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ON EXPONENTIAL SUMS RELATED
TO THE CIRCLE PROBLEM

IIPO EKCITOHEHIIIAJIBHI CYMH,
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Let r(ir) count the number of representations of a positive integer n as a sum of two integer squares.
We prove a truncated Voronoi-type formula for the twisted M&bius transform

L nk
z r(n) exp (211:1 ——-),
nsx 4l
where k and [/ are positive integers such that & and 4/ are coprime, and give some applications
(almost periodicity, limit distribution, an asymptotic mean-square formula, O- and Q-estimates for the
error term),
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Jie kora [— joj@rni i ukedia, raki, wo k ra 4/ e naaemio npoctumu. Hapepello Jleaki sacrocy-
Bani (Maiike nepiojiHuITic s, I'PAIMUIIMA PO3NOJLiJI, ACHMITOTHYILY CEPe/NLOKBAAPATHYNY opMYyTy,
O- ra Q-olliNKH JIJ15 NOXHBKM).

1. A little bit history. About hundred years ago, the Ukrainian mathematician Georgy
Fedoseevich Voronoi developed a powerful analytical method in the theory of
numbers, by which he obtained an explicit expression for the error term in the divisor
problem. For a nicely written and detailed survey on Voronoi”s challenging approach,
we refer to the papers [1, 2] of Laurinéikas. In this section, we will only shortly
present these and related results to motivate our object of study; the method will
become clear in a later section.

Let n be a positive integer and denote by d( n) the number of (positive) divisors
of n; d(n) is called the divisor function. The value distribution of d(n) is rather
complicated. On one side, it takes very small values, d(n) = 2 for prime n, and on
the other side, one can construct integers n such that d(n) becomes as large as we
please. Hardy and Ramanujan [3] proved that

d(n) = (logn)'*8>*M  for almost all n;

this gives the so-called normal order of d(n). Actually, the latter statement is a
consequence of a celebrated result of Hardy and Ramanujan on the prime divisor-
counting functions @(n) (ignoring multiplicities) and £2(n) (counting multiplicities),

lN 3 (£(n) — loglogN)? < loglogN + O(1)
n=sN '

for f(n) = w(n) and f(n) = Q(n), and the trivial inequalities
290 < d(n) < 290,
Another less sophisticated order is the ordinary mean value. Dirichlet proved by his

simple but ingenious hyperbola method that
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1406 _ R.SLEZEVICIENE, J. STEUDING

Y, d(n) = xlogx + (2y—1Dx + Ox'"?),

n<x

where y = 0,577 ... is the Euler — Mascheroni constant. The so-called divisor problem
asks for the best possible estimate for the error term

A(x) := Y, d(n) — xlogx — (2y - l)x

nEx

The first steps beyond were done by Voronoi, and his approach and his results are still
the basics of the currently best known estimates. By a complicated analytic method,
Voronoi [4] obtained an explicit expression for the error term in the divisor problem in
terms of certain Bessel functions, defined by

B 1 (332)2’““
K@) = 1+ mzo = _H)I{o Z —(‘P(m+1) + ‘I‘(m+2))} )

2 (_Dm( ’;2)2.:31-1-1 z_ B
Y(2) = +m20 = {210g2 W(m+1) \P(m+2)}, @

where ‘¥(z) is the logarithmic derivative of Euler's gamma-function I'(s). Voronm
proved that

112, o
Alx) = %_“ an ¥ 48 (Kl(amr ) Y(41w'_ ))

n=l

Furthermore, he obtained also for N << x the truncated version

1/2 o=
Alx) = —2"7 E %(Kl(ﬂ-ﬂ./—)ﬂ + gyl(‘m {'—)m ) n O(xa+xl!2+aN—l!2)_
nsN n

This is very useful for applications. For instance, taking into account the asymptotics
of the involved Bessel functions (see formula (12) and (13) below) one gets via the

choice N = x!/3 the estimate
Alx) << x!/3+e

while letting N — oo, The ‘Sharpest known upper estimate is A(x) << x>/7**¢ due to
Huxley [5] (found by a different rather complicated method). On the contrary, Hardy
was the first who deduced from Voronoi’s truncated formula that the error term cannot
be too small for all x; more precisely, there are infinitely many x such that

A(x) >> x4 (actually, he showed a little bit more). We write f(x) = Q(g(x)) with
a positive function g(x) if limsupx_,mﬂf(x)l}g(x)) > 0 (this is the negation of

f(x) = o(g(x))). The present best Omega-result is due to Soundararajan [6] who
recently proved

o= Q{(xk)gx)m(log10:‘.-%JC)B(B'JET_”M{logloglogx)ujmj.

This improves slightly a celebrated bound of Hafner [7] (which still has the advantage
that it gives estimates for both signs of the inequality in question what Soundararajan
cannot control with his method); all these estimates rely on Voronoi’s discovery. It is
widely believed that the truth lies more close to the Omega-result.

There exists an extensive literature concerning generalizations of Voronoi’s
formula to other arithmetical functions (whose generating Dirichlet series satisfy
Riemann-type functional equations). For instance, Peter [8] considered values of
Dirichlet L-functions and, recently, Miller and Schmid [9] succeeded in the case of
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ON EXPONENTIAL SUMS RELATED TO THE CIRCLE PROBLEM 1407

GL(2)- and GL(3)-cusp forms. We shall focus on Jutila [10] who obtained a Voronoi-
type formula for additive twists of the divisor function. More precisely, he proved

Ed(n)e( j = Z(logx+2y—1—2logk) -
n=x ! :

E dg? {__ (nf: ]K,[‘m}f’_’“;} . g( na;c ]},1(41:«;@)}’ 3

and for N << x the truncated version

¥ d(n.}e(%) =

nLy
- %'-(log.i:+2'y—1—210gk) _ 2y 40 {33[”" JK,[MJE] +
neN T ! l
e( fh:i )),][47‘}/”—1} " O(Lx”z"'EN"”), | @)

where k and [ are coprime integers, k* is defined by kk* = 1 mod [, and e(z) =
= exp(2miz). These investigations were extended to the general divisor function

Oy(n) = Edu

dln

by Kiuchi [11] for real o e (~1, 0], and the second author [12] for complex o
satisfying |o+1/2|<1/2 and |a—1/6|<1/6, respectively. The proofs of the
corresponding Voronoi-type formulae rely in the main part on the analytic properties of
the Estermann zeta-function (meromorphic continuation, functional equation).

It is our aim to study the same situation in the classic circle problem. Let r(n)
count the number of representations of n as a sum of two integer squares. Obviously,
r(n) = 0 if n =3 mod 4, but as the divisor function r(n) takes also arbitrarily large
values. Gauss observed that the number of integer lattice points inside the disc of

radius +x centered at the origin is

2 r(n) = nx + O(x”?')

n=x

(by comparing the area of all unit squares centered at lattice points (a, b) € Z?

satisfying r(n) = a’+b* < x with the area of the disc in question). The circle
problem asks for the best possible estimate for the error term

Py = E r(n) — mx
n=x

Actually, the circle problem is closely related to the divisor problem. More precisely, it
can be rewritten into a more general divisor problem using the representation

r(n) = 4% X(d), (5)

din

where

My = {(—1)“"”*‘2 if d=lmod2,

if d = 0mod2,
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1408 R. SLEZEVICIENE, J. STEUDING

X is the nonprincipal character modulo 4 (and thus completely multiplicative). Hardy
proved a Voronoi-type formula for n(n), namely

P(x) = -1+__z "E;’,, 1 (2nmx),

n=1
where J; is the Bessel function defined by

m 2m+1
J1(Z) — Z (=D"(z/2) .

m!(m+1)!

A truncated version may be obtained following Voronoi’s argument in the divisor
problem and would lead to P(x) << S i But, as in: the divisor problem, Huxley’s
estimate yields here P(x) << x23/T3€  The current best known Omega-result is

P(x) = Q((xlogx)”“ (loglogx)*VZ=/4(10g Iog]ogx)‘5"3],_

where C is an absolute positive constant, also due to Soundararajan [6].
Following Jutila [10], we study

32

where k and [ are integers such that [ =2 1, and k and 4/ are coprime; the occuring
factor 4 in the denominator is very useful with regard. to the periodicity X(n + 4) =

=X(n).

We start with a study of the analytic properties of the generating Dirichlet series.
The estimates in all sections with the exception of Section 5 are uniform in /; €
denotes always an arbitrarily small positive number, having not necessarily the same
value at each occurence.

2. A new Dirichlet series. Let s = o +if be a complex variable. Define

2(sgp) - X TP

|

Since

r(n) < 4d(n) << n° (6)

the Dirichlet series in question converges absolutely in the half-plane ¢ > 1. In this

region, we have by (5)
Y L e o X(d) (bdk)
N 4 TR =
R(S 41] E, dz:'l wdy “\al

9’5 &

=4 ) X(a)z
bh=1

amod4/ i

‘We define for o > 1

and
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ON EXPONENTIAL SUMS RELATED TO THE CIRCLE PROBLEM 1409

& 1
{(s;amod4l) = S
‘Z/ ;a4

d=amod4!
In view of (7) we get for ¢ > 1 the representation
9{[ ") 4y X(a)?;[s e( D ¢(s; amoda4l). ®)
4 amod4/

Our first aim is to prove the following statement:
Theorem 1. The function R(s; k/(4l)) has an analytic continuation throughout
the complex plane except for a simple pole at s = |, where it has the Laurent

expansion
R (s; —;E-) = Lt + higher terms.
41 2U(s—1)

Moreover, it satisfies the functional equation

R(s8) - X2} r0-07

L

% {K(l - s;':—n - cos(m}ﬂ{[ - 5 j)}

where k' is given by kk" = 1mod4l.

Proof. The functions appearing on the right-hand side of (7) are special Lerch
zeta-functions. The function {(s; e(ak/(4l))) is entire whenever X(a) # 0, and
every {(s; amod4l) is analytic except for a simple pole at s = 1 with residue
1/(4l) (see [13]). Thus, representation (8) is valid for all complex s and gives the
desired analytic continuation for s # 1. In a neighbourhood of s = 1 we have There
its main part equals

Kd) iy S0k 0 o

Since

b\ (bKY, .
_2isin[™ )(—]t f & w0modi

amod4l 0 if b # 0mod],

we get for the sum in (9)

" 1 . (wbk bk X(d)
a F Lan(ZE)f%) - auxc
! ;E, 5o\ )\ 2 ()(,2_"1 d
h=0mod!"
Thus, by Leibniz’ formula,
1 1 b
l1——+—=—F... = —, 10
3 5 4 {103

the residue of R(s; k/(4l)) at s = 1 equals miX(k)/(2l) which proves the first
assertion of the theorem.
In view of the functional equatlons (see [13])
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1410 R. SLEZEVICIENE, J. STEUDING

(odi) = 13) a0 %
X {e(%) (1 —s;—akmod4l) — e[—ij ti-s; akm0d4f)},

and

1 ()
C{S,am0d4l) = 'Q—[EJ l—'(l—S) X

U

(@) el@)) - (Rl

we deduce from (7)

R(sL) - %(EJ?J_II”(I—S)Z S X(a) x

al 21 s
x {e[%jC(l—s e[ D (1 —s;—akmod4l) +
& g[l . .«,{%D € - s; akmod4l) +
" a;( g 3(4 Dz;a—s _ akmod4l) —

- e(_?s) g(l-s e( Dc(l—s akmod4z)}

Now let 8, ee {+1}. By the condition on k and I, we find

4 2 X(a)C[s e[ii D C(s; eakmod 4l) =

amod 4/
= 4X(ek™) Y X(b)C(s e[‘sab" D {(s;bmod4l) = eX(k m[ & J
b:=eak mod4! 4l

This leads immediately to the functional equation.

The theorem is proved.

The functional equation for K(s; k/(4[)) should be compared with the similar one
for the Estermann zeta-function (see [11, 14] or [12]) which is also an additive twist of
a Dirichlet series with multiplicative coefficients. A similar situation was recently
studied by Miller and Schmid [9]. They observed that additively twisted GL(2) L-
functions associated with cuspidal modular forms (or even Maass wave forms) satisfy
functional equations which allow to obtain Voronoi-type formulae. However, beyond
GL(2) such twisted L-functions do not satisfy functional equations any longer. Thus
they cannot work with Voronoi’s method to prove Voronoi-type formulae for GL(3),
but, surprisingly, they succeeded with representation-theoretic arguments.

3. Special values. For our later purpose we have a look on the values taken by
R(s; k/(4l)) taken at the integers. We follow Ishibashi’s approach towards the values

of the Estermann zeta-function [15].
We could work with (8) but here it is more convenient to use

R.(S:i) =4 Y Xa )e(aj:c)'g(s;amodéu) {(s; bmod 4l),

4l a, hmod 4/

ISSN 0041-6053. Ykp. nam. wypit., 2004, m. 56, N* 10



ON EXPONENTIAL SUMS RELATED TO THE CIRCLE PROBLEM 1411

which can be proved similarly. Let ne N. It is well-known that

n—I|
b —mmmoddl = B4 B,,[—‘-’-J,
n 4]

where the Bernoulli polynomials are defined by
zexp(xz) had 2
—_— = B =
exp(z) — 1 m2=:0 (%) m!
This leads to
4(41)>2 bk
R C IO
4£ a, hmod 4/ 4 4l
Taking into account the identity

2 A2982) - el ()

hmod4!

valid for coprime ak and 4/, due to Girstmair [16], we get

K(l n; 4J @I 2 x(“)wt("_”(:%ﬁj B"(%)

ﬂ amod 4/

(since the factor X{a) equals zero for values of a for which ak is not coprime with
41). Putting the terms according to a and 4/ —amod4! together the inner sum above
can be rewritten as

Y, X(a) {COC("_”(_—WJ B [i) - cot(”—”[&k] B (1 - i]}.
amod 2! 4/ "4 41 n 4l
Taking into account the symmetries

cot(**“”(—_nak) = (-1" cot‘”"l)(—m}c),
41 41

a(i-2) - cra(s),

we get the following statement:
Theorem 2. For ne N,

and

K(]-—n;%) = 0.

2(s30) - 2(3)

In view of the functional equation of Theorem 1, we get

K Xen* ! (h-nP N it (e
R(] "”EJ - 2 {R["' 4:)*( * g{["‘ 4:]}'

Thus, we obtain by the previous theorem the following corollary:

Obviously,
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Corollary 1. For ne N,

41

4. A truncated Voronoi-type formula. Now we are ready to present the related
truncated Voronoi-type formula.
Theorem 3. Let 1 < N << x,l < Nx. Then

5 o) - S0 ()

n=x

1;4X(k )\f r(n) [ nk" (Tt nx _E]
?( ) ) ( 4:]“03 4t

HSNH

Reﬁ'_(Zn;‘%] =0 and Imﬁ(2n+1;£) = 0.

where

+ O(W—UZII!}H:)‘

The proof is very similar to the one of Julita for (4). Therefore we give only a
sketch of the proof.
Proof. Let Ne N and the parameter T = 1 be given by

@ITY? = 4n2x[N + %)

By Perron’s formula we find

& 1 I+e+iT k
3 rme(2) = 2L [ R (5 L)% ds + O(NV224).
2 a) " o )

Now we evaluate the integral above by integrating on the rectangular contour with
vertices | + e+ (T, —e *(T. Using the Phragmén — Lindeldf principle we deduce
from the functional equation the estimate

x[s; =) << @iy

for —e <o < 1+¢e as |[t] > . Consequently, we have for the integrals along the
horizontal paths

1+etiT ¥
K[S'—k—)x—ds e IN-12 V24
"41) s '

—e+iT
Applying the calculus of residues we find by Theorem 1

3 o) - B 2ok

1 —e+iT

k 112 172
+ %_E[Wx( 4{) ds + O(IN~"2x/2+¢)

In view of Theorem 2 the constant K(0; k/(41)) is equal to zero. Consequently,

?( k) L—T’T 2{(5' i)i &' O(W_ulefzfre)
" 41 ‘41) s '

TC
2 —e~iT

Using once more the functional equation the integral above equals
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ON EXPONENTIAL SUMS RELATED TO THE CIRCLE PROBLEM 1413
g+iT

X(k*) ™ 25~1 , o
25:25) ] ['21%] F“"S)*{K(l—s;:ﬁ]_

—e=iT

* &
— cosm)R [ 1-5, =5 |12 g5 + O(INT'2x!/2*e) =
4/ 5

_ 4)((,?*); Z r(n) J- (2 )2\._7(161 ].\- y

T

nk —nk* —nk* )| ds —~1/2 /248
S e P

The n-th integral here is the sum of the two integrals corresponding to the two terms in
the curly brackets. By Stirling’s formula it turns out that the first one is bounded by

<< n”%" and so the contribution of these to P(x; k/(41)) is << Ix® Thus

(k) - ZLY S o) (k)
4l m TR 4l

—E+foo

x [ 2%x "“’s,m( j r(-s)? (161 ] ? + O(IN~'2x!2+),

—g—joe

The contribution of the terms with n > N in the latter expression is << [x® by
Stirling’s formula. For n £ N we may replace the line of integration by (—ieeo, +ica)

at the expanse of an error o(Ix®). Finally, the formula

—e+iT

1 Iy _Ay-2 'd.S'
- 2- (- — =
u_'[ " 5'“(2] ( )(mzzj s

2 1/2
-l DB
[ \n I 2 I
a proof can be found in [17], Section 3.2, leads to

k 12 r(n) “E,_%:
?[ 41) X 2, "2'{ 43}(

nsN

NIE 12
X {ZK][TE(M) ] 5 Yi[ﬂ(”x) ]} 5 O(!N—lfleﬂ-i—s)_
T I l

Once more with Stirling’s formula one can deduce from (1) and (2)

Ki(2) = \/nzzcxp(—-z)(1+0(|zl“')), (12)
Y@ = \E exp[z-~—)+0(| 7). (13)

Obviously the K,-term gives only a small contribution to the error term. Substituting

these asymptotics in the last expression for P(x; k/(41)) completes the proof of the
theorem. .
In view of (6) Theorem 3 gives
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T(x;_:_l) <c V2 M4 NAve | 112ve N1

The choice N = (12x)'3 leads to the following corollary:
Corollary 2. For | < x,

T(x;ﬁ) <« 213 M3%e
4]

Following Jutila's argument [10] one can prove by hard analysis, similarly to (4),
the exact Voronoi formula

Lk 12 rn)
?(x’m) ) ”E_:I =

{2 ()
4] 1 n | 41 I

5. Almost periodicity. Heath-Brown [18] observed that one can use Voronoi-type
formulae to prove almost periodicity of error terms. This is of special interest since
almost periodicity of a function expresses, roughly speaking, a certain regularity of this

function. Let 1 € g < e. A measurable function f: [1, ) — C is said to be B~
almost periodic if for every & > 0 there exists a trigonometric polynomial p(t) =

J . .
= Zj_lcje(ajt) with complex coefficients ¢; and real exponents o such that

] X . /g
- = | i s —pO|? dt :
If - pl, {I?j:px{lf(r) p()] J <e

(For the theory of almost periodic function we refer the reader to [19].) Following the
arguments of Peter [8], we will show the validity of the below result.

Theorem 4. The function P: [1,s) — C, defined by

P(t) = r“‘”?[rz;i),
AT

is B-almost periodic, and I P||?§ is given by (15) below.
Proof. With view to our truncated Voronoi-type formula we define

” /i

G X(k ) \]‘ 5:3 [ nki ]cos[n zm B %J
:sJ n

Nowlet M >~/J and M < t < 2M. Theorem 3 with x = £ and N = M’ gives

P(t) — PJ(I‘) = S + O(ME'-'”Z)’

S) = X(k )( ’g’fi ( E ]cos(nﬂfﬁr _ %)

J<:sM2 n

where

Next we expand |S(#)]* into a double sum and integrate term by term. By the
estimates
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ON EXPONENTIAL SUMS RELATED TO THE CIRCLE PROBLEM 1415

M
j cos (ot +8) cos(ot;t +8) dt << min{“a,-l—lajH_l,M},
M

valid for-..real a;-,dj,& and (6) we obtain

M
[Is@eyPdt << M3 =2 4 DI e Y PR e
M J<nsm? J<n|<n!SM3

The first sum is easily bounded by J&2 whereas the second sum is

J<n <ny £M? B
e-3/2 M —1/2
<< 2 "y z + Z n <
J<m <m? ny <ng S2m LR nyp<ny £ Mm?
<< MY nf~logn +2) << MIF2,
nm=J
These estimates lead to
M
[ 1Pt = ps ) dt << M® + MI='? << M2,
M .

Using this with M = 277X summation over all je N gives

X
limsupL“P(r)—pJ(.ﬂ.‘)f?’ deeg JI1A,

Consequently, [|P—p,|, tends to zero with J — . Hence, P is B>-almost
periodic. From the definition of p, follows that
I < r(n)

2 oo gl
Pl = }l_l;f;” pslh = o ngl = A

It follows from (6) that the function r(n)/4 is multiplicative (as a convolution of
multiplicative functions). This observation leads for ¢ > 1 to

-3 =
[ & r(n)? ( I ]“' [ | ][ I ] ( 1 )
Ly = (1==] I h+=-=| JI li-=] -
16 2 n 2 et p’ P'J)  pa3modd p*

n=1

A short computation gives

o

3 r(n)> _ 166(s)* L(s, X)? 14y’

n A+27"(@2s) °

n=|
where L(s, X) is given by
i -1
Ls0 =Y 20 -] (1_— —WX(;”)] ,
p

a=1 M ”

and the Riemann zeta-function {(s) is defined analogously by replacing X with 1;

ISSN 0041-6053. Y&p. atam. &ypu., 2004, m. 56, N 10
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notice that the value (10) for L(1, X) gave a contribution to the main term in the
asymptotic formula for our additive twists. Consequently,

ENER
IPI2 = 8;2%2;&%);3) : (15)

This proves the theorem.

A nice consequence from the theory of almost periodic functions is the existence of
a limit distribution (for a proof see Bleher [20]).

Corollary 3. The function P(t) possesses a limit distribution; more precisely,

there exists a probability distribution function v such that, for any rectangle R_in
the complex plane whose edges are parallel to the axes,

2 k)
g
?Ei_r&%meas Térsz‘f‘:—(ﬁi_ef{ =£v(x,y)a{xdy,

where the measure is the ordinary Lebesgue measure.

A little bit more is known in the nontwisted case. Then the corresponding limit
distribution is not Gaussian. However, recently Hughes and Rudnick [21] proved that
the limit distribution corresponding to the number of lattice points lying in a thin
annulus is Gaussian if the width of the annulus tends sufficiently slowly to zero by

increasing inner radius.
6. The mean-square. We conclude with another application of almost periodicily,

. 2 . . . .
the existence of moments. The mean-square of a B -almost periodic function exists.
This gives in our case

X
1
< [1P@F di~1PI;.
|
With view to

X
[ 1Pof dey~2x2) Pl
1

fletea)f =3
: " 41 3

we get an asymptotic formula, but unfortunately, without error term and not uniform in
[. 'With a bit more effort we can get an asymptotic formu!a with error term which is
uniform in L

Theorem 5. For | < X,

Hﬁ?(x, )l de = 132 ‘;i@;gi)?sn o(;3f2X5;4+s i XM)_

Proof. Theorem 3 with N = X gives

2X kP, I r(myr(n) [ (m—n)k"
Umﬂmﬁzmw£ﬂk

mn<X
xJ & —Ecosnm—idx+
4 [ 4

ISSN 0041-6053. Ykp. sam. sxypu., 2004, m. 56, N* 10




ON EXPONENTIAL SUMS RELATED TO THE CIRCLE PROBLEM 1417

' 2x z r(n) . —nk* - TV X T
+ 0| Px"e 4 PPxe | E L W ! 4)|dx|. (16)

nsx 1
X

The main term comes from the diagonal terms m = n. Since

2
_[x”z cos [E—’F— - E) dx = —i-x"’n + O(x),

[ 4
the diagonal terms m = 5 in the sum appearing in (16) contribute
( )Xm 3 ?(;:)2 _ ( )Xm 3 r(n)* + O(X'ey,

3 3

7
nex M n=1

The nondiagonal terms m # n equal

5 r(m)r{n) ((m;;ﬁ)k’]{zﬁ . [nm 'Jn_] g

3/4
mnsX (mu) X [

ZIX 2 .. (n-\jmx+-\mx) }
xTsin) —— | dxp.

3 [

The integrals are bounded by X/ («/;;¢«/;) according (o the appearance of cos or

sin. Next, splitting the range of summation according lo 2n < m or not, as in the
proof of Theorem 4, it turns out that the nondiagonal terms in (16) contribute

<< PX'"*E It remains to consider the integral appearing in the error term of (16). By
the Cauchy — Schwarz inequality,

r(n) (—nk® nx _TE)
2 P [ 4l ]COS( ! 4

2

I

dx <

X |nsX
2x . . 2
< 2 J' E ?‘(1;12 e[_”k )cos(n nx _EI:_) pe
¥ lnsx ™ 4/ ! 4

Taking into account what we have already proved, the latter expression is << el

+ IX'*& Hence,

[l2(=a)f

The appearing series may be rewritten by (14) in terms of L(s, X) and Reimann’s

(2 -1) & rw? W2y Slate | Bylt
dr = X 2% + O(PR2X/4*e 4 PxIe),

3n” nl?

n=|

zeta-function. Using the latter expression with X277 instead of X and summing up
overall j € N we obtain the asymptotic formula of the theorem.
As an immediate consequence we deduce the following corollary:

Corollary 4. For [ < x,
2(£) = i)
41

Very likely this estimate is more close to the true order of the error term than the
one of Corollary 2.
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7. Final remarks. It is possible to extend (and, partially, to improve) the obtained
results for additive twists of r(n) into several directions (sharpening of the error
estimate of Corollary 5, Q-estimates for the error term in the mean-square formula for
P, existence of higher moments). Furthermore, in view of (6) the object of our
investigations r(n) is the Dirichlet convolution of X with the arithmetical function
constant 4. The function r(n) occurs as coefficients in the Dirichlet series expansion
of the Dedekind zeta-function of the number field Q(i). Actually, one can replace

r(n) by any convolution of a character with a constant function, which includes the
class of arithmeltical functions rg(n) thal count the number of integral ideals with

norm n of the ring of inlegers associated with a quadratic number field K.
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