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ON GENERALIZED HARDY’S SUMS s5(h, k)
PO Y3ATAJIGHEHI CYMU XAPII s5(h, k)

The aim of this paperis to establish generalized Hardy’s sums s5(h, k). By using mediants and adjacent differ-
ence of Farey fractions. connections between sg(/t, &) and Farey fractions are obtained. Apllying generalized
Dedekind sums and generalized periodic. Bernoulli function; generalized Hardy's sums s5 (), k) are defined.
A connection between ss,,(h, k) and Hurwitz zeta function is established. By using.definitions of Lambert
series-and cot 7z, relation between s (1, k) and Lambert series is found.

Merom panoi crarr e nHnvens Y3 WILIEIX CyM Xup}ti ss(h. k}‘ Ha ocnoni BHKOPHC T MejiianT

T ;.ymnmlm pisnint jipoGin Deiipi (Farey) neranonseno su'sskn Mk cymamu sg(h, L) i jipoGamu Deiipi.

Yaurwisueni cymn Xapi ss(h, L? BISIAYENO {3 SUCTOCYBUNILIM YIUUALIEIHX JIe/IeKiljIOBHX CyM T4 y3a-

ramienoi nepiojurumoi (pynknii-bepiysuii. Beranomieno an’ssokMix cymamu s5(h, k) T2 jsera-hynxitieo

Ij"]ypl:_um Ha ocnoni suauayens psjin JlamBepra i cot 7z snalijeno cnissijmowenis Mixk s5 (., k) ra psinamn
ambepra.

1. Introduction.. The aim of this paper is to study Hardy sums sg(h, k). These sums are
well-known in‘analytic. number theory and Theta functions. We investigate properties of
these sums and related the others well-known functions. We now summarize our study in
detail as follows:

In Section 1, we give some definitions and notations. In Section 2, arithmetic proper-
ties of the Hardy's sums s5(h, k) are. given. By using mediant and adjacent difference of
adjacent Farey.fractions, a:generalized sum s5(h, k) is given. In Section 3, we establish
generalized sum s5 (N, k). A representation of ss(h, k) as infinite series is proved. In
particular, a connection between sg,,(h, k) and Hurwitz zeta function is established. In
Section 4, by using Lambert series and cot 7z function, relation between Lambert series
and sg(h, k) is found.

In the twentieth century, the greater integer function has played an important role,
often in connection with other functions such as ((z)), where

1 -
((z)) = o] - 5 = is not an integer,
otherwise.

In particular, the Dedekind sum s(h, k), arising in the theory of the Dedekind-eta function,

is defined by
wn= 3 (7)) (7))

Jjmod k
where /i is an integer and kis-a positive integer [1].
The most important property of Dedekind sums-is the following reciprocity theorem.
If h and k are coprime positive integers, then

1 1 fh Kk 1

The proof of (1) was.given by Apostol [1].
The higher-order Dedekind sums used in.the definition of higher-order Hardy’s sums
s5(h, k) were.introduced by Apostol. They are defined as-
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sp(h, k) = a;‘,dk %Ep (%) , (2)

where p, h and k are positive integers, B,,(z) is the p th periodic Bernoulli function which
is defined as follows:

By(z) = —p! (2mi) 77 Z mPe2mime (3)

nesdl)

Apostol proved reciprocity law of s,(h, k). When p = 1, the sums

s k)= Y %E (%‘3)
amod k
are known as Dedekind sums.

In this paper, we express Hardy’s sums s5(h, k) explicitly in terms of s(h, k) Sitara-
machandraro’s sense [2]. In 1905, Hardy [3] was the first to give a proof of the reciprocity
theorem for Dedekind sum which does not depend on the theory of the Dedekind-eta
function. In fact, by using contour integration, Hardy proved some reciprocity theorems
in detail and started eleven more reciprocity theorems for some similar arithmetical sums.
Moreover, Hardy clearly indicated the necessary modifications in his foregoing proof to
obtain these reciprocity theorems.

In recent years, five of Hardy’s reciprocity theorems were Studied'by Berndt [4] and
Goldberg [5]. By using the logarithms of the classical Theta functions 62(0, q), #3(0, q),
and 64(0, ¢) (see for detail [6], Chapter 21), Berndt deduced these reciprocity theorems
from his transformation formula [4].

Goldberg [5] showed that these sums also arise in theory of r,(n), the number of
representations of n as a sum of s integral squares and in the study of the Fourier coeffi-
cients of the reciprocals of 8,,(0, ), n = 2, 3, 4, while Berndt and Goldberg [7] evaluated
certain nonabsolutely convergent-double series in terms of these sums.

Hardy was the first to encounter these sums and to formulate these reciprocity theo-
rems with clear indications of proof. At the end of this paper, Hardy states “... I hope on
some other occasion to return to these formulae from an arithmetical point of view..."” but
it appears that Hardy never returned to the subject. In recent years, the proof of Hardy's
reciprocity theorems which do not depend on Berndt’s transformations formula was given
by Apostol and Vu [8], Berndt and Goldberg [7], Sitaramachandraro [2] and by the au-
thor [9, 10]. There are six sums in Hardy’s sums, which can be found in detail in [7] and
[2], but we will give only s5(h, k) sum, which is defined as follows.

Hardy's sums s5(h, k) in terms of Dedekind sums: In studying Hardy’s sums ss(h, k)
and its reciprocity theorem, we will use the notation of Berndt and Goldberg [7] and
Sitaramachandraro [2]. If h and k are integers with k > 0, ss(h, k) is defined by

ss(h, k) = ij(-nf’rl’iil ((%)) (4)

i=1
Let us now give the reciprocity relations for ss(h, k) as follows (this relation is the most

important in this work):
Theorem 1 (2, 7]. Ler h and k be coprime positive integers. If h and k are odd, then

Bl 5)

Sﬁ(h’:k) +35(k:h’) = ) e m’

ISSN 0041-6053. YEp. aam. Kypit., 2004, m. 56, N¢ 10



1436 Y. SIMSEK

Remark 1. A lot of proofs of this theorem have been given by many mathematicians.
We will give some information about the proofs of this reciprocity relation and the others.
The reciprocity theorems appeared in Hardy [3]. Berndt [4] deduced the other reciprocity
relations. Goldberg [5] deduced (5) from Berndt’s transformation formulae. Apostol and
Vu [8] proved reciprocity law of Hardy sums. By using three-term relations of Carlitz’s
polynomial, the author [10] and Pettet and Sitaramachandraro [11] established Hardy
reciprocity theorems.

It may be noted that Sitaramachandraro [2] expressed, by using elementary arguments,
each of the Hardy sums explicitly in terms of Dedekind sums, which he deduced to The-
orem | and (1). In the theorem below, we will give only the relation between s(h, k)
and sg(h, k). This theorem also contains the other relations between Hardy sums and
Dedekind sum, which will not be given and used in this work (see for detail [2, 9, 10].

Theorem 2. Let h and k be coprime positive integers. If h + k is even, then

ss(h, k) = —10s(h, k) + 4s(2h, k) + 4s(h, 2k) (6)
and if h + k is odd, then _
ss(h, k) =0. (7)

In this study, we will give generalized Hardy’s sums sgs(h, k) by adjacent Farey frac-
tions. Therefore, we will need the following properties of Farey fractions:

The set of Farey fractions of order n denoted by F, is the set of reduced fractions in
the closed interval [0, 1] with denominators < n listed in increasing order of magnitude.

If L < E are adjacent Farey fractions, then hK — kH = —1. The mediant of

k K
adjacent Farey fractions i < H is h+H h+H < H

: o e E K SR+ K ; : k+K K
The following inequality can be obtained by repeating the calculation of mediants n-times

successively:

. It satisfies the inequality % <

h h+H h+nH H

E<H—K<...<m‘<f. (8)
The adjacent difference of adjacent Farey fractions % < % is ;:;:—E It satisfies the
inequality'-g- £ % < % The following inequality can be obtained by repeating the
calculation of adjacent difference n-times successively

H h h-H h—nH

E %k “k-K " “%k-nkK )

By using (8) and (9), the author proved generalized Dedekind sums in the sense of
Rademacher (see for detail [12]). We give generalized Hardy’s sums ss(h, k) along the
same line as the generalized Dedekind sums.

2. Arithmetic properties of the Dedekind sums, s(h, k) and Hardy’s sums
s5(h, k). The reciprocity law of the Dedekind sums always contains two ( and in some
generalizations three and even more) Dedekind sums. We focus our attention now on a
single Dedekind sum, its properties and its connections with other mathematical topics.

Since ((—z)) = —((z)), it is clear that

s(—h, k) = —s(h, k), s(h,—k) = s(h, k).
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Let hh' = 1(mod k), then we have
s(h', k) = s(h, k).

If h/k < H/K are two consecutive fractions of Farey sequence, then hK — kH = —1.
This implies that

hK = —1(mod k), Hk = 1(mod K). (10)
Thus, by (10), we have )

s(h k) = —s(K, k),  s(H,K)= sk, K).

By using (8) and above relations, the author obtained generalized Dedekind sums [12].

By using arithmetic properties of s(h, k), which were mentioned above, we obtain
similar relations for sg(h, k) as follows: Applying (10) and Theorem 2, we obtain

ss(h, k) = —ss(K, k),  ss(H,K) = s5(k, K).

After substit'uting the above relations into (5), we arrive of the equality
1 1
= i 11
35(}1, k) 35(Hl I{) 2 + o2k ( )
By using above relations, the following theorem can be obtained:

Theorem 3. Ifh/k < H/K are two adjacent Farey fractions, then

Sl b B B B L) *'ZSE(H’ £) 43;1!;(; fff) .
Proof. Let —E < :—Ig < I—H( be adjacent Farey fractions. By substituting
% < :i—i into (11), we obtgin
sa(h,K)—s5(h+H,k+K)=—%+m. (12)
By substituting z’ii < % into (11), we obtain
Ss(h-i-H,k-!-K)—ss(H,K)=—%+2K(;—+K)- (13)

By subtracting (12) from (13), we obtain the desired result.
By using (8) and Theorem 3, we can generalize the above theorem as follows.
h nh+H (n—-1)h+H
Th 4. If —
Mt R K~ ek X
ss(h. k) + ss((n—1)h+ H, (n — 1)k + K) +
2

are adjacent Farey fractions, then

ss(nh+ H,nk+ K) =

. (2 —n)k—K
"dk((n -1k + K)(k+ K)°

Remark 2. By using mathematical induction, the proof of Theorem 4 follows pre-
cisely along the same lines as the proof of Theorem 3, and so we omit it.

h H H-—h i ;
Corollary 1. If 4 < e < % are adjacent Farey fractions, then
_ 1 sﬁ(h=k)+55(H:K) k+K
ss(H — h, K k)-2+ 5 KK —F)'
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hn—1)H _ h—nH

H
Corollary 2. If % < F—(n—DK < i e adjacent Farey fractions, then
sallim ﬁH, i) = % 4 ss(h— (n~ l)H,k. ~én —1)K) +s5(H,K)
k—(n-2)K

" 4K(k—(n—-1)K)(k —nK)

The proofs of the above corollaries follow preciser along the same lines as the proof
of Theorem 3, and so we omit them.

3. Representation of s (h, k) as infinite series. The aim of this section is to give
a generalized sum sz(h, k). This sum can be represented as infinite series. In particular,
we establish a connection between generalized s5(h, k) and certain finite sums involving
Hurwitz zeta function {(s, a).

Under the same hypotheses as Theorem 2 and (2), we define s5,(h, k) as follows:

s6,p(h, k) =~2— Y a (ﬁp (2%1;) ~55; (“}f)) +2 S 1B, (32)
amod k bmod(2k)
' (14)
For p = 1, s55(h, k) reduces to s5(h, k) in Theorem 2.
Theorem 5. Let (h, k) = 1. Let p be an odd integer withp = 1. If h + k is even, then

ssp(h, k) = (2(1))1 i n~Pf(h,k,n),

el
120 meod (k)

F(h k,n) = -5001:( : )+2 (2”—;“&)+2 t( 2’!’;:")

Remark 3. Forp = 1, Theorem 5 reduces to Theorem 2.
Theorem 6. Let (h,k) = 1. Let p be an odd integer with p > 1. If h + k is even, then

2i(p! k-1 .
S50 ) = o) X 1k ().

where

where {(s,a) is the Hurwitz zeta function.
We will need the following definition and theorems.
Apostol [1] studied the sums s,(h,k) by means of the theory of the finite sum

%~} 77 which reduces to

T if = is any k-th root of unity # 1 and arrived at

the following expression for these sums: -,
Theorem 7 [1]. Let (h,k) = 1. For odd p > 1, we have

| oo ei!vr-iuh s 1r-I..u.i|
s?(h’ ’t“) (2 )p Z nr 1— ezw?m - 1 — e minh .

n=l €
nZE0 mod(k)

Hardy sums were proved and representations as finite trigonometric sums were given
by Berndt and Goldberg [7] (here we use the notation of Berndt and Goldberg [7] and
Apostol [1]): if h and k are odd (see Eq. (17) and Eq. (7) [7],
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ss(h, k) = -2-]:}-; i tan (___"____117‘1(223;‘ 1)) cot (771-(2;; 1)) ,

in(er1)/2
and, if h and.k are odd, then

v B °° T (mh(25 — 1)\
ss(h, k) == ; zj_lta.nf( 5 )

245 —=120 (mol k)

without-any knowledge. of the. Dedekind eta.function, 7 and:the-finite sum:
)+
amod k m=1:

Proof of Theorem 5.. Substituting (3) into-(14), we obtain
+43 mPsin (41’“)) 2 5 6 merein (Tta))

The proof of Theorem 5 is different from the:proof of Theorem 7. It can be obtained
(h k) = i1 > 10 i i | A
Ssm b ) =3 k 3 ! a ) 'n S R
m=1l. bmod2k. m=1
We now define the well-known-identity

ZA asin (‘2:1'1;0:) = _k'oot (m:)
amodk .k < k4
where z is an integer, and:x {-k. By using this identity imthe:above and performing some
calculations, we obtain the-desiredresulf.

Proof of Theorem-6: Writingn = gk + y witlirg- = 0,1,2,... ,00, and; ¥y =

=1,2,...,k — 1inTheorem.5, we get:
I.-,—!._- oo
s5,p(B, k) = (!)(2ri) 72 > 3 (ghk+-y) P F (I, K; gkt y) =
y=1g=0"
k.—l‘ oo o
= (pl)(2mik) B fli K1) 57 (g +%) ,
y=L g=0

where we must assume.p > 1.in ordér:tozensure:that:the series involved-should be' abso-
lutely convergent and the rearrangements-valid! By using' the definition of Hurwitz zeta
function in the above; we obtain the:désired resulk.

Remark 4. Like: the series-for {(s), the. Riemann zeta function, the Hurwitz zeta
function is analytically- continued’tothe:whole complex plane except forasimple pole. By
using analytic continuation of the Hurwitz zeta function, connection between ss,,(h, k),
Bernoulli numbers, and Euler Gamma function I'(z) may be-obtained.

4. Relation between Lambert series Theta functions. and-Hardy sums s5 (h, k).
In [13], the author gave the relations between: Theta tunctions,. Hardy sums; Eisenstein
and Lambert series. By. applying:connection between.Lambert series and: generalized
Dedekind sums, the relation between Theta functions.and-Lambert series-were given in
[13]. For detail about Lambert series-and.Hardy sums see [13, 1]. In this section, we give
new definition of s5(h, k), which is-related to -Lambert series and Theta functions.

By using Theorems 2, 5, and 7, we giverelation between Lambert:series and sg(h, k).

Theorem 8: Lef (h, k) = 1. Let'p be an odd integerwithp > 1. Ifh+ k is even, then

55, ) = é%?—p(yl'+ Y),
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where

xh

Y1 = —5G,(e*F") + 26, (%) + 2G, (e ),

=wh

Yy = =56, (e7¥*) +26, (™) + 26, (7

and Gy(z) is the Lambert series.
Proof. The Lambert series Gp(z) is defined as follows:

Gp(z) = i nPa™r, (15)

m,n=1

By using the well-known relation [13]
2mwiz —2miz

e .
=4cotmz +

1 = eB‘:riz 1= e-—-21n?z !

(15) in Theorem 5, and f(h, k,n) and performing some calculations, we obtain the de-
sired result.
Remark 5. The relation between Theta functions’s 93 and ss(h, k) was given: If

h + k is even, then
Y5 logds (%)
ss(h k)= ———2

T
and this relation was generalized in [13].
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