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ON THE RELATION BETWEEN CURVATURE, DIAMETER
AND VOLUME OF A COMPLETE RIEMANNIAN MANIFOLD

PO CIHIBBIJHOINEHHA MIZK KPUBHU3HOIO, JTAMETPOM
TA OB’€MOM IIOBHOI'O PIMAHOBOI'O MHOI'OBU/IY

In this note, we prove that if N is a compact totally geodesic submanifold of a complete Riemannian
T

manifold (M, g), whose sectional curvature K satisfies the relation K=& > 0, then d(m, N) < ﬁ

2 .

for any point m € M. In the case where dim M =2, a Gaussian curvature K satisfies the relation K 2
= k=0, and v has the length /, we get Vol (M,g}s% if k+0 and Vol (M, g) <2ldiam (M) if
k=0.

Honejieno, wo skwo N — KoMOakTIMil 1iJ1koM 1'eojiesHyiinil mijiMitoronH)| nosioro piMalonoro
miorosujty (M, g) is cexniiinoro kpunuanoo K, wo sajonoibise ymony K2k > 0, 1o juist Gyjin-
KOl Toukn m € M pukonyerscs nepinnicrs d(m, N) < % Y punayiky, kosm dim M = 2,
rayceona Kpuisustna K mnoronnjty sajonodisiie ymony K2k 20 1a vy mae jonxiny [, orpumaro

21
cninpijuowennst Vol (M, g) sT st k0 ra Yol(M, g) <2ldiam (M) s k=0
k

1. Introduction. As well know, one the most interesting problems in Riemannian
geomelry is (o study a rclation between geometrical notions as curvature, diameter and
volume. This problem have been studied by many authors for the concrete manifolds.
In [1], Y. C. Wong considered this problem for the Grassmann manifolds.
W. Klingenberg proved that in a compact simply connected even-dimensional
Riemannian manifold with sectional curvature K belonging to [0, k], £ > 0, the

length of any closed geodesic is greater than % (see [2]). The relation between

curvature and topology of Riemannian manifolds is exposed in [3, 4].

Generalizing the known results for the sphere $% in Euclidian three-space, we
obtained the following resullts.

Theorem 1, Let (M, (-)) be a complete Riemannian manifold, whose sectional
curvature K satisfies K = k > 0. Let N be a compact totally geodesic

submanifold of M, then for any me M we have d(m,N) < %k-

Theorem 2. Let (M, g) be a complete Riemannian manifold of dimension 2,
whose sectional curvature K satisfies K 2 k 20, k is constant. Let y be a
closed geodesic in M of length of . Then we have

2l
Vol (M) £ {k
2ldiam(M) if k= 0.
The basic notions used in this article are from [5, 6].

2. Proof of Theorem 1. Since N is the compact totally geodesic submanifold of
M, then every geodesic of N is also a geodesic of M.

if k>0,

Let m be a point of M, we have to prove that d(m, N) < Z—E—E We assume that
m¢g N, then d(m,N)=L>0, and Ipe N suchthat d(m,N)=d(m,p)=L. By
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ON THE RELATION BETWEEN CURVATURE ... 1577
the Hopf — Rinow theorem, there exists the minimal geodesic parametrized by arc
length:

c: [0,L] = M, ) =m cL)=p )| =1

Let v be a geodesic in N passing through p, ‘then vy is also a geodesic in M.
Suppose that vy is parametrized by arc length;

Y:pp) oM p>0, y0)=p [vOI=1
Le:_t Y, =v'(0)e T,M, take a parallel vector field Y(s) along ¢ such that
Y(L)y=Y,. Wehave ||[Y(s)|[=]Y,||=1 forall se [0,L].
Set X(s) = sin % ¥(s), X(s) is a vector field along ¢, X(0)=0, X(L) = Y(L) =

=7v’(0).
We now consider the variation H of ¢ as follows:

H:[0,L]X(-p,p) > M
‘ (s,8) = H(s,t) = expc(.r)tX(s),

H is well defined by the completeness of manifold M. We have H(0, t)=m.
Set ¢, (s)=H(s, 1), cy(s)=H(s,0)=c(s), then

H(L, ) = exp(ytX(L) = exp,ty'(0) = ¥(t),
J -
Hox 2 (5,0) = X(s)

By construction of the variation H, the length function L(¢,) attain a minimum at
t=0. Hence,

d
 Uelmg = 0 )
and
2 (L 2 0 @
dr?_ ! =0 — °

Using the first variation formula together with remark that ¢ is a geodesic, i.e.,
Agc’=0, we have

0 &

. L
(1) & (X), 65 — [(X(s), Voe'(s))ds
0

I
=

& (X(L),c(L) =0 & (Y(L),c' (L)
On the other hand,

4 v e = (276.00) + (Y0, 2 6),
where g Y(s) = Vy,5,Y(s).
Since ED.; Y(s) =0, gc’(s‘) =0, we have % (Y(s), ¢’(s)) = 0. Thus,
(Y(s), '(s)) = (Y(L), (L)) =0 Vse[0,L]

and {Y(s), ¢’(s)} is an orthonormal system.
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Set X(s,f) =H * %(s, ) = X(s,0) = X(s).

Using the second variation formula, we have
L
@ & (V;5,X(5, 0), s + [( X = (RX, ¢, ), X) = (", X)?)ds 20, (3)
: 4

where X’ = V5 X(s, 0).
We have

X(s,0) = X(s) = sin (%] Y(s),

i P s 7s D P s
X'(s,0) = X’ = — i I T e = — Y(s),
(s 0) () = gpeeegp Y vamcp ¥ = spoosor ¥

’ v/ . E_ _TE_S ’ 2
(e ©. %6, 0) = 2= cos (22 ('), Y(s)) = 0,
X0, = Hx %(0, ) =0 (since H(O,f)=m Vt) = V,,,%(0,0) =0,

= d ; = B
X(L,t) = H=* §(L, £ =7vy'(t) = Vu,,X(L,0) = a'y(t)h:o = (0.

Thus,

oo i3

0

2

05 (22) ) = sin® (22 ) RV €9 o6, YD) | ds 2 0.5

(G2 s (57) - (EJR(YI@). “6)]ds 2 0 =
* . Z i
- ﬂ(i) k|5t B as 200 (E k20mrs T

Theorem 1 is proved.
3. Proof of Theorem 2. In order to prove Theorem 2, the following lemma is
necessary:

Lemma. Suppose that x: (o, B) — R is a differentiable function defined on
(o, B), where [—g Sa<0<pP=< g), and satisfies

x(0) =0, x+x*<-1. )
Then
x(t) < —tg(t), te[0,P),
x(f) 2 —tg(r), te (a,0].
Proof. Set x(t)=—tg@(t), then @(t)=—arctgx(t), ¢(t)e (— g, g]
’ + 2 ’
Wep0) =0 ad ~— T s I 0 g T 5.1 upsy
cos*@ cos“@ cos“@  cosT @

Thus (@(t)—t) is the increasing function
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{(p(t) =2t Vtel0p),
=
oty <t Ve (0]

Since the function tgt is increasing on (o, B), we get
x(f) = —t1ge(t) < —tg(r) Ve [0,P),

x(t) = —tgo(t) =2 —tg(t) Vte (o0l

The lemma is proved.
Now we prove Theorem 2.
Suppose that ¥ is a closed geodesic parametrized by arc length:

Y:I'— M, where [0,/] < [, v(0)=vy() v/ (0)=vy'(L), Iyl =1

Yte I, I isinterval on R.

Since 7y is a closed geodesic, there exists a unit parallel vector field Y along y
such that Y(0)= Y (/) and (¥(0),y’(0))=0.

For s e [0,1), put

p(s) = sup{r20]r=d(expy,tY(s), 7},
)
@(s) = inf{r<0]—t=d(expytY(s), ) }.

We will prove that p(s) is upper semicontinuous and @(s) is lower semicontinuous.

We consider 5,— s, set fp= lim p(s,), and claim that #, < p (s). In fact, since
l—}ea
tp = lim p(s,), we have E!{s,,k}t:{s,,}|p(s,,k) = 1.
n—yea

I .
Put f,= max {O, p(s,, ) — E}' te— fo => eXpy(g, ) 1Y (s,,) = expyy fo Y (s) and

d(expy .y o Y (s), ) = ;}.T:., (c:xp,“,(_‘r”ij 5Y (s ) Y) = JI_;HL ty=tg=p(s) 2 foy.

Thus, p(s) is upper semicontinuous. Similarly, @(s) is lower semicontinuous. This
implies that p(s) and @(s) are the measurable functions.
‘We have

A={(s0|0<s<!l @(s)<t<p(s)} ismeasurablesetand mesB = O,

where B={(s,1)|0<s</, @(s)=0 or p(s)=t}.
Consider the sets

C = {expytY(s)|(s,)e A},
D= {cxp_r(.r)r}’(s) | (‘Sf t)e B}.

It is clear that C, D are the images of A and B, respectively, under a continuous
mapping. Thus, C and D are measurable and mes (D) =0.
We will prove that M=CUD and CND=0.
In fact, since 7y is closed, y is compact.
This implies that, for arbitrary pe M, 3ge y|r=d(p,g)=4d(p,Y), g=Y(s).
Suppose that ¢ is a minimal geodesic length-parametrized joining p and g:
c:[e,r] = M, ¢(0)=gq, c(r)=np

X is the parallel vector field along ¢ such that X(0) = y"(s). We consider the
variation -

ISSN 0041-6053. Ykp. aeun. skypir., 2004, . 56, Nt 1]



1580 S1 DUC QUANG, NGUYEN DOAN TUAN

H: [0,r]x (-&,&) > M, H(u,v) = expyy (ucos%‘-u) X(u).
=

Put ¢,(u)= H(u,v). Itisclear that ¢y(u)=c(u), H(O,v) = equ(uy'(x)) € Y, SO

the function L(v) attain a minimum at v =0.
Using the first variation formula, we have

r . r
H%(L(c,)))h:o =0 & (cos% X(u), c’(u))L o g(ws% X(), vc,c'(u)> dii =
=0 (X(0),c0) = 0 & (Y(0),c(0) = 0 & '(0) = £Y(s).
Without loss of generality, we can suppose that ¢’(0)= Y(s). Hence,
p=c(r)= expcw)rc’({)) = expm_)r}’(s) and d(p,y) =r.

By the definition of @(s), p(s), we have @(s) <r < p(s), whence (s:r)e AUB
and pe CUD. Thus, M=CUD.

In order to prove C[1D =&, we suppose that there exists p; € C) D. Then
I, # 54 such that

P1 = expye, 11 Y(s)) = expy,, 1Y (),

where (P(.S‘] ) < .'| < p(S| ). fz = (P(Sz) or = p(.'l'g).
Choose a number 13 such that

< t3 <p(s) iftp =20 and

Put g, = eXPy(s) 13 Y(s,). We get

1]

d(q,,y) = d(qy,p))+d(p;,Y(s))) = dlpy,q)+d(p,,y) =

d(py, ;) +d(py,¥(s2)) > d(qy,¥(s2))-
This contradition prove our assertion.

Consider the variation H :IX R — M defined by H(s, ) = exp,,,1Y(s). Put
H= ﬁlﬂ‘ It is clear that H(A)= C by definition of the set C. We now prove that H
is injective. In fact, suppose (inversely) that A isn’t injective, then 3 (s, ;) # (54,
), (s;,1;)€ A, i=1,2, suchthat H(s;,t))=H(s, 1) =g, hence d(q,y)=|t;|=
=|t| =ty by (4). There are two cases:

Case 1. If 5| = 55, t = =4 > 0, then there exists f3: 0 <1, <3 < p(s)).
Consider the geodesic c¢(f) = expﬂmr}’(s;), we have c¢(f)) = ¢(;). By a
consequence of the Hopf — Rinow theorem (see [4, p. 100]), the geodesic ¢ is no more
minimal on the interval [0, ;). This is a contradiction.

Case 2. If s| # 5,5, wecansuppose =1 >0, forall 0<th < <p(sy) p=
= eXPy(y,) 3 Y(s,) we have

d(p,y) < d(p,¥(s))) < d(p,q)+d(q,Y(s))) =

= d(p,q)+d(q,v(sy)) = d(p, 7).

This is a contradiction.
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Thus, H is bijective from A on C. Moreover, H is the homeomorphism

Let p be the canonical measure on M. We have

Vot(M)=£u= Iu=]u+ju=ju=

c

cup
~ a2 p(i*) ~ =
_ 2 2 " 9 9
& J Gr [aﬁa;) dsdt = j( [a a} erds. (6)
H™(C) o(s)
Since H(s,-) is a geodesic, then
P 5
Vara 5 # 0= a 0 =Y =
Because
df3 3\ _[g. 93\ _[yg 923\ _1d[0 3\ _,
dr \ s’ ot N At a1k 9p* By 2 ds \ds’ ot :
we have
J 9 2 0 G _
<as,ar>(s, f = <as a,»> = (Y(5) Y(s)) =
Thus,
o2 3)_ (3 a\[a 3\ [aa\V _/3d
s’ or ds’ ds/ \ ot At ds’ ot ; ds s/’
» 9 2
ut f= . We wnlIcslnnalc the function f(s, ).
9s' 0s
From K=k we have
~(3 9 9) 0 d 9
Rl— — —|—) 2 k{=—.—) = kf,
< [as or D.J a:.-> <as B.fr> s
hence
@)

P)
—(Vy5,Vy9.— =—
< d/dt afa_.'r ar aj

Furthermore, since

we have

Thus,

Jd
VaraVarasy, = Va;a;vaxaxa

On the other hand, we get [rom (8):
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%(s,0) = <va,a,5a;,—§’;> (5, 0) = <aﬂ aﬁ>( 0) =0,
(10)
,_d[d 2 3 3\ _ »e
% <3s as> 2<Va;a, 35'35) = ik
From (7) and (9), we obtain
& k. a1

~@+IVf 2 M © T +X°

We now consider two cases.
a) Inthe case k>0, set

x(s,t) = ﬁ x [s, _-jf)’
|

So kx| +kls—k& N+xs—1.
Theorem 1 states that
< Vko(s) < 0 < VEko(s) < g

~s RSO S0Sp@ s S = =7

2k

Using Lemma 1, we get
x(s, 1) < —tgt, se[0,D),
{J:(s. f2-tgt, sel0,0), ko(s)<t<0
se[0,), 0<1t<ps)

0 <t < Vkp(s)
=

{f(s, 1 < —Jktg(ke),
—
(s, 1) 2 —Vktg(Vkt), se[0,), o)<t<O0.

N

From (10), we have ? =%

For t >0 = ?”s —Vk2tg(Vkt) & (n|f]); < (In(cos’>(Vkn)) =

it <0 = (2040

| f(s, D)
= In —W—r)- < In|f(s,0)] =

In CL.:(‘E.\}Q 1) < | f(s,0)] = ('y'(s), 'y'(s)) =

= |f| £ cos*(Vkt).
s —Vk2tg(Vkt) & (In|f]); 2 (In(cos*(Vkr))) =

Fort£0 =

= ;;'%5 S 16,01 = 1 = I£]  coslfRD.
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So, for all ¢ such that @(s) <?<p(s) and for s e [0, 1), we get |f(s,t)| <

< cos? («/Et).

Thus
L (p(x) 5 3 172 pls)
Vol(M) = G| =, 2 =
o) = | f-’(as'at] ds e = [[[ <Fae|ds
0 \opls) 0 \o(s)
! £ p(®) | 2k 2l
g i[{ | cos-JErdr] ds < j[ | cosﬁtdr}ds =
@) 0 \—m/2k
b) Consider the case k=0.
From (11)
> I+ <02 <0
| X(5,0) = X(5,0=0, 0=t <ps
= =
(s t) 2 %(s,00=0, @) <t<0
=0, 0=1t<ps)
= =
£20, ) <t<0
fs, )< f(s,0)=1 0<t<p(s)
= =
fls )< f(s,00=1 @) <t<0
L (pls) !
= Vol(M) = [| [ dt|ds < [2idiam(M)ds = 2ldiam(M).
0 \og) 0 .
Thus,
21 :
—— f k>0,
Vol(M) = {~k e
2ldiam(M) if k= 0.

Theorem 2 is proved.
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