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STOCHASTIC DYNAMICS AND HIERARCHY
FOR THE BOLTZMANN EQUATION WITH ARBITRARY
DIFFERENTIAL SCATTERING CROSS SECTION"

CTOXACTHYHA JTUHAMIKA TA I€EPAPXISI
JJISI PIBHSTHHS BOJIBIIMAHA 3 [TOBIJIbHAM
JUOEPEHIIAJIbHAM ITEPEPISOM PO3CIAHHA

The stochastic dynamics for point particles that corresponds to the Boltzmann equation with arbitrary differ-
ential scattering cross section is constructed. We derive the stochastic Boltzmann hierarchy the solutions of
which outside the hyperplanes of lower dimension, where the point particles interact, are equal to the product of
one-particle correlation functions, provided that the initial correlation functions are products of one-particle cor-
relation functions. A one-particle correlation function satisfies the Boltzmann equation. The M. Kac dynamics
in the momentum space is obtained.,

TMoGyonano CroxacTiyny JIHIaMiKy, wo siznosijae pistisnnno BoJisiMana 3 JIoBiJILINM TepepisoM posci s,
Bupueio croxacriuny iepapxiio BosniMana, posn’ 1sku AK0T nasonni Minepnurouwsin mikyol poamipnocTi, Jie
TOMKOB YRCTHIIKH B3UEMOIIOTE, 36IroTLes 3 IoBY TKOM OJINOYacTHIKONHX Kopesuiiinux dhyukuil, ko
nouarkoni kopessniiin (hynkiii e pobyrkom ojuovacTHikonnx Kopelsiutifinnx dhynkiiit. Y enoto vepry,
QIUIOMACTHITKONA Kopesusiiiiina dyynkitis saponosmsise pisnsuma Bosmipqana, Buneseno punamiky M. Kana
¥ mpocTopi iMiydimein.

Introduction. In the series of papers [|—4], we have introduced the stochastic dynamics
of point particles, which is obtained from the Hamilton dynamics of a system of hard
spheres in the Boltzmann — Grad limit. According to this stochastic dynamics, point par-
ticles move as free ones until their positions coincide, and then they undergo elastic scat-
tering. The unit vector that determines elastic scattering is a random vector uniformly
distributed on the unit sphere. Then particles move as free ones until the next collision.

The present work is a generalization of the results obtained in [1—4] to the case of
stochastic dynamics in which the unit vector that determines elastic scattering of point
particles is distributed on the unit sphere with distribution density corresﬁonding to an
arbitrary differential scattering crosssection. As is customary in classical statistical me-
chanics [5], the initial state of a system is defined by a distribution function on the phase
space. The state of the system at arbitrary time is defined as the result of the action of
an evolution operator, i.e., the operator of transition along the trajectory, on the initial
distribution function. The distribution function thus defined differs from the distribution
function of the free system of particles at arbitrary time only on the hyperplanes of lower
dimension where the point particles interact.

From the viewpoint of traditional classical statistical mechanics, the system of point
particles moving according to stochastic dynamics should be regarded as a free system.
Indeed, in traditional statistical mechanics, averages are calculated via the Lebesgue in-
tegral, and the behavior of distribution functions on hyperplanes of lower dimension is
not taken into account. In this connection, by analogy with [1-4], a new concept of av-
erages of observables over distribution functions was introduced; this concept takes into
account, in a special way, the contribution of the hyperplanes where the particles interact.

* This work was performed during the stay November— December 2002, 2003 of Prof. D. Ya. Petrina as
visiting professor at the Department of Mathematics of Politecnico di Milano.
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With the use of averages thus introduced, correlation functions are defined that also take
into account, in a special way, the contribution of the hyperplanes where the particles
interact.

The hierarchy of equations derived for the sequence of correlation functions has the
form of the ordinary Boltzmann hierarchy [6, 7] but takes into account the boundary
conditions corresponding to the case where the positions of particles coincide. If the
hierarchy is considered in the weak sense, then it contains § -functions, which differ from
zero when the positions of particles coincide. The hierarchy obtained was called the
stochastic Boltzmann hierarchy. )

We construct solutions of the stochastic Boltzmann hierarchy on a finite time inter-
val for a sequence of correlation functions that belong to the space of functions bounded
with respect to coordinates and exponentially decreasing with respect to momenta. We
also construct solutions of the hierarchy on an arbitrary time interval for initial correlation
functions that belong to the space of functions exponentially decreasing with respect to
coordinates and momenta. These solutions are equal to the sum of the certain contribu-
tions of the hyperplanes where point particles interact.

It should be noted that the solutions of the equations and the Boltzmann hierarchy are
also equal to the sum of the contributions of the hyperplanes where point particles interact.
For the first time, this fact was noted in [3] for the stochastic dynamics corresponding to
the Boltzmann— Grad limit of a system of hard spheres.

The solutions of the stochastic Boltzmann hierarchy coincide with the solutions of the
ordinary Boltzmann hierarchy outside-the hyperplanes of lower dimension where point
particles interact. As is known, the solutions of the ordinary Boltzmann hierarchy are
products of one-particle correlation functions, provided that the initial correlation func-
tions are also products of one-particle correlation functions. A one-particle correlation
function is a solution of the nonlinear Boltzmann equation [8, 9]. In other words, the
solutions of the ordinary Boltzmann hierarchy satisfy the chaos condition.

It follows from the arguments presented above that the solutions of the stochastic
Boltzmann hierarchy also satisfy the chaos condition outside the hyperplanes of lower
dimension where point particles interact because they coincide there with the solutions of
the ordinary Boltzmann hierarchy.

Note that the stochastic Boltzmann hierarchy is obtained from stochastic dynamics in
the same way as the BBGKY hierarchy is obtained from the Hamilton dynamics. The
ordinary Boltzmann hierarchy is obtained directly from the Boltzmann equations [3] or
from the BBGKY hierarchy for a system of hard spheres in the Boltzmann—Grad limit,
where the boundary conditions are not taken into account [6, 7], and it is likely that there
is no dynamics corresponding to it.

As is known, M. Kac [10, 11] pro;ﬁoscd to use a special Markov process in the momen-
tum space and obtained from the corresponding Kolmogorov equation in the mean-field
approximation a hierarchy whose solutions satisfy the chaos condition (see also [12, 13]).

In [4], it was shown that this Markov process in the momentum space can be obtained
by certain averaging with respect to coordinates from stochastic dynamics in the phase
space that corresponds to a system of hard spheres. The Kolmogorov equation can also
be obtained by averaging with respect to coordinates from the Liouville equation for the
distribution function in the phase space. The results of M. Kac were thus justified. In the
present work, we generalize the results of M. Kac to stochastic dynamics considered.
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Note that the Boltzmann equation in the momentum space can be obtained directly
from the stochastic Boltzmann hierarchy for initial correlation functions that depend only
on momenta and satisfy the chaos condition [4]. Indeed, outside the hyperplanes of lower
dimension where point particles interact, the solutions of the ordinary hierarchy and the
stochastic hierarchy coincide, whereas the solutions of the ordinary hierarchy do not de-
pend on coordinates and satisfy the chaos conditions, and one-particle correlation function
is a solution of the Boltzmann equation. In this case, the mean-field approximation is not
used.

Thus, we have generalized and reproduced the aforementioned results concerning the
calculation of averages of observables, a new concept of correlation functions, stochastic
hierarchy, chaos, and an analog of the M. Kac dynamics in the momentum space for our
stochastic dynamics with arbitrary differential scattering crosssection.

In authors’ opinion, the results are now presented in a more clear and consistent form
than in the previous papers of the authors.

1. Stochastic dynamics of IV particles. I.1. Functional-average. Consider point-
wise particles with unit mass in three-dimensional space R®, and denote by z; =
= (QI:pl): ey TN = (QN:pN) — their phﬂ.SB pOiTItS, (w)N = ($1, v )IN} =
at initial time ¢ =0.

Define their stochastic dynamics for negative time —t, ¢ > 0 as follows. Particles
move as free ones until ¢; —p;7 = ¢q; —pi7, 0< 7<%, (3,7) € (1,...,N). Then
these two particles collide, their momenta become

*

Pi = Pi — MijNij - (Pi — Pj)s D = Dj + NijNij * (pi — p3),

75 C S (islmiz - (0i —p3) 2 0),  Imisl =1,
if mi; C Sy (Miz | mij - (pi — pj) < 0), then pf = pi,p} = p;, Mij - (pi — p;) is the
scalar product of vectors 7;; and (p; — p;).

Attime —t their phase points are

(1.1)

zi(—t) = (g — pi7 — P} (t — 7),P}),
* * + (12)
m.?(_t):(Qj_pjT—pJ(tmT)!pj): nijcSZI

if 7i; C S3, zi(—t) = (¢ — pit. i), z5(—t) = (g5 — Pt p;5)-
Particles scatter elastically but the vectors 7;; are random ones with density of

Qs - (pi — py))
ij - (Pi — Pj)
iy + (Ps — D5) -

If mi; € S5 (M35 | M35+ (pi —p;) < 0) then particles continue move freely even in case
& T =y — T

For positive time ¢ > 0 it is necessary to putin (1.2) (+7) instead of (—7) and Sy’
and S;" instead of S35 and S; respectively. We neglect the case when three or more
particles collide at the same point.

The above introduced stochastic dynamics defines the trajectory in phase space
X(~t) = @(~O)n = (@1(~t),... ,an(~1)) = @1(~t, @)N), .. , 2N (~t, (Z)N)) =
= X(—t,(z)n) = X(—t,z). Obviously trajectory X (—t) satisfies the group propérty
X(—t1 —ta,z) = X(—t1, X (—2t2,2)) = X(—t2, X (—t1,7)).

Define the operator Sy (—t) as the operator of shift along the trajectory

probability where Q(7:; - (pi — p;)) is known as a crosssection
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S(=t)fn(z1,. .- ,2zN) = fr(zi(—t),... ,an(—t)) =
= fn(z1(=t, (Z)N)s--- » 2N (=2, (Z)N))- (1.3)

Let fn(z1,...,TN) bereal symmetric continuously differentiable normalized function
and @n(z1,...,ZN) bereal symmetric test function.
Consider an infinitesimal time —At and introduce the following functional:

(SN("At)fN;(P'N)=-/d$1”‘d$;\r X

X fn(q — p1At,p1, ... ,av —PNOLDN)EN (01, P, -+ AN, DN) +

N At
+ Z /dml..‘dmN/d'r/dn‘-j Q(Th_-,- (;P-;_—p;)) %
i<j=1 0 S; Nij ;1 Ps

X5 - (p: — p3)0(qs — piT — g5 + p5T) X
X [fN(rh —p1At,py, ... 6 — piT — D (A —T),
Pireoo Q5 —PiT — P (At —7),p}, ... ,qN — PNAL,PN) —
—fn(q —p1Atpy, .., @i — i, i, ..., g5 — AL,
Pjs--- AN ~pNAt,p~)]soN(q1.p1,u- AN PN) =

N
=/d€cl...dﬂ:N{fN(E1,... ,.’:'JN) —ﬂﬁzpiaiq'f}\r(fﬂl,.” ,.‘I:N) x

i=1l
XN (21, .., TN) —_/dmx---d«’wm/dﬂﬁﬁ(g’i —g7)Q(miz - (P — pj)) X
S5
X[fN(erph‘" !qi:p::"' :f}jsP;:--- :qupN) -

'—fN(qlnpls“' s Jis Pis v e qu:pj!-" :QNa.'PN)]‘PN(QhPI:--- :QNle)' (14)

Here the operator Sy (—At) is defined according to the stochastic dynamics as fol-
lows:

for gi —piT = q; — P57
SN(—At) fN(T1,- -+ 1 Tiye e e 1 By s ON) |gs—pir=g;—psT =
= fn(@ =BG pa, .. G —pim — pi (At —T7), 95, ..
g5 — 257 — P (At —7),p},. .. ,an — PNAL, PN)
for  mi; € ST,
SN(=A)fN(T1, - 2 Zise oo 2 Tgs oo s TN lgi—pir=gy—psr =

= fN(G'1 —.'PlAt:Pl:- e G ‘_‘piAtrpi:' ce a5 _pjé‘txpjl"' AN _pN&t)Pf\Eg 5)

for m;; € Sy,
Sn(=AY) fn(z1, ... ,zN) = fn(qr — p1At,p1, ... ,an — PNAL, PN)

for q; — Tp; # q; — p;T, forall (3,7) C (1,...,N),0 <7 < At.
Q(mi; - (pi — p5))

is normalized, i.e.,
i - (Pi — ps)

‘We suppose that the function
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Qny - (pi—p5) ,
i - (ps — pj) gk (1.6)

s

Now represent functional-average as follows:

(SN(~At)fN, tpN) = fdml . dznSn(=A) fn(z1,. .. s 2N )en(Z1, ... TN).
(1.7)

The introduced operator Sy (—At) is the usual operator of evolution in the theory of
Markov processes and was obtained as result of specific averaging procedure, with respect
to random vectors 7);;, that takes into account the contribution from hypersurfaces of
lower dimension ¢; — ;7 = q; —p;7, 0 <7 <t, (4,7) C (1,...,N) where the
stochastic particles interact.

The functional-average (1.7) is defined for arbitrary test function and it defines
result of action of the operator Sy(—At) on function fn(z1,...,zNn), ie,
Sn(=At) fn(z1,... ,zN), as generalized function

gN(_At)fN(mla‘ nm smN) 2 fN(QI “‘PlAt:PI:- -2 gN _pNAt:.‘pN) +

N Bt ,
o+ Z dr f dni; Q15 - (P — p4))0(q — i™ — @5 + p;T) X
i<G=1y g
X [fN(fh -mAt,p,. .., —pim —pi (AL — 1),
Phrees 3@ — P57 — P (AL —T), P30 - s ON —
—pnAt,pN) — (g — Pl Dy, ... G — it i, -
2 — PiOE DS, AN —pNAt,pN)] =

o fN(QI _p].At)pl} «-+ 34N _PN’At:PN) +
N At ;
+ > /dT/d'f?ijQ(mj'(pi—Pj)) X
i<j=13 g,
x 8(qi — piT — a5 + p57)SN(—A) fn (21, ,ZN) =

=fN(At,$1,“- va)' (18)
We use in (1.8) that Q(n;j-(pg—pj))[mjesz- = —Q(n,:j-(pi—pj))[wes; ,and (1.5).
Note that there is no contradiction between definition (1.3), (1.5) of Sy (—At) x
Xfn(zy, ..., oN) = fn(zi(—AL),... ,on(—At)) and (1.8). Formula (1.8) simply
defines the function Sy (—At)fy(z1,... ,oN) asageneralized function and averages of

function Sy(—At)fa(z1,---,zn) (1.8) over the observable ¢y (z1,... ,zy) should
be calculated as the following functional:

(Fn(At), on) = (Sn(—At)fNn,on) =
— /dT] v d'BNgN(‘—At)fN(Il, vee :mN}(PN(:cl: e 1IN) =
= (Sn(—=At) v, pn)- (1.9)

Thus numerically the state Sy (—At)fn(z1,...,Tn) is given by formu-
las (1.3), (1.5)

ISSN 0041-6053. Y&p. atan. skypit., 2004, m. 56, Ne 12



1634 4 M. LAMPIS, D. YA. PETRINA

SN(=B8) (1, ,on) = Frl(za(~AL), ... ,za(—At)) =
= fN(ml(_'At: (m)N): o 151(_At1 ($)N))

When we calculate the average of Sy (—At)fx(z1,...,zy) over the observable
oN(Z1,... ,2N) we use the generalized function Sy(—At)fn(z1,... VIN) =
= fn(At,z1,... ,zx) given by formula (1.8) and calculate the average (Sy(—A4t)fn,
on) as functional (1.9) that coincide with (1.4).

Note again that functional (1.4) is the average of the observable wy(z1,...,ZN)
over the state

Sn(—At)fn (21, ... ,2N) = fr(z1(=AL),... ,an(-AL))

where ¢y is real symmetric test function and fy > 0 is also real symmetric continu-
ously differentiable function normalized such that

./fN(J:I,..‘ ,IN)d:Bl...dEN =73,

Stress that in functionals (1.4), (1.7), (1.9) the contributions from hyperplanes of lower
dimension ¢; — p;7 = ¢; —p;7, 0 < 7 < t,1 <1 < j < N, where stochastic
particles interact, are taken into account, they are equal to the second term in the right-
hand side of (1.4).

1.2. Infinitesimal operator. From (1.8) it follows that

s N
OSn(—t ad
—‘%%_‘)‘ lt=0 fn(21,.--,2N) = —gpia—qif!\'(frh--- ,ZN) +
N
+ > [ dniQUnis - (ps — p5))6 (s "gj)!:fN(ml»--- s oe s Bgyren BN~
i<j=12,
S3
_fN(mly"' 1 Tiy e 1 Tgye e ::‘-'”N)} =
=ﬂN.fN(E1:"' :xN):Er = (CH:P:' ,ﬁ; = (QJ‘JP_:) (1.10)

We define formally the group of operators Sy(—t) at arbitrary time —t as follows:
_ n n

Sn(~t) = lim_ _HlsN(ﬂt,-). _Z;,Ate =1 (1.11)
1= =

where the operator Sy (—At) for infinitesimal At is defined according to (1.8) and the
infinitesimal generator of the group Sy (—t) is defined by (1.10) and it is equal to Hy.
Now define the state fi(t,zy,...,Zy) atarbitrary time ¢ > 0 as follows:

fN(t} =fN(t!$1:"' :D:N) =‘§N(_t)fN($1:"' ,$N) e

= lim []Sn(-At)fin(z1, .. ,2N), (1.12)

i=1

S Ati=t,  fy(t+At) = Sn(-At) Fn(t),

ie, Sn(—At)fn(t) is defined by formula (1.8) with fx(t,21,...,2Zxn) instead of
fn(za,. .. TN).
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Define the functional average (with infinitesimal At) of the state fiv (¢ + At)
(fn(t + At),on) = (Sn(=A8) v (t), on) =
:“/dxl . HdmeN(t:QI "'plAt}pla s

.+ qN —pNAL PN )eN (g1, P1, - - AN, PN) F

i<j=1

N. At
+ > _/dim : --dmN/d'r/Gﬁ?ijQ(??ﬁ - (pi — p3))0(g: — piT — g5 + P§T) X
o 3;-
X [fN(ﬁ, @ — PPy, ... ¢ —piT — P (At —7),
p:l » 4 _pjT—p;(At_T)Jp;!' :QN_pNAta'PN) =

_fN(tIQI _plAt=p11' -e 5 i _p"Atlpt':' s 5 _pJAt:
Piye-e AN _PNAt)PN)‘PN(xI:--- ImN)] =

— ng(—At)fN(tixl‘l"' |'TN)‘pN($1:'-- =IN)d331...d.’L‘N =

= -/fN(f + At, Ty, .. ,C{:N)KPN(I]_, i ,.'L‘N)dd?]_ 51 (1.13)
If follows from (1.13) that

QN('—At)fN(t:IIE‘” :xN) :fN(t+At:$1="' 1$N) =
:fN(t=Ql —p;At,ph-.. :Q'N—'PNAt:.'PN) +

N At
+y de / dnisQ(mis - (s — p5))8(gs — piT — g5 + p5T) X
i<j=1lj S;’

X [fN(t, @1 —p1Atp1, ... &G — T —Pi (At —T), P}, Q5 —
—p;T — i (At = 7),p},... ,qN — PNALDN) —
—In(t @ — P ALy, G = P D, G o
~psAt,pj, ... \qn — PN ALPN))|- (1.14)

From (1.14) we obtain the following differential equation for the state fi (, 21, ... , ZN):

§s N, &
a.fN(t,xl,--- VIN) = — Zpia—q‘_fN(t,ml,--- L TN) +

i =1
+ > /dﬂijQ('f?ij (P — p5))o(a: — q5) X
i<j=

*

x[fN(tlml""I:I:‘il"'TEE?""zN)_-f_N(tlzl"-"?mil"'fzj""ImN)]=
=?—{N.}FN(t:$11"' 1$N): (1'15)
z; = (¢, p7), =i = (g5,P})

with initial condition
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TRl By 2B iy 2= TNy e S5

Equation (1.15) is Kolmogorov equation for fy(t,z1,... ,zx). It was derived from
functional-average (1.4), (1.13) or from formulas (1.8), (1.14). Stress again thatin functi-
onal-average (1.4), (1.13) the contribution from hyperplanes ¢; — p;7 = g; — p;T,
1 €14 < j < N, are taken into account. These contribution are expressed in (1.4) and
(1.13) by the second terms. Note that equation (1.15) defines the derivative of function
fnv(t,z1,... ,zxN) in sense of generalized functions. - ‘

1.3. Infinitesimal operator with fixed random vectors. We can also differentiate
function fy(z1(—t),... ,zn(—t)) in sense of point by point convergence, i.e., differ-
entiate fy(zi(—t),...,zn(—t)) with respect to time along the trajectory (z1(—t),...

.,zn(—t)) with fixed parameters 7;; . Denote the function fy(z1(—t),... ,zn(—1))
with fixed parameters 7;; by fN(t,:.-;l, ... ,Zn). Repeating words by words our calcu-
lation from papers [1 —3] we obtain equation

dFn N5 . ,
_Bt_(t‘xl"" VIN) = —Igpia—mfﬁr(t,-’ﬂz,-n VTN +
N
+ Y O+ (pi —ps))mis - (i — P3)6(@i — ¢5) X
i<j=1
X[fN(tII].!"‘ }x::"' 13:;)”' |$N) “‘fN(t:ml"" R R TR :TN)] =

=ﬁNfN(t1$l)”' :xN): fN(tlml!'-- 1mN)[;=n - fN(Ilr'-- 9$N) (1‘16)

with boundary condition according to which when ¢; = g; then in the first term of (1.16)
momenta (p;,p;) should be replaced by (pf,p}) with n:; - (pi —p;) 20, ©(a) =1,
a>0, B(a)=0, a<l1.

Now we present a new derivation of equation (1.16). The equation (1.16) and in-
finitesimal operator Hy can be obtained from the following functional average:

/dwl o dznfn(@ — PO Dy, ... aN — PNALDN)ON(Q1, D1, - -« AN, PN) +

N At
+ Y [ day...dey [ dr(mi - (ps —ps)) X
LS Fr—

i<j=1
xO(1i; - (pi — p;))0(e: — P — g5 + p57) X
X I:fN(Q'I —pA PG =T = Pi (AL —T), 05 0
—piT — Pj(At —7),p5,... .aN — PNALPN) —
—fn( —p1At,pa, .- G — DAL, Ds, - .. G5 — PiAL DG, ... AN —PNAt:pN)] x

X(PN(II:"' xxN) =
=‘/d9:1 .. danSN(—AY) N (z1, - .. aN)eN(EL, - .. 2N) = (FN(AL), on).
(1.17)
Equality (1.17) holds for an arbitrary test function @y (z1,...,2zy) and Sy(—At) x
X fn(Ty,... ,zN) is determined from (1.17) as follows:
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Sn(—At) fn(za,--- TN) =
=fN(At:$11"' ,fEN) =fN(q]. —'p1Af,p1,-.. qu_PNAt!pN)+

At
+ > / dTO(mij - (P — p3))Mis - (i — p3)6(es — PiT — ¢; + p;T) X
i<i=1}

X[fN(Ql —p1At,p1, ... ¢ —piT — Pi(AE—7), P}, ... ,q5 —
_ —PJT_P;(At-T):P;: :QN—PNAtapN) e
—fn(q — 1AL, py, ... @ — DAL i, ... 45 — DAL D), ... AN _PNAt:pN)]r

1.18
3SN( t) Gi5)

& fN(tizl)“‘!:’EN)':?:ENJ:N(:EI!"'?xN)'

t=0

We define formally the group of operators Sy(—t) at arbitrary time —¢ as follows:
Sn(—t) = lim H“ Sn(—At;), Y T At; = t, where the operator Sy(—At)
for mﬁmtes:ma] At is defined according to (1.18) and infinitesimal generator of group
Sn(—t) is equal to Hy . Using (1.18) and definition of Sy(—t), one can obtain dis-

tribution function at arbitrary time ¢ and itis fyx(t,21,...,zN5) = Sy(—t)fn(z1,. ..
.»&N) . Let as suppose that distribution function is already obtained at time ¢ then
“In(t+ Atz ... ,zN) is defined through fa (%, z1,... ,zn) as follows:

In(t+ Atz .. 2n) = Sn(-A8fn(t 21, .. 2N) =

e fN(t,% _plﬁt:plt"‘ 1N _pNAt:pN) =t
N AL -

= X f‘h' O (i - (pi — P3))Mis - (i — P3)0(as — i — @5 + p57) %
i<j=17% g :

X [fm(t,m —p1At,pyy .. G =i — P (At —7), P}, 105 —
—piT — pj (At —7),p},... ,aN —PNOAL,PN) —
. —fn(t.q —mALpy,... i — Pl i, .. g5 —
 —piAtpy,... a0y —pNAt,pN)] (1.19)

Or in terms of averages with test functions ¢n(z1,-.. ,ZN)

(Fn(t+ At),on) = /dl'l .. dzn fn(t, g1 — p1At D, ... ,an — PNAL PN) X

xen(z1,...,2n) + z /dzl Jdxy %
i<j=1
At -

X{ fdfe(ﬂii “(ps — pi))nis - (P — p3)0(gi — PiT — g5 + p5T) X
0

X [fN(t.m ~p1A D, G =i — D (AL —T), D7, .. 1G5 —
~piT — P; (At = 7),p7,... ,qN — PNOL, DN) —
_fN(t: q1 “plﬂt,pl,... 2 Gi —
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—DilAt,pi,. .. @5 — P AL DG, ... AN _pNAt:PN)]} X

XN (T1,. .. ,TN). (1.20)

Differential equation (1.16) follows from (1.19), (1.20).

1.4. Duality principle. Now we explain in what sense the functions Sy (—At) x
X fn(z1,...,zn) given by formulae (1.18) is equivalent to the function Sy (—At) x
xfn(zi....,zN) given by the formulas (1.3), (1.5)

Sn(=At) fn(z1y. .. 2n) = fn(z1(—AL),. .. ,an(—AL)) =
= fn(@ —p1AE,py, ... ,an — PNAL DN)

if @i —piT # g5 —py7 forall (4,5) C (1,...,N), and 0 <7 < At

Sn(=At) fn(z1, ... zN) = fN(z1(—AL),... ,zn(—AL)) =

= fn(e =BG Py, G — DT = PF (AL —T), P}, g5 —

—p;T — pj (At —7),p}, ... ,aN —PNOLPN) (1.21)

if i —pir=q;—p;7, 0< T <AL, ny; C ST

Sn(—At) fn(z1,. .. ,2n) = fn(za(—AL),. .. ;an(-AL)) =

= fn(qr — 1A Py, ..o G — DAL D, ... G — DAL D, ... Oy — DNAL, DN)
(1.22)
if g —piT=q; —pj7, 0<7 <AL ;€ Sy, (1,5)c(1,...,N).

Thus, numerically the functions Sy (—At) fx(z1,- .. ,Tn), SN(—AY) fn(t, 21, . ..
...,xp) is given by formulas (1.21), (1.22) in the all phase space (z1,...,zxn). The
expressions Sy (—At) fn(z1,. .. ,zn), Sv(=At) fx(t,T1,... ,zN) (1.18),(1.19) de-
termines how to integrate the functions Sy (—At)fn(z1,...,2N8), Sn(—At) X
xfn(t, @1, ... ,xn) with test function ¢y (z1,...,2ZN), but with the fixed random
vectors 135, 1 < 1 < § < N, and to take into account the contributions from the
hyperplanes ¢; —piT =¢q; —p;7, 1 <1 <j<N.

The expressions Sy(—At)fn(T1,...,ZNn),SN(=AY)FNn(t, T1,... ,2oNn) (1.8),
(1.14) determines how to integrate these functions with test functions @y (z1,... ,ZN),
to average with respect to the random vectors 75, and to take into account the contribu-
tion from the hyperplanes ¢; — pi7 = ¢; — P57 .

Now we are able to formulate the principle of duality for the distribution function
fn(t,z1,... ,zN) . Letus suppose that initial distribution function fx(0,z1,... ,ZN)=
= fy(z1,... ,TN) is symmetric continuously differentiable and normalized one in the
phase space. Then the distribution function (1.3) fn (¢, z1,...,2zn) = Sn(—t) %
X fn(zy,...,zn) is well defined continuously differentiable function everywhere out-
side the hyperplanes of lower dimensions where particles interact. But in the functional-
average with some observable ¢y (z1,...,zx5), which is real symmetric smooth test
function, we consider S(—t)fn(z1,...,TNn) = fn(t,z1,...,TN) as some definite
generalized function and calculate the contribution from these hyperplanes of lower di-
mensions where particles interact. Calculating the functional-averages (f(t),pn) or
(Fn(t),on) we use fy(t) or fi(t) instead of fx(t). We are not able to calculate
(fn (), on) or (fn(t),pn) directly for arbitrary finite time ¢, we have explicit formu-
las (1.4), (1.17) only for infinitesimal At, For arbitrary time ¢ we use formula (1.14)
and (1.19) for definition fiv(t + At) and fin(t + At) through already defined fiv(t),
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Fn(t) and then calculate (fiv(t + At), pn) according to (1.13), and (fiv(t+ At), on)
according to (1.20).

Duality principle defines the generalized functions fy(t,1,.-.,zNn) = Sn(—t) X
Xfn(z1,... ,TN) or fN(t, iy oy BN = S'N(—t)fN(a:l, ..., ZTN) through the usual
Sunction fy(t,©1,...,2n) = Sn(—t)fn(z1,...,xN) by formulas (1.8), (1.14) or
(1.18), (1.19). If one has to consider the distribution function as usual function ( numeri-
cally) then one should take fy(t,z1,...,zxn) = Sn(—t)fn(z1,... ,2ZN), ifone has to
calculate the functional-average (1.13) or (1.20) with observable @y (z1,... ,zN) then
one should take the generalized function fy(t,x1,...,zn) = Sn(=t)fn(Z1,... ,2N)
or generalized function fy(t,%1,...,on) = Sn(—t)fn(z1,... ,zN).

In our paper [1] it has been shown that differential equation for fy(t,1,...,2ZN)
in sense of point by point convergence has the following form:

3fN(f. Bipess 3 8 Zp, fN(t xl,‘,.,IN)-}-

i=1

S

+ 3 O0ms - (i —p))S(At—7ig)| _ x

X [fN(t,:r.l,... Byl k)~

(T R TE MOE )| R AL (1.23)
with above described boundary condition in the Poisson bracket and according to which
(pi,p;) should be rcplace.d by (pf,p}) if ¢ —¢q; =0 and [fn(t+0,21,...,ZN) =
:fN(t?xll"'!mri"'i g z.N)]ll qt_Qj! Mg (pl Pj)>0: [_fN(t*i‘O,‘xl,-“

..2N) = fn(t T, IN)] qi = g5 (mij - (P| PJ)SO)

Here 7i; is the time of collision. In the coordinate system where the first component
of the vector (g;—gq;) is directed along the vector 7;; , the time of collision 7;; is defined
as follows:

4 —q
P} —pj
Then the (%, 7) -th term can be expressed as follows:

o} - p})6(a} — a})(P} — P} [fv(t 2, o2, 5 o) —

_fN(tixll"' PR PRI, PR 1$N):|

Tij =

a7=q3.9¥=q}

This term is different from zero on the first axis g} — g} ( with respect to the vector
@i — g, i.e., for ¢ —q? =0, ¢} — ¢3 = 0) and, regarded as a generalized function in
the three-dimensional space, is equal to

e(pi —-p})ﬁ(qﬁ = QJ)a(q'a _QJ)J(Q‘l = (IJ)(p; p_;]:) X
X[fN(t,fS]_,--- !xi!"‘ ):':ji"' !mN)_ |
—fN(tlxll"‘ 3Ty 3Ty r{rN):I o
= ©(ni; - (pi — p;))0(a: — a5)mis - (Pi — p5) ¥ ,
N R B e T . P =zN)}. (1.24)
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(For analogous calculations, see [1].) The expression obtained does not depend on the
choice of coordinate system because §(g; — ¢;) and 7;; - (p; — p;) are invariant under
rotation. Substituting (1.24) in (1.23) we obtain (1.16).

Recall that the operator

N, :
—Zpia—q‘_fiv(t, T1,...,ZN) +

i=1

N
+ > 8(a} —q})e(p} - p})(p} — p}) x

i<j=1
X[fN(t,II,..- :35:‘--- ,:I:;,... ,IN) ==
_fN(t'a 5 PR - PRI R PR !mN):I q‘?=q?|q?=q? (1'25)
with one-dimensional -functions §(g} — g}) is equivalent to the operator
Y8
_Zpi'a?ff\r(tlxla"' )x.N) =HNfN(t,$1,... JzN) (1-26)
i

i=1
with the boundary condition according to which at points ¢; = g, (3,5) € (1,...,N)
momenta p; and p; should be replaced by p} and p} if 7:;-(pi—p;) = 0 and (s, p;)
do not change if 7;; - (ps —p;) <0.

Thus we have three expressions for the infinitesimal operator Hy of the group
Sn(—t). The first one Hy (1.15) was obtained in a week sense and it shows how
to take into account, in the functional average, the hypersupfaces of lower dimensions
¢ = g¢;, (i,5) € (1,...,N), where particles interact. In the second one Hy (1.16)
(also calculated in a weak sense), the average with respect to the random vectors 7;; was
not performed, but the hypersupfaces ¢; = g;, (4,5) < (1,...,N), were taken into
account. In the third ones Hy (1.23), (1.26) calculated point-by-point, the infinitesimal
operator Hy of the group Sy (—t) is equal to the operator — Zi\;lp,-aiq with the
boundary conditions at ¢; = g5, (4,7) € (1,...,N). '

All these expressions for infinitesimal operator H are equivalent but the first one

(1.15) and second one (1.16) show how calculate the average of %{(t,m],... VIN)

and afN (tu xlaxt' gl xN) with observable N (Ila S5 G IN) , or they define

BfN(ttmln"':mN) 6fN(t:$1:"':$N)
ot o at

expression for infinitesimal operator (1.25), (1.26) defines

as generalized functions. The third
afN(t:mla'-' $mN) _

= Hyfn(t,z1,... ,xn) in sense of point-by-point differentiation and defines it as a

usual function with jumps at ¢; = g5, (4,7) € (1,...,NNV), that is expressed in the

boundary conditions.

Afn(t,zy,... ,&':N)
ot

lated as for fn(t,x1,...,zNn) and according to which the same

Thus for the derivative the principle of duality is also formu-

afN(t,fE]_,--- ,-‘I‘N)

ot
is considered as a usual function or as special generalized functions in the functional-
average.
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2. Hierarchy for correlation functions. 2.1. Derivation of hierarchy from equation
Sor distribution function. Define the following sequence of correlation functions:

FMN(t,3y,... ,25) = N(N —=1)...(N — s +1) x
X/dma.g.]_”.dmeN(t,ml,...,m,,...,x_g.l.]_',.--,ﬂ.-"N), ISSSN- (2-])

By using equation (1.15) one can derive the following hierarchy for sequence (2.1):

QFM 100 0
E = ——sz F‘N’(t BirenciBa)

+ Z / dni; Q(mij - (pi — p3))6(% — q5) %
1{3:15;

X [Fs(t,:nh‘.. R S A e ,m_,)] +

+Z/d'l?a+l /d'f?:s+1Q('wa+l (pi — Ps+1}}5(q= (Ia+1) *
sf

N - !
X[ 3(+:E(t' B P . R s+1) .-z-l—l(t Ty, '$-'EI‘.:---:I3+1)]| 1<s<N

(2.2)
(see detail in [1, 3]).
Performing formal thermodynamic limit NV — co for sequence (2.1) and supposing
that one can also perform this limit in hierarchy (2.2) we obtain the limiting hierarchy

8Fs(te$1:--' T
t =_§p= F(t Ty;--- :$8)+
+ Z /anJQ(n‘l-J (p‘l pJ )6((}1 - qJ)[F (t Tly--- s .'*: L ,.'L";= A ::’ES) -

i<j=1

-—-Fs(t,.'l:l,... o R T e ,:’33)] +

+ Z‘/dﬂ;s+1 / dNis+1QMis+1 - (Pi — Ps4+1))0(q — Gs41) X
i=1
S+

X[F‘s+1(f¢,$1,‘.. VI ooy Bay) = Fypr{h Byye co y Biyons ,:r3+1)], §>1,
(2.3)
Fo(t,z1,... ,2s) = lim FM)(t,2q,... ,13,).
N—oo

Note that correlation function F‘s(t, Ty,...,Ts) do not depend on any random vec-
tors ;5 .

The sequence of correlation functions Fs(t, *1,...,Ts), s = 1, and the hierarchy
(2.3) for it was obtained through the distribution function fy(¢,%1,...,2n) considered
as a definite generalized function.

The first two terms in the right-hand side of hierarchy (2.3) are result of action of the
infinitesimal operator # (of the group Ss(—t)), that is useful for functional-average.
We want to derive the hierarchy for the sequence of correlation function considered as

ISSN 0041-6053. Yip. mam. scypit., 2004, m. 56, N* 12



1642 " M. LAMPIS, D. YA. PETRINA

usual not generalized function. To do this we replace in (2.2) operator s by equivalent

8

a . .. A
operator H, = — § i=1Di a with known boundary condition. One obtains hierarchy
1

3Fs(t,$1,--. ,CC_.;)
55 Ep, F(t T1,...,3s) +

. i=l1

5
+Z/d$s+1 /dﬂis+1Q(ms+1 “(Pi — Ps41))8(%i — gs41) ¥
i=1
s+

% [F3+1(t,:c1,... s Eyivs ey Baga) = Fega b Bra o v s v ,:1:,,$:+1)], szl
(2.4)
with boundary conditions according to which at ¢; = g, (45) < (1,...,s) momenta
(i, pj) in the first term on the right-hand side of (2.4) should be replaced by (p},p}) -
The hierarchy (2.4) can be written in equwalcnt form

E?F (t T1y..- ,‘Is)
3 Zpt

Fi(t,z1,...,3s) +

i=1

+ 5" O - (0} — p3))mij - (0} — p3)o(g} — ) x
i<i=1

X[Fs(tamln‘” 3x::"- )x;)-‘- rxs) =

_Fs(tlx:h"' R PR PR :33)]

9f=q}.q7=a3

+E/d«Ts+1 /d"'hs+1Q(nu+1 (p: — Ps+1)) X

i=1

X[F-S—l'l(tl:cl)"' ,:TJ:,... 1 Ls, s—i-l) s-I'-l(t S R - ,2’:5,5«"3+1):|: 321,
(2.5)
without boundary condition.

In (2.4) and (2.5) we used equivalent representation of the infinitesimal operator H, .
Note that correlation functions in (2.4), (2.5) depend on the random vectors 75, (4, 1) C
C. (Lisis 58)

In what follows we will use the hierarchy for sequence of Fy(t,q1,...,4s), s> 1,
in invariant form, independent on representation of the infinitesimal operator H, , namely

OF,(t,z1,...,x

S) =H8Fs(t)mli"' ,E.,)‘!‘

ot
+Z/d‘3s+1fdms+152(ms+1 (pi — 27))0(g — gs41) X
i=1
X |:F3+1(t,921, s :55:: e =$31-'"3:+1) _Fs+1(t:mlg ER S P )xs:ms+1)] (2.6)

with initial condition
Fs(t::cls e )ms)If-=0 == FS(E]-: S ::_1:8)‘
Hierarchies (2.4), (2.5) can be obtained from equation (1.16) by integrating over Ts41,. ..

.,z and averaging over all 7;; excluding those 7;; with (4,7) € (1,...,s).
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One obtains hierarchy (2.6) with H, instead of Hs (see details in [1, 3]). Then one
‘uses the duality principle and replaces M, by H,. Note that correlation functions
‘Fy(f,215... ,%s) depend on all random vectors m;; with (4,5) C (1,...,s) that cor-
respond to collisions of particles with numbers (1,...,s) and appear on entire inter-
val [—¢,0]. '

2.2. Derivation of hierarchy from functional average. Now define functional-average
for the following observable:

PN {Br BN = D Pl iegy) 2.7)
G A
where summation is carried out over all (iy <... <1s) C (1,...,N).
It follows from (1.13), using symmetricity of functions fN(t+At, T1,...,TN) and
Fn(t 21, ... ;&) with respect to the variables (z1,...,zn),

(fN(t"l‘&t)n‘PN) :/fN(t+At:$1)"' )-'L'N)‘PN(xlv-» ,xN)dZ]_....TN =

N! P
o [M—_S)—!/fN(t+At,:r],... B Bigfhy s ,mN)d.'cs.i.l..‘d:cN)] %

X gi( Dy s By)tay o diiy =

N _
= [m/.ﬁv(f,fﬁ — 1AL Py, ... v — DNAE, PN )ATs 41 -'--d-'BN] X

X ws(21,... ,%s)dy ... ds +

At
; N! s
Tl / { MJZ=1 _0/ de-{ dnigQ(mis - (P — P3))8(gi — Pi — g5 + p57) X

X / [fN(t:qI —'pIAt:plx-” s i ”PiTFPZ(At_T):P;w-- 45 —

—piT —pj(At —=7),p},... ,an —PNAL,PN) —
— vt g1 — 1ALy, . .. s — DiAE, D1, - G5 —

_"Pj"ﬁt:pj:"" AN “pNAt;pN)d$3+1---d.‘BN}}EO_q(Il,--- :ms)dzl---dma b

at
NN —s £
* ;'(LN.—_S“)_? {‘Z_;o/d"' / Anis+1Q (Mis+1 * (Pi — Ps41)) X
s+

X 0(gi — DiT — Qs41 + Ps417T) X
X_/ [fN(t;QI - p1AL P, ... G — T — D (At —7),D] .. .. Qs —

= DAL, Do, Qo1 = Pag1 T = Doy 1 (AL — 7), D541, Qa2 — Do AL, Daga, ... qN —
—pnAtpN) — Fn(t @1 — P1OLDL, ... 05 — PsOE, D, Q1 —

= Ps4+1A¢, Do 41, Gs42 — Pe+2At, Do, - . 1N —PNAt,PN)] dTsy1 - - dmN} X

podl 7, 2 & TR |, - T [ A (2.8)
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We. suppose that the functional average m the right-hand side of (2.8) are already
defined through the correlation functions Fs (t T1,...,Ts). Then the above obtained’
formula has the following form:

%/F}N)(tﬂ{—é&t,ml,... v Zs)Ps(T1y ..+ ,Te)dTy ... dTy =

1 [ -
= ‘TfF..,(N}(f, q1 — P14, p1,- - Qs — PsAL, Ps)s(T1, ..., Ts)dTy ... day +

{ z /dT/dnan(ﬂtJ (pi — p_.'.})é'(q‘ DiT — @5 +PiT) X

i<j=1 0

X[F-S(N)(tIQI ‘PlAt:PI:--- 1 9i — PiT — P4 (At—"-") p,,... 143 — P§T —
_p;(At - T)lp;l s s —psAt:ps) -
_F}N)(t: q1 _plAtipl: cee i — PiAtIPi: cee gy —

~piAt,pj,... ,gs —psm,p,)]}sos(:cl,.” @5)dey . .. dzs +

At
1 8

+;/‘dms+l{Z/d'r/d??is+lQ(nis+1'(Pi_?’s-i-l)) x
: i=1 0 S;_

X0(gs — PiT — Qsg1 + PogaT) =
=(N
= f [F3(+f(t,q1 —pAtpy, ... 0 —
—piT — (At —7), P}, ... 1 qs — PsOL, Psy Gst1 — PsaT —

-'p:-!-l(At - T)!p:-f-l) - F}f}?(tr qi — plAt:pla cee s G — Pi*ﬁt:i"z'; iy Q&‘ -

_pJAt:pm Qs+1 — Ps—}-lAt:Ps-H)] }‘Ps (5:1: sy .’l:,)d«'l:;_ R (2.9)

By differentiating by At this recurrent formula one obtains the following equation (in
weak sense):

&(N)
./'aF.s (tl;:‘.”}xs)ws(xl;--- ,$5)dxl-"d:c3:

. 8
e (N
_/{—gpla—qu‘é )(t,xl,... ,Ts) -+
+ 3 [ an@eny - (- 230 - )
i<i=lgy

[PVt 2y 000 B en s ) —

_F:I(N)(t,wl,... (B g Bygase ,zs)]}(pa(m,.” yZs)dTy .. dzy +
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+/{Z‘/d"bs+l /.dn‘ngQ(nu-{-l ps-{-l))é(q'i _QSv{-l) X
i=1
[Fif])(t,ml,... gEgyvss 3 BaBaqgy) —
A _ _ £
3+1(t Ill'”:x‘&)<":$3|$s+l) ‘P&(mlz“‘ixs)dml"' 81 NSSEI

(2.10j

In the obtained hierarchy of equations the derivative of ﬁ‘( )(t Ty,...,Ts) with respect
to time is expressed through F;(N)(t,ml,... ,Ts) and F(+1 (t,%1,... ,Zs, Ts+1) and

contributions from the hypersurfaces of lower dimensions, where particles interact, is
taken into account. Obviously hierarchy (2.2) directly follows from (2.10).

According to duality principle the obtained hierarchy is equivalent to the following
hierarchy for correlation functions considered as usual functions in every point of phase
space (Z1,... ,Ts)

OFM(t, x4, ... ,zs)
ot

#: Z/dms-]-l /dﬂisﬂ Q(Mis+1 * (i — Ps4+1))8(gi — Go1) ¥
i=1 g .

:HSFs(N)(tlzl_l' .. J:':S) +

{Fﬁf]?(t:mh'--- ::5:;--- Ts, 5-}-1) _‘;--|A_‘|.(t Tlyeee 3 Tqye e ams:xs-l-l)]) 3211
(2.11)

where H; is {l_le'inﬁnitesimal operator of the group of operators Ss(—t), —oo0 <t < oo,
calculated in sense of point -by-point convergence. Recall that 7 can be represented as

follows on differentiable functions fs(zl, .
Hofeo(T1s .. Ts) = Zp,_ fs N ) (2.12)
with the boundary condition according to which at points ¢; = ¢gj, (4,7) C (1,...,s),

momenta p; and p; should be replaced by pi and p; in He, if ny5 - (pi —py) =2 0
and (pi,pj) donotchange if ;- (pi —p;) < 0.

One can repeat above performed calculation with functional averége for fn(t,x1,.
:..,zN) (1.20) and obtain hierarchy (2. ll) with the operator M, instead of H and
then, using the duality principle, replace H, by H,.

Performing formally thermodynamic limit N — oo in hierarchy (2.11) and suppos-
ing that limit correlation functions exist, one obtains the limit hierarchy

8F_q(fi L iy RPN
at

+Z/d$s+l /dnzs+1Q(n:s+l ( Ps+1)}5('?i_q.s+l) X

2 T )_HF(t T1,...,Ts) +

X[F,_H(t,.’nl,.., ,Z;-k,... ,$;+1) “F3+1(t, g ysai g oy aisia ,3.::_{_1)}, (2.13)

Fs(trxls"' 1m8)=1\-}i;1€(1mF.;(N)(t:$1:>" :53)) 3213
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with boundary condition in H, and initial data _
Bt w100 s Bad it = Fal®1,.05 1 %a): (2.14)

Note that correlation functions depend on random vectors 755, (4,5) C (1,... ,s).

Hierarchy (2.13) is known as the stochastic hierarchy [1, 3].

Remark. It is easy to show that the hierarchy (2.13) can be also derived in the ﬁame-
work of great canonical ensemble [1, 3].

3. Solutions of the stochastic hierarchy. 3.1. Abstract form of the stochastic hi-
erarchy. Denote by H the direct sum of the infinitesimal operators H,

’H=i€e?{s. ‘ . (3.1)

s=1

Denote by A the operator that acts on the sequence of correlation functions

F@t) = (Rt 21),... , Fs(t,21,... ,Ts),- ) 3.2)
as follows:
(AP o(B1y oo Ee) =
= Z / dTs41 / dis+1Q(Mis+1 * (Pi — Ps+1))6(qi — Go1) X
S+
x [F_g+1(t,.'ﬂ]_,- . ,‘I:, bos ::ﬂs:I;—}-l) _Fs(t}zll L TR ,Is,$s+1)], § 2 1.
(3.3)
Then hierarchy (2.13) can be represented in the following abstract form:
dF(t
TE ) _ 1F(t) + AF(H) (3.4)
with initial data
F(t)|i=0 = F(0) = F. (3.5)
Denote by S(+£t) the direct sum of the operators Ss(+t)
S(xt) = 3 08, () | 3.6)

=1
then solutions of hierarchy (3.4) with initial data (3.5) can be represented by series of
iterations

th—1

F(t)= Z f d .. ]da,,S(—t)sctl)AS(—tl)...S(tn)AS('—tﬂ.)Fcb), 37

or component wise

i tpu—1

Rt @)= [t [ dtaSu(=t @)aSult @) x

X Z/dms+15(qi — Qs+1) / ANis+1Q(Mis+1 - (Pi — Pst1)) X
i=1
S+
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X {Ss+1(—t1, (%)34+1) — Ss41(—t1, (I).ﬂ-l)] -

s-i--rr—
s-!-n— (tﬂ 1 )a+n- /.dzs—knd' q.s-!—ﬂ.)
i=1

x /dnis+nQ(nis+n " (p‘i =i pa-{-n)) X

sf
X [Setn(=tn, @)i4n) = Setn(—tn: @)etn)| Fotn(0, (@)stn)  (8)
where (2)%,, = (T1,... , T}, .. , T, Thyy,) in i-th termand Ss(£t, (z)s) is operator

of shift along the trajectory X (=t, (z)s) of s particles with initial data (z)s at ¢ = 0.

3.2. Chaos property. It has been shown in our papers [3, 4] (see also book [8]) that
if phase points (z)s are outside the hypersurfaces V;; where s particles interact (on
hypersurfaces V;; vectors g; —g; is parallel to vectors p; —pj, (47) C (1,...,s) ) then
all the operators Sg4i(2t, (€)s44) in (3.7) should be replaced by the operators of free
evolution S, ;(£t, (z)s+4), 0 < < n. If the initial correlation functions satisfy the
chaos property

F,(O,xl,... ,$3) =F1(0,I1)...F1(0,Ig) (39)
then all correlation functions Fy(t,21,... ,2s) outside of all V;; satisfy the chaos prop-
erty

Fs(t,xl,... ,xs)ze(t,ml)...Fl(t,xs) (310)

and one-particle correlation function satisfies nonlinear Boltzmann equation

aFl(ts .‘51)

o
% —p 13 Fi(t, T1)+fd3325(9’1—£12 /dﬂmQ M2 (Pl —p2)) X

x [Fi(t, )it 23) —Flct,zlmct, 2)] (3.11)

with initial condition Fy(t,z1)|t=0 = F1(0,z1) .

Note that the corresponding proof of the above formulated assertion has been per-
formed for the differential scattering crosssection 7;; - (p; — p;) of hard spheres but it
can be repeated word by word for the stochastic dynamics with arbitrary crosssection
Q(nsj - (pi — p;)) » because the hypersurfaces V;; where stochastic particles interact do
not depend on form of differential scattering crosssection.

In order do prove existence of solutions of hierarchy (3.4) represented by series (3.7),
(3.8) one needs to impose some restriction on differential scattering crosssection

Q(mij - (pi — p5)). If

Qs - (pi —py)) < ps —p3l, M € S, (3.12)
then all results obtained for hard spheres also hold for hierarchies with the crosssection
Q(mis - (Pi — p5)) -

Namely, series (3.8) is uniformly convergent with respect to (z)s; on compacts and
with respect to time on finite interval [—to,to] if sequence of initial functions F(0) be-
long to the space E¢ with norm
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S 2
IF(0)|| = sup issup ™ |Fs(0, (z)s)l, €>0, B>0, (3.13)
>1 €% (2).
the number ¢o dependson @, &, B, £€>0, §>01[1,3,4,8,9].

Series (3.8) is uniformly convergent with respect to (x)s on compacts and with re-
spect to time on arbitrary interval, i.e., globally in time, if sequence of initial functions
are exponentially decreasing with respect to squared momenta and coordinates (see for
detail [8, 9]).

The correlation functions Fg(t,®1,...,Ts), s = 1, are defined in the entire phase
space of s particles as usual (not generalized) functions represented by series (3.8) and
are discontinuous on hyperplanes Vj; where s particles interact. (Outside Vj; all op-
erators Ssi(£t, (z)s+1) ) should be replaced by SO, ;(+t, (z)s+:) and series (3.8) is
uniformly convergent for ¢ C [—tp, %] and for (z), from compacts for F(0) € E¢, or
globally in time for F'(0) exponentially decreasing with respect to squared momenta and
coordinates).

In series (3.8) one can perform the integration with respect to (gs41;- - - ; @s4n) USING
é-functions. In the integration with respect to (Ps41,.-- ;Ps+n) One can neglect the
hypersurfaces V;; of lower dimension where particles with numbers (s +1,... ,5+n)
interact with themselves and with particles with numbers (1,...,s), because it is the
usual Lebesque integrals. One obtains the following representation for Fy(t, (z)s):

tu—1

Fy(t, (z)s) = i /dtl e / dtnSs (—t, (z)s)Ss(t1, (2’:)3) X
=l 0

X Z/dps+1 fdﬂes-q-lQ(ﬂiaH “(Pi — Ps+1)) ¥
i=1
sy

X [Ss(=t1)S2(=t1) (2)241) — Se(—£2) S (—t2)(®)s41))
ses Ss(tn—I)SD_l(tn—l)((m)s+n—1) x

Jat1=0q1

s4+n—

1
X Z fdps+n /dnis+rlQ(nis+1t = (pi _ps+ﬂ.)) X
fel oF
2 ;

X[Sa(~£n)S(~tn) (@)24n) — Ss(~t)S2(~tn) (&) e4n)] Frsn(0, (&) 4n)

Qi=qutn
(3.8)
where the operators Ss(—t;) depend on phase points with numbers 1,... ,s and opera-
tors S2, ;(—t;) depend on phase points with numbers s +1,... ,s +1i.
To define the functional average with observable s(z1,...,Zs) according to the
principle of duality we need the correlation functions F (t,z1,... ,T5) (see (2.9)). The
functions Fy(t,z1,... ,Ts) can be obtained from series (3.8 ) by replacement of opera-

tors Sg4i(Ft:)SO(Et;:)((x)s+4) by operators Sg(Ft;)S%(Et:)(()s4i) -
3.3. Spatially homogeneous initial data. Consider initial data F'(0) with initial
correlation functions independent on positions, i.e.,

Fs(0,21,...,T5) = Fs(0,p1,...,ps), s2=1 (3.14)
Outside the hypersurfaces V;; , with SO, ; (¢, (T)s4:) instead of Syqi(Et, (2)s44) (see
(3.8 "), the correlation functions F(t, (z);) also do not depend on position, i.e.,
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F(trxll‘“ :ms):F(t=P1,-<- sPs) (315)
because
Sg+i(:|:t: (m)8+i)Fs+i(0:le " !pS'I-i) - F3+i(01p13 LR :Ps-{-i)-

Further, if initial correlation functions have the chaos property

Fa(olpla"' ‘Jps)=F1(D!p1)"'F1(DIp3)I 3211 (316)
then Fg(t,z1,... ,Ts) have the chaos property (3.10) outside the hypersupfaces V;; and
Fi(t,z,) satisfies the Boltzmann equation (3.11) with initial condition F(t,p1)|t=0 =

= Fl (0) _'91)
Therefore solution of the Boltzmann equation (3.11) does not depend on position
Fy(t,z1) = Fy(t,p1) and satisfy the spatially homogeneous equation

O0F(t,p1) _
SHim)
= [ o [ dmiaQUma - (o1 ~ ) [Fa(t. 5D Fi(0,53) — Filtp) Fa(timm)]- BT

sy

Thus using the stochastic dynamics and the stochastic Boltzmann hierarchy we de-
rived the spatially inhomogeneous (3.11) and spatially homogeneous (3.17) Boltzmann
equations without mean-field approximation.

Recall that M.Kac [11, 12] proposed certain Markov process, in the momentum space
of N particles, defined through the corresponding Kolmogorov equation in mean field
approximation. He derived the hierarchy for the sequence of correlation functions and
proved that in the thermodynamic limit as N — co solutions of hierarchy have chaos
property if initial data have this property. This means that correlation function at arbitrary
time, from interval where solutions of hierarchy exist, are product of one-particle corre-
lation functions which satisfies the spatially homogeneous Boltzmann equation [12, 13].

In the next section we will show that the Kac’s Markov process in momentum space
and the corresponding Kolmogorov equation can be obtained from our stochastic process
in the entire phase space by mean of some specific averaging procedure in the space of
position. ’

4. Stochastic process in momentum space. 4.1. Averaging procedure in spatially
homogeneous case. Consider the functional average (1.4) in spatially homogeneous case
when the functions fy and ¢y do not depend on positions

.fN(glrpla"' quapN) = fN(plu--- :PN):
©oN(q1,P1,--- AN, PN) = N (P15 -+ ,PN),

fN(Ql “PIAt:pls--- s AN —pNt:pN) = fN(pl:"' :pN):

4.1)
In(gr — p1At,p1, ... @i — piT — DF (At —7),

p::"' 45 "pjT_p;(At_T)vp}(!"' y AN ".'PNAt:PN) ==
=fN(p11"' )P‘?v-" :p;r'-- sPN)-

For spatially homogeneous fy and gy the functional average (Sn(—At)fn,en)
(1.4) is divergenl, the first term and the second term are proportional to V& and V/¥—1
respectively. Instead of functional (1.4) we introduce the following functional:
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Jim o f das [ dpr. f dan [ dowtn(on.. ow)on(on... ow) +

+lm R VN~1 Z _/ dq ] dps .. / dg; _/ dp; ..

=<J-—1

..quj/dpj.../qu/de/dT/dmjX
Ay A o st

XQ(mij - (pi — p5))0(q: — piT — g5 + p57) X
x[fN(Pl;--- 1p:1"' 1p;!"' rpN)_

~IN (D1 e s Diye e 1Dl es ,pw)]tpw(pl,--- J,DN) =

=/dpldefN(p11 1pNj(PN(pl;'” le) +

+ At Z jdpl dPN/deQ('m: (P: P_-,:)) X

i<j=1

X[fN(pll"' Jp‘;(!"' :p;:"' 1pN)_

_fN(pl!"‘ s Piyevr 3 Pgy--- 1pN)](pN(p1:"' :pN) =

= /dm---dPNSN(“A*)fN(Ph--- ,PN)eN(P1, .- ,PN) =

= (Sn(-At)fn,oN)- ' (4.2)

By A, A;, and A; are denoted the spheres with centers in the origin, in the points —p;T
and —p;7 respectively, and with the volume V = V(A) = V(A;) = V(Ay).

The functional (Sy(—At)fn,@n) was obtained from the functional (1.4) by averag-

ing over configurational space (space of positions) and is average of the state Sy (—At) x

Xfn(p1,...,pN) over the observable oy (p1,...,PN)-
From (4.2) one obtains

Sn(—At) fn(p1,... ,pN) =
N

= fn(At,p1,... ,DN) = fn(py,. .. ,pN) + At > /dﬂz’j‘e(??ij - (pi —pj)) %

i<i=120
Sf&

X[ B B BN) = N1 Bi e PPN (43)
Note that the operator Sy (—At) (4.3) is defined on functions that depend only on mo-
menta.

Formula (4.3) holds for infinitesimal At and it defines the operator of evolution
Sn(—At). For N = 2 it is true for arbitrary At > 0. For arbitrary t > 0 we de-
fine formally the group of operators of evolution Sy (—t) as follows:

Sy(~t) = lim [Isv(-at), > Ati=t (4.4)
fe=l

=1
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where Sy (—At;) are already defined according to (4.3).
The state fn(t+ At,pi1,... ,pn) is defined as follows through fn(¢,p1, ... \PN):

fN(t'l' At 3 P1y- .- le) = SN(_At)fN(tlpla re :PN) —

= fN(t,m,-u ,PN) + At Z /dm'j@(%‘ “(pi — pj)) %

i<j=1 S;'

X[fN(t!pll"‘ ).'P;?:--- 1p;:"' le) _fN(t:pla"' 2 Piyees 1 Dgyens ;pN)J- (4-5)

The functional average (fy (t+At), t,oN) is defined by (4.2) if instead of fi (p1,... ,pN)

one puts fN(t:pls . !pN)
4.2. Differential equation for fn(t,p1,...,pn). If follows from (4.5) the fol-
lowing differential equation:

Bfn(t,p1,--- ,DN) _
at - Z

/d?}ijQ(?}'{j - (pi — pj)) %
i{j=13+
2

X[fN(t:pla--- :Pz;--- 1p;:a“' tpN) “'fN(t;.'Pl,-- = :pil"' ;Pj:"‘ :PN)] (46)
with initial data

fN(t‘lpli v :pN)if=0 == fN(O)pll v 1PN) = fN(plv' s :PN)

It is the Kolmogorov equation for certain Markov process in momentum space.
We will also consider the modification of equation (4.6) in mean-field approx1mat10n,
namely

afN(t,.'Pgt---spN) Z / dni;Q(mi5 - (P — p5)) X

1.<_7 1

X[fN(t:pll"' !p:r" 1p;|"' )pN)_fN(plx"' 1 Piy-e :Pjr--‘ )pN)]ﬁ (47)
(o1, .., 2N)le=0 = fn (D1, ... ,DN).

Equation (4.7) can be obtained if one considers functional (4.2) in mean-field approx-

s : i 1
imation with additional factor —.

4.3. Hierarchy for correlation functions in mean-field approximation. Define the
sequence of correlation functions

Fé"‘”(t,pl,...,ps)=/dp3+1...defN(t,p1,...,pN), s>1, (4.8)

where fn(t,p1,...,pn) issolution of (4.7). It is easy to obtain the following hierarchy
of integro-differential equations:

BFS(N) t: - el 1
( 1{; PN) 1 / d,an, i - (291 Pj)) X

1<J—1

X[F;;(N)(t:plr-' )p:r‘- :P_;'(:‘H :ps) _F.E{N)(t:pli"' 1 Piser 3 Pgaen- 1p3)] +

/dﬂisﬂQi(ﬂesH (pi — Ps41)) %
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N
x [Fs(+1)(t:101:- .. )P::- . :ps:p:+1) -

N
_Fs(-f-]?(t:pl:'“ 1 Piy-- - |p81p8+l):|l ISSSN- (4'9)

Performing formally thermodynamic limit N — oo and supposing that limit correlation
functions exist in some sense

lim Fg,gN)(trpll"' )pN):Fs(t)plr'” :Ps)) 321:
N—oco
one obtains the limit hierarchy
aF t: A ] - i
3( pét Ps) = Z/dps+1]dn{a+lQi(7}£s+l : (Pi —Ps+1)) X

i=1

X[Fs+l(trp1;"' )p;:"' IpSIp:-i-l) "FS+1(t1p1:"' 1 Piy .- :ps:pS'-!—l)]: S 2 1:
_ (4.10)

with initial data

Fs(t,p1,- - 1 Ps)le=0 = Fs(p1, - - ,s)-

For justification of existence of the thermodynamic limit see [12, 13]. Consider the initial
correlation functions that have the chaos property

Fs(Pl; PR ,p,) = Fl(pl) .o vFI(ps)‘

Hierarchy (4.10) admit the method of separation of variables because in the right-
hand side of (4.10) we have sum of s operators acting on each s variables. As result
we obtain that Fy(t,p1,... ,ps) also have the chaos property

Fs(t!pll s ‘u’ps) = Fl(t:pl) "'Fl(taps)

and one-particle correlation function Fy(t,ps) satisfy the spatially homogeneous Boltz-
mann equation

an(t,pl) =
ot
= /dpz /S+ dnaQ(n12-(p1 — p2)) {Fl(t:pI)Fl(t:p;) = Fl(t:pl)Fl(t:PZ)}- (4.11)

Thus we obtained the spatially homogeneous Boltzmann equation by using the stochas-
tic dynamics in momentum space by averaging the stochastic dynamics in phase space and
in mean-field approximation. In Section 3 we obtained the spatially inhomogeneous and
homogeneous Boltzmann equation by using solutions of the stochastic Boltzmann hierar-
chy outside the hypersurfaces V;; of lower dimension where point-wise particles interact
and without the mean-field approximation.
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