Si Duc Quang, Nguyen Doan Tuan (Hanoi Univ., Vietnam)

ON THE RELATION BETWEEN CURVATURE, DIAMETER AND VOLUME OF A COMPLETE RIEMANNIAN MANIFOLD

ПРО СПІВВІДНОШЕННЯ МІЖ КРИВИЗНОЮ, ДІАМЕТРОМ ТА ОБ'ЄМОМ ПОВНОГО РІМАНОВОГО МНОГОВИДУ

In this note, we prove that if N is a compact totally geodesic submanifold of a complete Riemannian manifold (M,g), whose sectional curvature K satisfies the relation $K \ge k > 0$, then $d(m,N) \le \frac{\pi}{2\sqrt{k}}$ for any point $m \in M$. In the case where $\dim M = 2$, a Gaussian curvature K satisfies the relation $K \ge k \ge 0$, and γ has the length l, we get $Vol(M,g) \le \frac{2l}{\sqrt{k}}$ if $k \ne 0$ and $Vol(M,g) \le 2l \operatorname{diam}(M)$ if k = 0.

Доведено, що якщо N — компактний цілком геодезичний підмноговид повного ріманового многовиду (M,g) із секційною кривизною K, що задовольняє умову $K \geq k > 0$, то для будьякої точки $m \in M$ виконується перівцість $d(m,N) \leq \frac{\pi}{2\sqrt{k}}$. У випадку, коли $\dim M = 2$, гауссова кривизна K многовиду задовольняє умову $K \geq k \geq 0$ та γ має довжину l, отримано співвідношення $\operatorname{Vol}(M,g) \leq \frac{2l}{\sqrt{k}}$ для $k \neq 0$ та $\operatorname{Vol}(M,g) \leq 2l\operatorname{diam}(M)$ для k = 0.

1. Introduction. As well know, one the most interesting problems in Riemannian geometry is to study a relation between geometrical notions as curvature, diameter and volume. This problem have been studied by many authors for the concrete manifolds. In [1], Y. C. Wong considered this problem for the Grassmann manifolds. W. Klingenberg proved that in a compact simply connected even-dimensional Riemannian manifold with sectional curvature K belonging to [0, k], k > 0, the length of any closed geodesic is greater than $\frac{2\pi}{\sqrt{k}}$ (see [2]). The relation between curvature and topology of Riemannian manifolds is exposed in [3, 4].

Generalizing the known results for the sphere S^2 in Euclidian three-space, we obtained the following results.

Theorem 1. Let $(M, \langle \cdot \rangle)$ be a complete Riemannian manifold, whose sectional curvature K satisfies $K \geq k > 0$. Let N be a compact totally geodesic submanifold of M, then for any $m \in M$ we have $d(m, N) \leq \frac{\pi}{2e\sqrt{k}}$.

Theorem 2. Let (M, g) be a complete Riemannian manifold of dimension 2, whose sectional curvature K satisfies $K \ge k \ge 0$, k is constant. Let γ be a closed geodesic in M of length of l. Then we have

$$\operatorname{Vol}(M) \leq \begin{cases} \frac{2l}{\sqrt{k}} & \text{if } k > 0, \\ 2l \operatorname{diam}(M) & \text{if } k = 0. \end{cases}$$

The basic notions used in this article are from [5, 6].

2. Proof of Theorem 1. Since N is the compact totally geodesic submanifold of M, then every geodesic of N is also a geodesic of M.

Let m be a point of M, we have to prove that $d(m, N) \le \frac{\pi}{2\sqrt{k}}$. We assume that $m \notin N$, then d(m, N) = L > 0, and $\exists p \in N$ such that d(m, N) = d(m, p) = L. By

© SI DUC QUANG, NGUYEN DOAN TUAN, 2004

the Hopf – Rinow theorem, there exists the minimal geodesic parametrized by arc length:

$$c: [0, L] \to M$$
, $c(0) = m$, $c(L) = p$, $||c'(s)|| = 1$.

Let γ be a geodesic in N passing through p, then γ is also a geodesic in M. Suppose that γ is parametrized by arc length;

$$\gamma \colon (-\rho, \rho) \to M, \quad \rho > 0, \quad \gamma(0) = p, \quad \|\gamma'(t)\| = 1.$$

Let $Y_L = \gamma'(0) \in T_p M$, take a parallel vector field Y(s) along c such that $Y(L) = Y_L$. We have $||Y(s)|| = ||Y_L|| = 1$ for all $s \in [0, L]$.

Set $X(s) = \sin \frac{\pi s}{2L} Y(s)$, X(s) is a vector field along c, X(0) = 0, $X(L) = Y(L) = \gamma'(0)$.

We now consider the variation H of c as follows:

$$H: [0, L] \times (-\rho, \rho) \to M$$

 $(s, t) \mapsto H(s, t) = \exp_{c(s)} tX(s),$

H is well defined by the completeness of manifold M. We have H(0, t) = m.

Set $c_1(s) = H(s, t)$, $c_0(s) = H(s, 0) = c(s)$, then

$$H(L, t) = \exp_{C(L)} tX(L) = \exp_{p} t\gamma'(0) = \gamma(t),$$

$$H * \frac{\partial}{\partial t} (s, 0) = X(s).$$

By construction of the variation H, the length function $L(c_t)$ attain a minimum at t = 0. Hence,

$$\frac{d}{dt}L(c_t)\big|_{t=0} = 0 (1)$$

and

$$\frac{d^2}{dt^2} \left(L(c_t) \right) \big|_{t=0} \ge 0. \tag{2}$$

Using the first variation formula together with remark that c is a geodesic, i.e., $\Delta_{c'}c'=0$, we have

$$(1) \iff \langle X(s), c'(s) \rangle \Big|_0^L - \int_0^L \langle X(s), \nabla_{c'} c'(s) \rangle ds = 0 \iff$$

$$\Leftrightarrow \ \left\langle X(L),\,c'(L)\right\rangle \,=\,0 \ \Leftrightarrow \ \left\langle Y(L),\,c'(L)\right\rangle \,=\,0.$$

On the other hand,

$$\frac{d}{ds}\left\langle Y(s),\,c'(s)\right\rangle \;=\; \left\langle \frac{D}{ds}\,Y(s),\,c'(s)\right\rangle \,+\, \left\langle Y(s),\frac{D}{ds}\,c'(s)\right\rangle,$$

where $\frac{D}{ds}Y(s) = \nabla_{\partial/\partial s}Y(s)$.

Since $\frac{D}{ds}Y(s) = 0$, $\frac{D}{ds}c'(s) = 0$, we have $\frac{d}{ds}\langle Y(s), c'(s)\rangle = 0$. Thus,

$$\langle Y(s), c'(s) \rangle = \langle Y(L), c'(L) \rangle = 0 \quad \forall s \in [0, L]$$

and $\{Y(s), c'(s)\}$ is an orthonormal system.

Set $\overline{X}(s,t) = H * \frac{\partial}{\partial t}(s,t) \Rightarrow \overline{X}(s,0) = X(s)$.

Using the second variation formula, we have

$$(2) \Leftrightarrow \left\langle \nabla_{\partial/\partial t} \overline{X}(s,0), c'(s) \right\rangle \Big|_{0}^{L} + \int_{0}^{L} \left(\left| \overline{X}' \right|^{2} - \left\langle R(\overline{X},c',c'), \overline{X} \right\rangle - \left\langle c', \overline{X}' \right\rangle^{2} \right) ds \ge 0, \quad (3)$$

where $\overline{X}' = \nabla_{\partial/\partial s} \overline{X}(s, 0)$.

We have

$$\overline{X}(s,0) = X(s) = \sin\left(\frac{\pi s}{2L}\right)Y(s),$$

$$\overline{X}'(s,0) = X'(s) = \frac{\pi}{2L}\cos\frac{\pi s}{2L}Y(s) + \sin\frac{\pi s}{2L}\frac{D}{ds}Y(s) = \frac{\pi}{2L}\cos\frac{\pi s}{2L}Y(s),$$

$$\langle c'(s), \overline{X}'(s,0) \rangle = \frac{\pi}{2L}\cos\left(\frac{\pi s}{2L}\right)\langle c'(s), Y(s) \rangle = 0,$$

$$\overline{X}(0,t) = H * \frac{\partial}{\partial t}(0,t) = 0 \quad \text{(since } H(0,t) = m \ \forall t) \Rightarrow \nabla_{\partial/\partial t}\overline{X}(0,0) = 0,$$

$$\overline{X}(L,t) = H * \frac{\partial}{\partial t}(L,t) = \gamma'(t) \Rightarrow \nabla_{\partial/\partial t}\overline{X}(L,0) = \frac{D}{dt}\gamma'(t)\big|_{t=0} = 0.$$

Thus,

$$(3) \Leftrightarrow \int_{0}^{L} \left[\left(\frac{\pi}{2L} \right)^{2} \cos^{2} \left(\frac{\pi s}{2L} \right) |Y(s)|^{2} - \sin^{2} \left(\frac{\pi s}{2L} \right) \langle R(Y(s), c'(s), c(s)), Y(s) \rangle \right] ds \ge 0 \Leftrightarrow$$

$$\Leftrightarrow \int_{0}^{L} \left[\left(\frac{\pi}{2L} \right)^{2} \sin^{2} \left(\frac{\pi s}{2L} \right) - \sin^{2} \left(\frac{\pi s}{2L} \right) R(Y(s), c'(s)) \right] ds \ge 0 \Rightarrow$$

$$\Rightarrow \int_{0}^{L} \left[\left(\frac{\pi}{2L} \right)^{2} - k \right] \sin^{2} \frac{\pi s}{2L} ds \ge 0 \Leftrightarrow \left(\frac{\pi}{2L} \right)^{2} - k \ge 0 \Rightarrow L \le \frac{\pi}{2\sqrt{k}}.$$

Theorem 1 is proved.

3. Proof of Theorem 2. In order to prove Theorem 2, the following lemma is necessary:

Lemma. Suppose that $x:(\alpha,\beta)\to R$ is a differentiable function defined on (α,β) , where $\left(-\frac{\pi}{2}\leq\alpha<0<\beta\leq\frac{\pi}{2}\right)$, and satisfies

$$x(0) = 0, \quad x' + x^2 \le -1.$$
 (4)

Then

$$x(t) \le -\operatorname{tg}(t), \quad t \in [0, \beta),$$

 $x(t) \ge -\operatorname{tg}(t), \quad t \in (\alpha, 0].$

Proof. Set $x(t) = -\lg \varphi(t)$, then $\varphi(t) = -\arctan x(t)$, $\varphi(t) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$(4) \Leftrightarrow \phi(0) = 0 \quad \text{and} \quad -\frac{\phi'}{\cos^2\phi} + \frac{\sin^2\phi}{\cos^2\phi} \leq -1 \Leftrightarrow \frac{\phi'}{\cos^2\phi} \geq \frac{1}{\cos^2\phi} \Leftrightarrow \phi' \geq 1.$$

Thus $(\varphi(t)-t)$ is the increasing function

$$\Rightarrow \begin{cases} \varphi(t) \geq t & \forall t \in [0, \beta), \\ \varphi(t) \leq t & \forall t \in (\alpha, 0]. \end{cases}$$

Since the function tg t is increasing on (α, β) , we get

$$x(t) = -\operatorname{tg} \varphi(t) \le -\operatorname{tg}(t) \quad \forall t \in [0, \beta),$$

 $x(t) = -\operatorname{tg} \varphi(t) \ge -\operatorname{tg}(t) \quad \forall t \in [\alpha, 0].$

The lemma is proved.

Now we prove Theorem 2.

Suppose that γ is a closed geodesic parametrized by arc length:

$$\gamma\colon I\to M, \text{ where } [0,l]\subset I, \quad \gamma(0)=\gamma(l), \quad \gamma'(0)=\gamma'(L), \quad \|\gamma'(t)\|=1$$

 $\forall t \in I, I \text{ is interval on } R.$

Since γ is a closed geodesic, there exists a unit parallel vector field Y along γ such that Y(0) = Y(l) and $\langle Y(0), \gamma'(0) \rangle = 0$.

For $s \in [0, l)$, put

$$\rho(s) = \sup \{ t \ge 0 \mid t = d(\exp_{\gamma(s)} t Y(s), \gamma) \},$$

$$\varphi(s) = \inf \{ t \le 0 \mid -t = d(\exp_{\gamma(s)} t Y(s), \gamma) \}.$$
(5)

We will prove that $\rho(s)$ is upper semicontinuous and $\varphi(s)$ is lower semicontinuous. We consider $s_n \to s$, set $t_0 = \overline{\lim_{n \to \infty}} \rho(s_n)$, and claim that $t_0 \le \rho(s)$. In fact, since

$$t_0 = \overline{\lim}_{n \to \infty} \rho(s_n)$$
, we have $\exists \{s_{n_k}\} \subset \{s_n\} \mid \rho(s_{n_k}) \to t_0$.

Put
$$t_k = \max\left\{0, \rho(s_{n_k}) - \frac{1}{k}\right\}, t_k \to t_0 \Rightarrow \exp_{\gamma(s_{n_k})} t_k Y(s_{n_k}) \to \exp_{\gamma(s)} t_0 Y(s) \text{ and}$$

$$d(\exp_{\gamma(s)} t_0 Y(s), \gamma) = \lim_{k \to \infty} (\exp_{\gamma(s_{n_k})} t_k Y(s_{n_k}), \gamma) = \lim_{k \to \infty} t_k = t_0 \Rightarrow \rho(s) \ge t_0.$$

Thus, $\rho(s)$ is upper semicontinuous. Similarly, $\varphi(s)$ is lower semicontinuous. This implies that $\rho(s)$ and $\varphi(s)$ are the measurable functions.

We have

$$A = \{(s, t) | 0 \le s < l, \varphi(s) < t < \rho(s)\}$$
 is measurable set and $mes B = 0$,

where $B = \{ (s, t) | 0 \le s < l, \ \phi(s) = 0 \text{ or } \rho(s) = t \}.$

Consider the sets

$$C = \left\{ \exp_{\gamma(s)} t Y(s) \mid (s, t) \in A \right\},$$

$$D = \left\{ \exp_{\gamma(s)} t Y(s) \mid (s, t) \in B \right\}.$$

It is clear that C, D are the images of A and B, respectively, under a continuous mapping. Thus, C and D are measurable and mes(D) = 0.

We will prove that $M = C \cup D$ and $C \cap D = \emptyset$.

In fact, since y is closed, y is compact.

This implies that, for arbitrary $p \in M$, $\exists q \in \gamma | r = d(p, q) = d(p, \gamma)$, $q = \gamma(s)$. Suppose that c is a minimal geodesic length-parametrized joining p and q:

$$c: [c, r] \to M, \quad c(0) = q, \quad c(r) = p.$$

X is the parallel vector field along c such that $X(0) = \gamma'(s)$. We consider the variation

$$H: [0, r] \times (-\varepsilon, \varepsilon) \to M, \quad H(u, v) = \exp_{c(u)} \left(v \cos \frac{\pi}{2r} u \right) X(u).$$

Put $c_v(u) = H(u, v)$. It is clear that $c_0(u) = c(u)$, $H(0, v) = \exp_q(v\gamma'(s)) \in \gamma$, so the function L(v) attain a minimum at v = 0.

Using the first variation formula, we have

$$\frac{d}{dv}\left(L(c_v)\right)\Big|_{v=0} \ = \ 0 \ \Leftrightarrow \ \left\langle\cos\frac{\pi u}{2r}\,X(u),\,c'(u)\right\rangle\Big|_0^r \ - \ \int\limits_0^r \left\langle\cos\frac{\pi u}{2r}\,X(u),\,\nabla_{c'}c'(u)\right\rangle du \ =$$

$$=0 \Leftrightarrow \left\langle X(0),c'(0)\right\rangle =0 \Leftrightarrow \left\langle \gamma'(0),c'(0)\right\rangle =0 \Leftrightarrow c'(0)=\pm Y(s).$$

Without loss of generality, we can suppose that c'(0) = Y(s). Hence,

$$p = c(r) = \exp_{c(0)} rc'(0) = \exp_{\gamma(s)} rY(s)$$
 and $d(p, \gamma) = r$.

By the definition of $\varphi(s)$, $\varphi(s)$, we have $\varphi(s) \le r \le \varphi(s)$, whence $(s; r) \in A \cup B$ and $p \in C \cup D$. Thus, $M = C \cup D$.

In order to prove $C \cap D = \emptyset$, we suppose that there exists $p_1 \in C \cap D$. Then $\exists s_1 \neq s_2$ such that

$$p_1 = \exp_{\gamma(s_1)} t_1 Y(s_1) = \exp_{\gamma(s_2)} t_2 Y_2(s_2),$$

where $\varphi(s_1) < t_1 < \rho(s_1)$, $t_2 = \varphi(s_2)$ or $t_2 = \rho(s_2)$.

Choose a number t_3 such that

$$t_1 < t_3 < \rho(s_1)$$
 if $t_1 \ge 0$ and $\phi(s_1) < t_3 < t_1$ if $t_1 < 0$.

Put $q_1 = \exp_{\gamma(s_1)} t_3 Y(s_1)$. We get

$$d(q_1, \gamma) = d(q_1, p_1) + d(p_1, \gamma(s_1)) = d(p_1, q_1) + d(p_1, \gamma) =$$

$$= d(p_1, q_1) + d(p_1, \gamma(s_2)) > d(q_1, \gamma(s_2)).$$

This contradition prove our assertion.

Consider the variation $\overline{H}: I \times R \to M$ defined by $\overline{H}(s,t) = \exp_{\gamma(s)} t Y(s)$. Put $H = \overline{H}|_A$. It is clear that H(A) = C by definition of the set C. We now prove that H is injective. In fact, suppose (inversely) that H isn't injective, then $\exists (s_1, t_1) \neq (s_2, t_2)$, $(s_i, t_i) \in A$, i = 1, 2, such that $H(s_1, t_1) = H(s_2, t_2) = q$, hence $d(q, \gamma) = |t_1| = |t_2| = t_0$ by (4). There are two cases:

Case 1. If $s_1 = s_2$, $t_2 = -t_1 > 0$, then there exists $t_3 : 0 < t_2 < t_3 < \rho(s_1)$. Consider the geodesic $c(t) = \exp_{\gamma(s_1)} t Y(s_1)$, we have $c(t_1) = c(t_2)$. By a consequence of the Hopf – Rinow theorem (see [4, p. 100]), the geodesic c is no more minimal on the interval $[0, t_3]$. This is a contradiction.

Case 2. If $s_1 \neq s_2$, we can suppose $t_2 = t_0 > 0$, for all $0 < t_2 < t_3 < \rho(s_2)$ $p = \exp_{\gamma(s_2)} t_3 Y(s_2)$ we have

$$\begin{split} d(p,\gamma) &\leq d\big(p,\gamma(s_1)\big) < d(p,q) + d\big(q,\gamma(s_1)\big) = \\ &= d(p,q) + d\big(q,\gamma(s_2)\big) = d(p,\gamma). \end{split}$$

This is a contradiction.

Thus, H is bijective from A on C. Moreover, H is the homeomorphism. Let μ be the canonical measure on M. We have

$$\operatorname{Vol}(M) = \int_{M} \mu = \int_{C \cup D} \mu = \int_{C} \mu + \int_{D} \mu = \int_{C} \mu = \int_{C} \operatorname{Or}\left(\frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial t}\right)^{1/2} ds dt = \int_{0}^{1} \left(\int_{\varphi(s)}^{\varphi(s)} \operatorname{Gr}\left(\frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial t}\right)^{1/2} dt\right) ds.$$
 (6)

Since $H(s, \cdot)$ is a geodesic, then

$$\nabla_{\partial/\partial t} \frac{\tilde{\partial}}{\partial t} = 0 \implies \left| \frac{\tilde{\partial}}{\partial t} (s, t) \right| = |Y(s)| = 1.$$

Because

$$\frac{d}{dt}\left\langle \frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial t} \right\rangle = \left\langle \nabla_{\partial/\partial t} \frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial t} \right\rangle = \left\langle \nabla_{\partial/\partial s} \frac{\tilde{\partial}}{\partial t}, \frac{\tilde{\partial}}{\partial t} \right\rangle = \frac{1}{2} \frac{d}{ds} \left\langle \frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial t} \right\rangle = 0,$$

we have

$$\left\langle \frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial t} \right\rangle (s, t) = \left\langle \frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial t} \right\rangle (s, 0) = \left\langle \gamma'(s), Y(s) \right\rangle = 0.$$

Thus,

$$Gr\left(\frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial t}\right) = \left\langle \frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial s} \right\rangle \left\langle \frac{\tilde{\partial}}{\partial t}, \frac{\tilde{\partial}}{\partial t} \right\rangle - \left\langle \frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial t} \right\rangle^2 = \left\langle \frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial s} \right\rangle.$$

Put $f = \left\langle \frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial s} \right\rangle$. We will estimate the function f(s, t).

From $K \ge k$ we have

$$\left\langle \overline{R} \left(\frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial t}, \frac{\tilde{\partial}}{\partial s} \right), \frac{\tilde{\partial}}{\partial s} \right\rangle \geq k \left\langle \frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial s} \right\rangle = kf,$$

hence

$$-\left\langle \nabla_{\partial/\partial t} \nabla_{\partial/\partial s} \frac{\tilde{\partial}}{\partial t}, \frac{\tilde{\partial}}{\partial s} \right\rangle \ge kf. \tag{7}$$

Furthermore, since

$$\left\langle \nabla_{\partial/\partial t} \frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial t} \right\rangle \; = \; \left\langle \nabla_{\partial/\partial s} \frac{\tilde{\partial}}{\partial t}, \frac{\tilde{\partial}}{\partial t} \right\rangle \; = \; \frac{1}{2} \, \frac{d}{ds} \left\langle \frac{\tilde{\partial}}{\partial t}, \frac{\tilde{\partial}}{\partial t} \right\rangle \; = \; 0,$$

we have

$$\nabla_{\partial/\partial t} \frac{\tilde{\partial}}{\partial s} = \overline{x}(s, t) \frac{\tilde{\partial}}{\partial s}.$$
 (8)

Thus,

$$\nabla_{\partial/\partial t}\nabla_{\partial/\partial s}\frac{\tilde{\partial}}{\partial t} = \nabla_{\partial/\partial t}\nabla_{\partial/\partial t}\frac{\tilde{\partial}}{\partial s} = \overline{x}_t'(s,t)\frac{\tilde{\partial}}{\partial s} + \overline{x}^2(s,t)\frac{\tilde{\partial}}{\partial s} = (\overline{x}_t' + \overline{x}^2)\frac{\tilde{\partial}}{\partial s}. \tag{9}$$

On the other hand, we get from (8):

$$\overline{x}(s,0) = \left\langle \nabla_{\partial/\partial t} \frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial s} \right\rangle (s,0) = \frac{1}{2} \frac{d}{ds} \left\langle \frac{\tilde{\partial}}{\partial t}, \frac{\tilde{\partial}}{\partial s} \right\rangle (s,0) = 0,
f'_{t} = \frac{d}{dt} \left\langle \frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial s} \right\rangle = 2 \left\langle \nabla_{\partial/\partial t} \frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial s} \right\rangle = 2 \overline{x} f.$$
(10)

From (7) and (9), we obtain

$$-(\overline{x}_t' + \overline{x}^2)f \ge kf \iff \overline{x}_t' + \overline{x}^2 \le -k. \tag{11}$$

We now consider two cases.

a) In the case k > 0, set

$$x(s,t) = \frac{1}{\sqrt{k}} \overline{x} \left(s, \frac{t}{\sqrt{k}} \right),$$

$$x'_{t}(s,t) = \frac{1}{\sqrt{k}} \overline{x}'_{t} \left(s, \frac{t}{\sqrt{k}} \right).$$

So $kx'_t + kx^2 \le -k \Leftrightarrow x'_t + x^2 \le -1$. Theorem 1 states that

$$-\frac{\pi}{2\sqrt{k}} \leq \varphi(s) \leq 0 \leq \rho(s) \leq \frac{\pi}{2\sqrt{k}} \Rightarrow -\frac{\pi}{2} \leq \sqrt{k} \varphi(s) \leq 0 \leq \sqrt{k} \varphi(s) \leq \frac{\pi}{2}.$$

Using Lemma 1, we get

$$\begin{cases} x(s,t) \leq -\operatorname{tg} t, & s \in [0,l), \quad 0 \leq t < \sqrt{k} \rho(s) \\ x(s,t) \geq -\operatorname{tg} t, & s \in [0,l), \quad \sqrt{k} \phi(s) < t \leq 0 \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} \overline{x}(s,t) \leq -\sqrt{k} \operatorname{tg}(\sqrt{k}t), & s \in [0,l), \quad 0 \leq t < \rho(s), \\ \overline{x}(s,t) \geq -\sqrt{k} \operatorname{tg}(\sqrt{k}t), & s \in [0,l), \quad \phi(s) < t \leq 0. \end{cases}$$

From (10), we have $\frac{f_i}{f} = 2\overline{x}$.

For
$$t \ge 0 \Rightarrow \frac{f_t'}{f} \le -\sqrt{k} 2 \operatorname{tg}(\sqrt{k}t) \Leftrightarrow (\ln|f|)_t' \le (\ln(\cos^2(\sqrt{k}t)))' \Rightarrow$$

$$\Rightarrow \left[\ln|f| - \ln(\cos^2(\sqrt{k}t))\right]_t' \le 0 \Rightarrow \left(\ln\frac{|f(s,t)|}{\cos^2(\sqrt{k}t)}\right)_t' \le 0 \Rightarrow$$

$$\Rightarrow \ln\frac{|f(s,t)|}{\cos^2(\sqrt{k}t)} \le \ln|f(s,0)| \Rightarrow$$

$$\Rightarrow \ln\frac{|f(s,t)|}{\cos^2(\sqrt{k}t)} \le |f(s,0)| = \langle \gamma'(s), \gamma'(s) \rangle = 1 \Rightarrow$$

$$\Rightarrow |f| \le \cos^2(\sqrt{k}t).$$

For
$$t \le 0 \Rightarrow \frac{f_t'}{f} \ge -\sqrt{k} 2 \operatorname{tg}(\sqrt{k}t) \Leftrightarrow (\ln|f|)_t' \ge (\ln(\cos^2(\sqrt{k}t)))' \Rightarrow$$
$$\Rightarrow \frac{|f|}{\cos^2(\sqrt{k}t)} \le |f(s,0)| = 1 \Rightarrow |f| \le \cos^2(\sqrt{k}t).$$

So, for all t such that $\varphi(s) < t < \rho(s)$ and for $s \in [0, l)$, we get $|f(s, t)| \le \cos^2(\sqrt{k}t)$.

Thus

$$\begin{aligned} \operatorname{Vol}(M) &= \int\limits_0^l \left(\int\limits_{\varphi(s)}^{\rho(s)} Gr\left(\frac{\tilde{\partial}}{\partial s}, \frac{\tilde{\partial}}{\partial t}\right)^{1/2} ds \right) dt = \int\limits_0^l \left(\int\limits_{\varphi(s)}^{\rho(s)} \sqrt{f} \, dt \right) ds \leq \\ &\leq \int\limits_0^l \left(\int\limits_{\varphi(s)}^{\rho(s)} \cos \sqrt{kt} \, dt \right) ds \leq \int\limits_0^l \left(\int\limits_{-\pi/2\sqrt{k}}^{\pi/2\sqrt{k}} \cos \sqrt{kt} \, dt \right) ds = \frac{2l}{\sqrt{k}}. \end{aligned}$$

b) Consider the case k = 0. From (11)

$$\Rightarrow \overline{x}'_t + \overline{x}^2 \leq 0 \Rightarrow \overline{x}'_t \leq 0 \Rightarrow$$

$$\Rightarrow \begin{cases} \overline{x}(s,t) \leq \overline{x}(s,0) = 0, & 0 \leq t < \rho(s) \\ \overline{x}(s,t) \geq \overline{x}(s,0) = 0, & \varphi(s) < t \leq 0 \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} f'_t \leq 0, & 0 \leq t < \rho(s) \\ f'_t \geq 0, & \varphi(s) < t \leq 0 \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} f(s,t) \leq f(s,0) = 1, & 0 \leq t < \rho(s) \\ f(s,t) \leq f(s,0) = 1, & \varphi(s) < t \leq 0 \end{cases} \Rightarrow$$

$$\Rightarrow \text{Vol}(M) = \int_0^l \left(\int_{\varphi(s)}^{\rho(s)} dt \right) ds \leq \int_0^l 2l \operatorname{diam}(M) ds = 2l \operatorname{diam}(M).$$

Thus,

$$Vol(M) = \begin{cases} \frac{2l}{\sqrt{k}} & \text{if } k > 0, \\ 2l\operatorname{diam}(M) & \text{if } k = 0. \end{cases}$$

Theorem 2 is proved.

- Wong Y. C. Differential geometry of Grassman manifolds // Proc. Nat. Acad. Sci. USA. 1967. 57. – P. 589 – 594.
- Cheeger J., Ebin D. G. Comparison theorems in Riemannian geometry. Amsterdam: North-Holand, 1975.
- Kazdan Jerry L. Prescribing the curvature of a Riemannian manifold // Conf. Board Math. Sci. 1985.
- 4. Gallot S., Hulin D., Lafontaine J. Riemannian geometry. Springer, 1993.
- Kobayashi S., Nomizu K. Foundations of differential geometry. New York; London, 1963. Vol. 1; 1969. – Vol. 2.
- Gromoll D., Klingenberg W., Meyer W. Riemansche Geometrie in Grossen // Lect. Notes Math. –
 Berlin; Heidelberg: Springer, 1968.

Received 18.07.2003