @(T) =

=T. If we denote by G the quotient G /T, it is easy to see that the endomorphism
©: G — G induced by ¢ is injective. Consequently, since G is a torsion-free
abelian group of finite rank, |G: §(G)| is finite by a result of Fuchs [3] (Theorem
15. 2. 3). We can then apply Lemma 2(i) and it follows that the index | G: @(G)| is
finite. '

~ Now suppose that ¢> 1 and apply Lemma 1 by taking for % the class of abelian
groups, and for K the (d— 1)-th derived subgroup G, Hence there exists a
normal abelian subgroup K| < G containing G("L”, with @ (K|) < K|, and such
that the endomorphism @ of G = G/K, induced by ¢ is injective. By the
inductive hypothesis, |G: §(G)| is finite. In the same way, since K, is abelian of
finite rank, | K;: @(K;)| is finite. The result now follows from Lemma 2(i).

Let IT be a set of primes. As usual, if for each element of a torsion group G, all
prime divisors of its order belong to II, we say that G is a TI-group.

Lemma 4. Let I1 be a finite set of primes and let G be a soluble Tl-group of
finite rank. Then G satisfies Min.

Proof. According to a forementioned result [3] (Theorem 4.3.13), an abelian p-
group of finite rank satisfies Min for any prime p. Therefore, if G is abelian, it is
the direct product of finitely many p-groups and so satisfies Min. Since the class of
groups satisfying Min is closed with respect to forming extensions, the result follows
from an induction on the derived length of G.

Lemma 5. Let G be a group and let ¢ be an endomorphism. Then:
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HOPFICITY AND CO-HOPFICITY IN SOLUBLE GROUPS 1339

(i) If ker @ is finite, so is ker @" for any positive integer n.

(i) If " (G) = (pmH(G) for some positive integer m, we have the equality
G=@(G)ker ",

(iii) If ker @ isfinite and if G satisfies Min, the index | G: @(G)| is finite.

Proof. (i) Since ¢(ker@™)< kere"!'

homomorphism from ker @" to ker@” ', hence the quotient ker @"/ker ¢ is
-1

for any n > 0, ¢ induces a

isomorphic to a subgroup of ker @~ . Itis then.easy to prove by induction on n that
ker @" is finite.
(i) Let x be an.element of G. Since @"(G)= @”*!(G), there is an element

x’€ G such that 0" (x) = ¢"*'(x"). It follows that (p”’(q:'(x’)"1 x) =1 andso x=

=@(x")y, where y belongs to kergp”.

(iii) We have ¢"(G) = ¢"*'(G) for some integer m > 0 because G satisfies
Min. By (ii), G=@(G). ker " and by (i), ker@" is finite. The result follows.

Proof of Theorem 2. Suppose that ker ¢ is finite and denote by Il the set of
primes dividing the order of ker ¢. Clearly, we may. apply Lemma 1. by taking for 7
the class of (torsion) IT-groups, with K =ker ¢. It follows that there exists a normal
IT-subgroup K; < G containing ker ¢, with ¢ (K;) =< K|, and such that the
endomorphism @ induced by @. on. G = G/K, is injective. By Lemma 3, the
index |G: @(C)| is finite. Furthermore; by.Lemma4,. K, satisfies Min. Hence we
may apply Lemma 5 (iii) to the endomorphism induced by ¢ in K, and so
| K;: @(K,)| is finite. The result now follows from Lemma 2 (i).

Lemma 6. Let G be a group; @ an. endomorphismand H a normal
subgroup of G such that ¢ (H) < H: Denote by G the endomorphism of G =
=G/H induced by @ and suppose that the index |G: @(G)| and the kernel.
ker ¢ arefinite. Then |H: @(H)| is finite.

Proof. We have: @ (H) < (HN@(G)) < H. Clearly, since |G: @(G)| is finite,
sois the index | H: H ) ¢(G)|. Hence:itsuffices to prove that |H ) @ (G): @(H)]|
is finite. To show this, consider the subgroup K < G containing: A such that
ker P =K/H. If r=|K: H|; there are r elements- a;,...,a,€ K such that K=
= U:’=I.“..r a;H. Let x be an element of H ] ¢ (G). Thus we may write x =

’

=@(x")e H for some x"e G. In fact, x’ belongs to K since @(x")e H.
Consequently, we can express x” in the form x’ = a;h, with je {],...,r} and
he H. It follows that x =@(x") = @(a;)@(h) and that implies that |H
N(G): o) <. N |

Before to prove Theorem 3, observe that the class of minimax groups is closed
under taking subgroups and quotients. Moreover, we shall:use the fact that a soluble
minimax group has finite rank [, p. 166] (Part 2).

Proof of Theorem 3. First suppose that G is abelian and denote by 7, the p-
primary component of G and by T=I1,T, its torsion-subgroup. Obviously, a torsion
abelian minimax group satisfies Min. Hence 7T is a direct product of finitely many
quasicyclic groups and cyclic groups of prime-power order. In particular, there exists a
positive integer ¢ such T7 is a product of finitely many quasicyclic.groups (with
possibly T9={1}). Note that T/T? is finite. According to the result of Fuchs
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1340 G. ENDIMIONI

already used [3] (Theorem 15.2.3), the endomorphism of G/T induced by ¢ is
injective. Thus @ induceson G =G/T? an endomorphism § whose the kernel is
included in T/TY and so is finite. We can then apply Lemma 6 and we obtain that
| 79: @(T?)] is finite. But T is a product of: finitely many quasicyclic groups and so
o(T" = T7 Now, in order to obtain a contradiction, suppose that ker ¢ is infinite.
Since ¢ induces on G/T an injective endomorphism, ker¢ is included in T.
Furthermore, since T/ TY is finite, the intersection 779N ker ¢ is necessarily infinite.
It follows that in at least one p -primary component of T, say 7};-’, ¢ induces an
endomorphism with an infinite kernel. Hence this kernel contains a quasicyclic p-
subgroup A. Since A is divisible, 'I:,jf is the direct product of A and a subgroup B.
But

(9(7}?) = @(B) = 7;" (for (p(T"."):Tr_;),

so the rank of 7,/ would be equal to the rank of a homomorphic image of B, a
contradiction. Hence our theorem is proved when G is abelian.

Now suppose that G is soluble of derived length ¢ > | and consider the
endomorphism @ : G/G'"" = G/ G " induced by ©. By induction, we can say
that ker @ is finite. Hence, by Lemma 6, | G*“"1): ¢(G")| is finite. Since our
theorem is proved in the case of abelian groups, we may apply it to G with the
endomorphism @ : G 5 61 induced by @; thus ker @q is finite. Lemma
2(ii) can now be used to give the resullt.

3. Groups satisfying Min or Max-n. Letl IT be a set of primes. We say that an
integer m >0 is a Il-number if each prime divisor of m bclongs to IT. In particular,
if IT is empty, we have m = 1.

The two following results generalize the well-known facts mentioned in the
introduction: a group satisfying Min is co-hopfian and a group satisfying Max-n is
hopfian.

Proposition 1. Ler G be a group satisfying Min and let ¢ be an
endomorphism such thar ker ¢ is finite. Then | G: @(G)| is a (finite) TI-
number, where 1 is the set of primes dividing the order of ker .

Proof. Arguing as in the proof of Lemma 5 (i), it is easy to see that kcr(p" is a
finite IT-group for any integer n > 0. Lemma S shows that we have G = @(G)ker ¢"
for some positive integer m. This implies the relation | G: @(G)|=|ker@™: ¢ (@G) N
N ker @" | and the result follows.

Proposition 2. Let G be a group satisfring Max-n and let ¢ be an
endomorphism such that the index |G: @(G)| is finite. Then ker ¢ is a finite

I-group, where I1 is the set of primes dividing |G: @(G)|.
To prove this resull, we need two further lemmas.
Lemma 7. Let G be a group and let ¢ be an endomorphism. Then, if

ker 0" =ker " *! for some positive integer m, we have ¢"(G) N ker¢"” ={1}.

T

~ Proof. For any element xe ¢"(G) N ker @™, we have x=¢" (x') (for some
x’e G) and @"(x)=1. It follows that *"(x")=1 and so x’ belongs to ker >".
Bul ker @*" =ker ¢”, thus ¢"@")=x=1, as required.

If @ is an endomorphism of a group G such that the index |G: @(G)]| is finite, it

is easy to see that |G: @"(G)| is finite as well, and that we have the inequality
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HOPFICITY AND CO-HOPFICITY IN SOLUBLE GROUPS 1341

|G: ¢"(G)| £ |G: ¢(G)|". But to prove Proposition 2, a more precise result is
necessary.
Lemma 8. Let G be a group and let ¢ be an endomorphism such that the

index | G: ©(G)| isfinite. Then, for each integer n> 0:
@ 1G: ¢"'(G)] = |G: ¢"(G)| x| G: ¢(G)ker "l;
(i) | G: @"(G)| divides |G: ¢(G)|".

Proof. (i) Denote by r and s the respective indices |G: ¢"(G)| and
| G: @(G)ker @"|. Thus there exist elements ay, ..., a,, by, ..., b,e G such that

G= U a49"@ = |J b;e(Gkerg"

jel.ias

Consider an element x € G. Itis of the form x=a;¢"(x"), with x’e G. Since G =

= Uj:l  bje(G) ker ", the element x’ can be written in the form
x'=bio(x")y, x"e€G, ye ker "

It follows the expression x = a,-(p”(bj)(p”“(.\-”), and so G is the union of (at most)

rs left cosets a,-(p"(bj)(p”“(G), where i and j range {1,...,r} and {1I,...,s}

respectively. It remains (o prove that these cosets are distinct, namely that a relation of
the form

a:'(P”(bj) = f’,"‘l’n(bj')@uﬂ (2); zeG
implies the equalities i =" and j =j’. First observe that the relation implies that
ai'a; belongs to ¢"(G), so i=i". It follows that ¢"(h;) = ¢"(b;)¢""'(z) and
hence we oblain q>”((p(z)'lb}1 bj) = 1. This shows that b}' b; belongs to
©(G)ker @" But by, ..., b, is aleft transversal to @(G)ker¢" in G, so j=j’, as
required.

(ii) Since | G: @(G)ker ¢"(G)| divides |G: @(G)|, the proof follows from (i)
by induction on n.

Proof of Proposition 2. There exisls an integer m > 0 such that kero" =
=ker ¢"*' since G satisfies Max-n. If IT is the set of primes dividing | G: @(G)],
it follows from Lemma 8 (ii) that |G: (p"' @)| isa Il-number. The index
o™ (G)ker ™ : @™ (G)| isa IT-number as well for it divides |G: " (G)|. But
0" (G) Nker@" ={1} (Lemma7), thus |¢@" (G)kero" : 0" (G)| coincide with the

order of ker @", whichis soa IT-group. Since ker¢ is a subgroup of ker@", the

proof is complete.
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