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A STUDY OF A MORE GENERAL CLASS OF NONLOCAL
INTEGRO-MULTIPOINT BOUNDARY-VALUE PROBLEMS
OF FRACTIONAL INTEGRO-DIFFERENTIAL INCLUSIONS *

BUBYEHHS BIIHOCHO 3ATAJIBHOI'O KJIACY HEJIOKAJIBHUX
THTETPAJIBHUX BATATOTOYKOBHX KPAOBHX 3AJAY
JJIA APOBOBUX IHTET'PO-AUPEPEHHIAJIBHUX BKJIIOYEHD

We develop the existence theory for a more general class of nonlocal integro-multipoint boundary value problems of
Caputo type fractional integro-differential inclusions. Our results include the convex and non-convex cases for the given
problem and rely on standard fixed point theorems for multivalued maps. The obtained results are illustrated with the aid
of examples.

3arponoHOBaHO TEOPiro iCHYBaHHsI LIS BITHOCHO 3arajibHOTO KJlacy HEJIOKAJbHUX IHTerpajbHUX 6araT0TOYKOBHX KpaoBHX
3a7a4 U1 IpoOOoBUX iHTETrpo-IudepeHiaTbHuX BKIo4eHb ThITy KamyTto. Hamri pe3ynbTaTi OXOIUTIOIOTh OIMYKJIl Ta HEOIyKJTi
BUITAIKU JaHOI po6iieMu 1 6a3yroThCs Ha CTaHAAPTHUX TEOpeMax Ipo HEPYXOMY TOUKY JUIs OaraTo3Ha4YHUX BiIOOpaKeHsb.
OTpuMaHi pe3ysabTaTH MPOLTIOCTPOBAHO BiIMOBIIHUMHE NPHKIAIAMH.

1. Introduction. The tools of fractional calculus revolutionized the mathematical modeling of
various phenomena occurring in sciences and engineering by producing fractional-order models for
them, which are found to be more informative and realistic than their integer-order counterparts.
The interest in this branch of mathematical analysis owes to the nonlocal nature of fractional order
operators which are capable to trace the history of processes and materials involved in the phe-
nomenon at hand. Examples include continuum and statistical mechanics [1], protein dynamics [2],
chaos and fractional dynamics [3], bio-engineering [4], chaos synchronization [5], viscoelasticity [6],
ecology [7], infectious diseases [8, 9], financial economics [10], etc.

Widespread applications of fractional calculus motivated many researchers to develop the theory
of initial and boundary-value problems arising in the fractional order models associated with nume-
rous real world phenomena. In particular, boundary-value problems of nonlinear fractional differen-
tial equations and inclusions have been extensively studied by several researchers during the past few
decades, for instance, see [11—18]. Recently, in [19], the authors proved some existence results for
fractional differential equations with non-separated type nonlocal multipoint and multistrip boundary
conditions.

In this paper, we consider the inclusions (multivalued) case of the problem addressed in [19]
and investigate the existence of solutions for the problem at hand. In precise terms we study the
following multivalued problem:

cDiz(t) € F(t,z(t),*DPx(t), z(t)), 1<q<2 0<B<1, >0, tel01],
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where ¢D() denotes the Caputo fractional derivative of order (.), I() denotes the Riemann—
Liouville integral of fractional order (.), F': [0,1] x R? — P(R) is a multivalued map, P(R) is the
family of all nonempty subsets of R, and a, b, ¢, d are real constants and oy, d;, ¢ = 1,2,...,m—2,
ri,%vj, J =1,2,...,p— 2, are real constants.

Differential inclusions play a key role in studying dynamical systems and stochastic processes.
An important application of differential inclusions can be found in the area of sweeping processes,
which are modeled by evolution differential inclusions. For a detailed account of this subject and
its applications, we refer the reader to the texts [20, 21]. Differential inclusions help to study
sweeping process [22], granular systems [23, 24], nonlinear dynamics of wheeled vehicles [25],
control problems [26, 27], synchronization process [28], etc.

This paper is organized as follows. In Section 2, we recall some useful preliminaries from multi-
valued analysis and fractional calculus. Section 3 contains the main results. The first existence result
dealing with convex valued maps involved in (1.1) is proved by applying the nonlinear alternative of
Leray — Schauder type, while the second result for the problem (1.1) is concerned with the non-convex
valued maps and relies on a fixed point theorem for contractive multivalued maps due to Covitz and
Nadler. The methods used in our analysis are known, however their exposition in the framework of
problem (1.1) facilitates the enhancement of the topic. Examples illustrating the main results are also
constructed. Finally, we discuss some special cases of the work presented in this article.

2. Background material. Let X = {z:z € C([0,1],R) and “D’z € C([0,1], R)} denotes
the space equipped with the norm ||z[|x = [z + [|*Dx| = sup,ejo 1) 2 (t)] + supyefo 1) [*DP ().
Observe that (X, || - || x) is a Banach space.

In the forthcoming analysis, we need the following spaces: Py (X) = {Y € P(X): Yis closed},
Py(X) ={Y € P(X): Yis bounded}, Py,(X) = {Y € P(X): Yis compact}, and Pgp(X) =
={Y € P(X): Y is compact and convex}.

Next we state some known results related to our proposed work.

Lemma 2.1 ([29], Proposition 1.2). If G: X — Py(X) is u.s.c., then Gr(G) is a closed subset
of X XY, ie., for every sequence {xp}nen C X and {yn}tnen C Y, if when n — 00, T, — Xy,
Yn — Ysx and Yy, € G(xy,), then y. € G(xy). Conversely, if G is completely continuous and has a
closed graph, then it is upper semicontinuous.

Lemma 2.2 [30]. Let X be a Banach space. Let F:[0,1] x X3 — P, (X) be an L'-
Carathéodory multivalued map and let © be a linear continuous mapping from Ll([O, 1],X) to
C([0,1], X). Then the operator

© 0 Spe: C([0,1], X) = Py (C([0,1], X)), z— (00 Spg)(x) =0O(Ska)
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is a closed graph operator in C([0,1],X) x C([0,1], X).

Lemma 2.3 (Nonlinear alternative for Kakutani maps [31]). Let E be a Banach space, C a
closed convex subset of E, U an open subset of C and 0 € U. Suppose that F : U — P, .(C) is a
upper semicontinuous compact map. Then or (i) F has a fixed point in U, or (ii) there is a u € OU
and \ € (0,1) with u € A\F(u).

3. Existence results.

Definition 3.1. 4 function x € C?([0,1],R) is said to be a solution of the boundary-value

problem (1.1) if ax(0) 4+ bx(1l) = Zj:l a;z(o;) + Z 'r]/ s)ds, cx'(0) + dz'(1) =

m—2 2
= Z 82 (0;) + Zp Vi / s)ds, and there exists function v € L*([0,1],R) such that

v(t) € F(t,z(t),DPx(t), N x(t )) a.e. on [0,1] and

t m—2 gi
o (t — S)q_l Aot — As /
o) = | e os)ds + =52 |3 rq_1 o(s)ds +
0 =1 9
p72 nj S 1
(s —u)i2 / (1—s)172
+ Z’y]/ / Tl 1) v(u)du | ds I v(s)ds| +
=t e\ 0
1 m—2 o (g S)q 1
+ i — ds +
Ao ; “ 0/ ['(q) (s)ds
p_2 nj S 1 1 1
(s —u)? / (1—s)1
+ r du | ds—b v(s)ds|,
P ! / T'(q) (u) I'(q) (s)
&5 0 0

where

Ay =c+d—p #0, Ay =a+b—ps #0, As =b— pg,
p—2

ulzza—zw &) ug—zazz — &), 3.1)

7j=1

2
3 = Zazaz_zrjnj g

In the above definition, we have used Lemma 2.5 derived in [19]. For the sake of convenience,
we set

)
1 Aot — A3 | < S ;] al
A= —— 4+ max 0 Z §q + =+
Mg+ T Ay Z’ RPN rrayi g
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m—2 p—2
| o ml o enr e, 1B
s T JIH et 4 , (62)
| & D T o e 8 g
m—2 —1 p—2
1 1 of |7l |d|
Al =—+ | = + 1 — &+ ; (3-3)
g T | & g Y T 8 T
Li=l4+—1 (3.4)
YT TG+ 1) ‘

Our first existence result is concerned with the case that the multivalued map F' has convex
values (upper semicontinuous case) and its proof is based on Lemma 2.3.

Theorem 3.1. Assume that:

(H)) F:[0,1]xR3 — P(R) is L'-Carathéodory and has nonempty compact and convex values;

(Hp) there exist a function ¢ € C([0,1],R") and a nondecreasing, subhomogeneous (that is,
Q(;w) < ufz) for all p > 1 and x € RY) function Q: RT — R such that |F(t,z)|p =
—sup {|u|: w € F(t,2.9,2)} < ool + 1yl + [121) for each (t,,y.2) € [0,1] x B:

(H3) there exists a constant M > 0 such that

M

(8+ rg g7 ) Ihzasaan

where A, A1 and L1 are defined by (3.2)—(3.4).
Then the boundary-value problem (1.1) has at least one solution on [0, 1].
Proof. Define an operator Q2 : C([0,1],R) — P(C([0,1],R)) by

> 1,

he C([0,1],R) :
t (t — 8)q_1 Aot — Ag m— 2
/0 T e TAA, [Zz 1 / e 1 (e

Qp(z) = %/m(/o S_qii)ql)z dU>ds—d/ 1_qs_q12 (s)ds |+

m—2 % (o — S)q_l
Zi:l ai/o Wv(s)ds—i—

Zj;f Tj /;j (/05 (S;(Z))qlv(u)du> ds — b/o1 (1;(2);11)(5)(13]

for v € Sp,, where Sp, = {v € L1([0,1],R): v(t) € F(t,z(t),°DPx(t),["x(t))for a.e.t €
€ [0, 1]} denotes the set of selections of F. We split the proof into several steps to show that the
operator () satisfies the assumptions of Lemma 2.3. As a first step, we show that Qg is convex
for each z € C([0,1],R). This step is obvious since Sg, is convex (F has convex values), and
therefore we omit the proof.

In the second step, we show that Q2 maps bounded sets (balls) into bounded sets in C'([0, 1], R).
For a positive number p, let B, = {z € C([0,1],R): ||z|| < p} be a bounded ball in C([0,1],R).
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Then, for each h € Qp(z),x € B,, there exists v € Sk, such that

— twvs s + A2t 5 quUS S
t)_o/ e v 25/ M- M

i—1
2 (s —u)i2 / (1—s)12
+]Z;’yj€/ O/T(q—l) v(u)du dsdo/ (= 1) v(s)ds| +
1 m—2 543 (o_i S)q_l J
A, — a’/ g BT
= 0
p2 T (s —u)?? / (1—s)1!
+ ;r]! (O/ o) v(u)du) ds—bo/ () v(s)ds
Then, for ¢t € [0, 1], we have

[ (t— s)i : Aot — Ay|
0/ I'(q) v(s)lds +t1él[g)1(] |A1Ay| Z & ’/ vis)lds +
w2 s w2 (1)

+ ]Zl\’y]]/ O/P(q_l)]v(u)]du ds—i—]d\o/r(q_l)\v(s)\ds +
- &

1|m2 T (o s)e!
ta ;\omo/ o lu(e)lds +

p—2 5 s S_qul 1 _Sqfl

+ Zlm\/ (/<F(q))v(u)du) ds+|b|/“F(q))|U(s)|ds <
7= & N0 0

1 1Bt = 8| [RZ 0 o K=y o4l

: (r<q+1> Y A 2 e Lt g |t
o! p—2
1Ay [Zr s + 2 g = €7+ s )uczsnsz(manX)s
j=1

< Al L1 (| x ),
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which, on taking the norm for ¢ € [0,1] yields ||h|| < Al|¢]|L1Q(||z||x). Also, we get

=2 7 s —u)l2 1 —5)a72
+ 3l [ ( / (P(q)ql)vm)du) ds+1d] [ G utoias | <
0 0

Zp Dl g — g1+ '(')]}uwmunm)
7=1

< Aol L (|2 x),

which, in view of the definition of Caputo fractional derivative with 0 < 8 < 1, implies that

t t
/ t—
Do) < [ TS s < Mol eiel) [0
0 0
1
< ram g eI (lalx).
Hence,
Ay
il = [0+ 1D%H] < (A+ 155 ) 621020, 6.5)

Now we show that Qr maps bounded sets into equicontinuous sets of C([O, 1],R). Let t1,t2 €
€ [0, 1] with t; <ty and « € B,. For each h € Qp(x), we obtain

|h(t2) — h(t1)| <

/(t2 — )9 u(s)|ds| +

t1

it —8)* — (t1 — 5)* Nju(s)|ds 1
sr(a)ong 7 = (= ) o)l +

‘tQ Z\ Z|/ o(s)|ds +

+j2jw! (/ e )du) ds+|d\/ [v(s)lds | <

_ lolLa2(r)

2(ty — t1)* + 1§ — 15
F(Oé+1)|(2 1) +1 2|+

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 6



A STUDY OF A MORE GENERAL CLASS OF NONLOCAL INTEGRO-MULTIPOINT ... 769

m—2 -2
|l L1 (r) [t2 — t1] ot K ;] |d|
+ \5\ % + \ §q!+
Ay ; I'(q) ; lg+1)"Y I'(q)
and
°DPh(ts) — “Dh(ty)| <
} th — S B - 2 B S B‘ / —Bl11/
_ <
G M@ \ds+/ ty — 5) || (x)(s)|ds p <

(t1 = 5)° = (t2 — 5)
/\1 V(=) d+/|t—s s 1912200

tl—s tz—sﬂ

Obviously, the right-hand side of each of the above two inequalities tends to zero independently
of x € B, as t —t; — 0. Since F' satisfies the above assumptions, therefore it follows by the
Arzela— Ascoli theorem that F': C'([0, 1], R) — P(C([0,1],R)) is completely continuous.

In next step, we show that Qp is upper semicontinuous. To this end it is sufficient to show that
Qp has a closed graph, by Lemma 2.1. Let x,, — x4, h,, € Qp(zy,) and hy, — h,.. Then we need to
show that h, € Qp(x,). Associated with h,, € Qp(zy,), there exists v, € Sp, such that, for each
t €[0,1], we get

=g
m—2 i
1 (Ui S)qfl
+ — ; vnp(s)ds +
Ay | = 0/ I'(q) ¢)
p72 nj S _ 1
(s —u)! (1—s)9"
+ jzlrj/ / ) vp(u)du | ds — b/ T vn(s)ds
0 0

Thus it suffices to show that there exists v, € Sp,, such that, for each ¢ € [0, 1],

=1

/ (t —s)a1 Aot —
0/ ) v« (s)ds + AlAQ Z / (= 1 vi(8)ds +
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p—2 1y s S_uq72 1 . )
+ 231%/ (/ (F(q—)l) v*(u)du) ds—d/(F( _)1) ( )dsl +
=1 ¢ \b J
41 -~ 7(Ui—3)ql (s)ds +
=R T :
p—2 A (5 — u) 1
+Zm‘/(/ T(q) du) ds—b
Jj=1 & 0 0
Let us consider the linear operator © : L' ([O, 1], R) —C ([O, 1], ]R) given by
/ A2t Az w2 % (0; — 5)172
v O(v 0/ AD, ;(5@0/ Tlg—1) v(s)ds +
p—2 M [ s (s — )i 1 . )
+Z% / Tlq—1) v(u)du ds—d/Fq_l) (s)ds| +
= 2 \b J
L 7<ai—s>q1 (s +
Ay — 67 / F(q) v(s)as
p—2 5 s (3 _ u)q_l 1 (1 3 S)q—l
+ Z;TJ/ / I'(q) v(u)du | ds _b/ T(q) v(s)ds
=1 ¢ \D J
Since
[hn(t) = ha(t)|| =
- t (t _ S)q—l Aot — Ag m—2 (O’Z . S)q_2 B
: o/ Tg) () mw®)ds + =00 = 520/ g1 (en(®) —vels)ds +
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s 1

-2
p (o)™ Ly O
+J§::17« £/ 0/ i (o) = () | s = O/ S )~ s || 20

as n — oo, therefore, it follows by Lemma 2.2 that © o SF is a closed graph operator. Further, we
have h,(t) € ©(SFz,). As ©, — ., we obtain

(st Dot =Dy K= [loi=s)™
h*(t)_o/”” s + 552 S 510/ s+

m—2
(o; — )47t
a2 O"O/ I e
vz (s —u)?? / (1—s)!
+ ;Tj/ O/ () vy (u)du ds—bo/ () vi(s)ds

for some v, € SF, .

Finally, we show there exists an open set U C C([0,1],R) with x ¢ Qp(x) for any 6 € (0,1)
and all z € QU. Let § € (0,1) and = € Qp(x). Then there exists v € L([0,1],R) with v € Sp,
such that, for ¢ € [0, 1], we get

¢ m—2
—5)1" 1 |Agt — Ags| /
ds + max ————— 6 ds +
0/ I'(q) v(s)l tefo,1]  |A1Aq] P ’ | v(s)]

p—2 nj
+ Zhjl/ / I w)|du d8+|d|/ v(s)lds| +
Jj=1 §j

S m72a~ .(UZ 5)77 s
2 g\/ (ol +

S

+Z\T;!/ / o) |( )| du ds+yb|/ v(s)|ds| <
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m—2 — p—2
|Agt — As] \7] |d|
-+ max ———— 8 ’ + N+ =—| +
L(g+1) o] A1l ; i ; I'(q 4l T(q)
2
S:aJ +§j il e gL o) <
i=1 Jj=1 F q + 2 K ( * 1) -

< AL ([l x),
which on taking the norm for ¢ € [0, 1] yields

] < Allo | L1 (ll=[lx)-

In a similar manner, one can obtain that |2/(t)| < A1||¢]|L1Q2(]|z||x)- In consequence, we have

t
cDPx( L :
()< [ ET S olas < LMol
0
Hence,
cnpb A
[zl x = ll=[ + “D7z[| < | A =5—— T2—5) 1@l L2 ([l x ), (3.6)
which implies that
Jlx .

<A+Nj))mwlmmx>

In view of (Hs), there exists M such that ||x|| # M. Let us set
U={zeC([0,1],R): ||lz]| < M}.

Note that the operator Qp: U — P(C ([o, 1],R)) is upper semicontinuous and completely conti-
nuous. From the choice of U, there is no = € QU such that x € 0Qp(x) for some 6 € (0,1).
Consequently, by Lemma 2.3, we deduce that Q has a fixed point = € U which is a solution of the
problem (1.1).

Theorem 3.1 is proved.

Now we prove the existence of solutions for the problem (1.1) with a nonconvex valued right-
hand side of the inclusion (Lipschitz case) by applying a fixed point theorem for multivalued maps
due to Covitz and Nadler [32]. Let us briefly recall some preliminary concepts needed to establish
the desired result.

Let Hy: P(X) x P(X) — RU{oco} be a mapping defined by

H;(A, B) = max { 81612 d(a, B), 2161]1; d(A, b)},

where d(A,b) = inf,ca d(a;b) and d(a, B) = infycp d(a; b). Then (Pp (X ), Hg) is a metric space
and (P,(X), Hy) is a generalized metric space (see [21]).

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 6
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Definition 3.2. 4 multivalued operator N : X — Py(X) is called v-Lipschitz if and only if
there exists vy > 0 such that Hy(N(z), N(y)) < ~vd(x,y) for each x,y € X, and a contraction if
and only if it is ~y-Lipschitz with v < 1.

Lemma 3.1 [32]. Let (X,d) be a complete metric space. If N : X — Py (X) is a contraction,
then Fix N # &.

Theorem 3.2. Suppose that the following assumptions hold:

(A1) F:[0,1] x R® — Py,(R) is such that F(-,x(t),DPx(t), [z (t)): [0,1] — Puy(R) is
measurable for each x € R;

(Ay) Hu(F(t,x,y,2),F(t,%,7,2) < ot) ||z — 2|+ ly — y| + |z — Z|] for almost all t € [0,1]
and x,y,z,%,9,zZ € R with o € C([O, 1],R+) and d(0, F'(t,0,0,0)) < o(t) for almost all t € [0, 1].
Then the boundary-value problem (1.1) has at least one solution on [0,1] if

Ay
i A+ ———— 1
lel ( o ))< |

where A, A1 and Ly are defined by (3.2)—(3.4).

Proof. Notice that the set Sp, is nonempty for each z € C([0,1],R) by the assumption (A;),
so I’ has a measurable selection (see Theorem II1.6 [33]). Now we show that the operator Qp :
C([0,1],R) — P(C([0,1],R)) (defined in the beginning of the proof of Theorem 3.1) satisfies the
assumptions of Lemma 3.1. To show that Qp(z) € Py((C[0,1],R)) for each z € C([0,1],R), let
{un}n>0 € Qr(z) be such that u,, — u (n — oo) in C([0,1],R). Then u € C([0,1],R) and there
exists v, € Sg, such that, for each ¢ € [0, 1],

_ / (t—s)7 ! Aot — Ag m=2 % (05 — 5)772
U (t) —0/ ) vn(s)ds + AR, | & 510/ Ta—1) vp(8)ds +

S (s —u)?? / (1—s)172

+ Vg / F(q—l) vn(u)du ds d/ F( _1) Un(s)dg +
=g \o

R ?(“i DT (s)ds +
A | &N T

p2 7 s —u)i ! ; 1—s)2t

+ Z;r]/ /( T(q)) v (u)du dsb/( F(q)) vn(s)ds
=g 0

As F' has compact values, we pass onto a subsequence (if necessary) to obtain that v,, converges to
vin L1([0,1],R). Thus, v € Sp, and, for each ¢ € [0, 1], we have

i 5)a L — 2 o; — 8)472
un(t) = u(t) = /(tr(q))qv(s)ds + Bt ~ A i / %v(s)ds +
0 0
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Hence, u € Qp(x).
Next we show that there exists < 1 such that

Hy(Qp(x),Qp(z)) < 6llz — 2| x foreach =,z € C*([0,1],R).

Let 2,7 € C?([0,1],R) and hy € Qp(x). Then there exists v1(t) € F(t, z(t), DPx(t), ["x(t))
such that, for each t € [0, 1],

/ t—S)q 1 Agt—Ag 2 )q72
0/ ') (s)ds + NV Z 51/ T 1) vi(s)ds +

i=1

p—2 15 s 5_uq—2 1 1_Sq_2
# X | (/ (r<q)1>”1<“>d“) o= [y s +
0

J=1 & 0

By (Az), we have
Hy(F(t,x,y,2), F(t,%,7,2)) < o(t)[|lz — 2| + |y — g + 2 — 2]
So, there exists w € F(t,Z,y, Z) such that

[o1(t) —w| < o) [|l2(t) — 2()] + [y(t) — GO +12(t) — 2], te€0,1].
Define V: [0,1] - P(R) b

V(t) = {w e R: Jor(t) — wl < o(t) Ja(t) = 2(1)] + ly(t) — 5] + |2) — 2(0)] }-
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Since the multivalued operator V(t) N F'(¢, Z, ¥, Z) is measurable (Proposition I11.4 [33]), there exists
a function vy(¢) which is a measurable selection for V(¢) N F(¢,Z,y, Z). So, va(t) € F(t,%,y,2)

and, for each ¢ € [0,1], we get |v1(t) — va(t)] < o(t)[|(t) — Z(t)| + |y(t) — y(t)| + |2(t) — 2(2)|].
For each t € [0, 1], let us define

o o o
ho(t) :/(tr(q)>v2(s)d5 AzAt i)y 51/ e 1 (0i =) (s)ds +
0 0

i
p—2 [ -2 Lo a2

+;%€/(O/(;(q“)1) du)ds O/;qs_l 2(s)ds | +
p—2 /s -1 Lo et

+ ;r]&/ (O/ (s ;(Z)) w(u)du) ds—bo/(l F(‘;)) va(s)ds

Thus,

=1
p—2 nj s
+Zlm|/ (/ (i(‘“)l) [o1(w) = va( >du) ds +
J= ; 0
/ — )12 = T (0s — 5)01
+ ]d|/(;(q )1) lv1(s) —va(s)|ds +A1] Zl |az|/( ZF( ) |v1(s) — va(s)|ds +
= 0

p—2 5 s s_ulJ*l 1 _Sqfl
=30l | ( / (F(q))mu)vz(u)du) s+ [ L o) = vl (5)ds | <
- 0

p—2

751 a1, ldl
ZF(q+1)| IR ['(q) "

Jj=1

<llol 1 + ma | Aot — As]
s e L 1|
=le T(g+1)  teo,) |[A1A,]

q
%

m—2 o —1
0i +
2 1oilpe

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 6



776 B. AHMAD, S. K. NTOUYAS, A. ALSAEDI

by mi\al +pf il \q»“—fq-“|++¢ lz — & x +
Ao | &2 J1FQ+2 K J I'(g+1)
e~ 2] < el ALl — 2
|| T — X r— T .
F(’7+1) X| > 1o 1 X

Hence, ||h1 — ha|| < ||o|]|AL1]|z — Z||x. In a similar manner, we obtain

m p—2

g 1L
Zr “SIT R

=1

)
11 (2) — h(0)] < Jle] F(lq>+|A1, 315
=1

<.

1
(1+ rgy ) o =2l = el Laflo — sl

and

lol[AvLyljz — 7| x.

t
|°DPhy(t) — “DPhy(t) /t_s )_hIQ(t)|d3<I‘<21_5)
0

Thus,

A
[h1 — hallx < llel|L1 <A+ F(Qiﬁ)) |z — Z|x.

Analogously, interchanging the roles of x and =, we obtain

Ha(Qr (), 2r(2)) <ol L1 <A + F(QA_lﬁ)> [l —7[|x.

Since (2r is a contraction, it follows by Lemma 3.1 that Q2 has a fixed point  which is a solution
of (1.1).

Theorem 3.2 is proved.

Examples. Consider the nonlocal integro-multipoint boundary multivalued (inclusion) problem

cD8Px(t) € F(t,x(t), D3 x(t), I'?x(t), te|0,1],

4

i
0) + bx(1 Zaz x(o; +er/w(s)ds, (3.7)
j=1

&

cx’(0) + da'(1 Zax o; +Z%/

1
J= g]

Here, g = 8/5, B =3/4, v =1/2, m =5, p=6, o1 = 1/15, 00 = 2/15, o3 = 3/15, & = 1/4,
m = 5/16, {2 = 6/16, N2 = 7/16, 53 = 8/16, n3 = 9/16, §4 = 10/16, Ny = 11/16, o] = 2,
012:1,a3:1751:2752:3753:_1,7“1:177"2:1,7“3:377"4:_2771:_37
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v =-1,v3 =1 v =2, a=1,b=1 ¢ = -2, d = 4. Using the given data in (3.1)-
(3.4), we find that A; = —2.0625, Ay = —1.8125, A3z = 0.5939, u; = 4.0625, pe = 3.8125,
u3 = 0.4061, A = 6.6286, A1 = 4.3363, L1 = 2.1284.

In order to illustrate Theorem 3.1, we take

F(t,2(t), D3 (1), I'?2(t)) =

: (1 sin(z(t)) + L_IDY ()] + L tan (II/Q:B(tD + 1>,

V2144 \ 3 2 (14 [¢D34z(t)]) ' = 2
1 1 4 1 1 [IY%(t)) 1
— e () L ZGn(cDY2 (¢t - — 1. 3.8
t+15 (166 5 sin(D e (t) + 15 (1+ 1Viz(r)) 2 (3-8)
1
It is easy to find that ¢(t) = ———= with = 1/12,Q(M) = 11/6. By the condition (H3),
y 6(t) = e with 9] = 1/12.0(0M) = 11/6. By (Hs)

we find that M > 3.7111. Thus all the assumptions of Theorem 3.1 hold and consequently the
problem (3.7) with F' given by (3.8) has a solution on [0, 1].
Next we illustrate Theorem 3.2 by taking the map

F(t,z(t), D3 *x(t), I'V?x(t)) =

1 1

1
N 3/4 I 2 V5]
= 3093(t) + PR cos(D°*x(t)) + I 2x(t),

12 +49

1 1
-1 c3/4 —1/71/2
tan™ (z(t)) + 2136 D%z (t) + tan™ (I/°z(t)) + 2|

3.
12 +49 (3.9)

2 4 64
By the condition (Az), we get o(t) = 1/(t + 30) with ||o|| = 1/30. Then ||o||L1[A + A1 /T'(5/4)] =
~ 0.8097 < 1. Clearly the hypothesis of Theorem 3.2 is satisfied. Therefore, there exists at least one
solution for the problem (3.7) with F' given by (3.9) on [0, 1].

4. Conclusions. We have addressed a more general problem of fractional order differential inclu-
sions involving a multivalued map depending on the unknown function together with its lower-order
fractional derivative and Riemann-Liouville integral, supplemented with non-separated boundary
conditions containing finite many nonlocal points and strips on the given interval [0,1]. The exis-
tence results obtained for the problem at hand are not only new but also yield several new results as
special cases by fixing the parameters involved in the problem. Some of the these results are listed
below.

We obtain the results for the inclusion problem with periodic/antiperiodic type boundary con-
ditions of the form x(0) = —(b/a)z(1), 2’/(0) = —(d/c)2’(1) by taking r; = v; = oj = 6; = 0,
j=1,...,pin (1.1). Further, the results for antiperiodic boundary conditions follow with (b/a) =
=1=(d/c).

Our results correspond to non-separated nonlocal multipoint and multistrip conditions, respec-
tively, by taking r; =0 =1+, j=1,...,p,and a; =0=16;, j =1,...,p, in (1.1).

For a = c=0,b=d = 1, we get the results for the inclusion problem with terminal nonlocal
multipoint and multistrip conditions:
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m—2 p—2 m—2 p—2
z(1) = Z a;x(o;) + er /:E(s)ds, 2(1) = Z 8;x' (o7) + Zyj /:L"(S)ds.
i=1 j=1 ¢ i=1 j=1 7
& &

Existence theorems for the inclusion problem with purely nonlocal multipoint and multistrip
conditions follow by choosing a = ¢ = b = d = 0 in the results of this paper.

In the scenario of generality of fractional order differential inclusions and boundary conditions,
the present work is quite versatile in nature and significantly contributes to the existing literature on
fractional order multivalued boundary-value problems. Moreover, a variety of new results follow
from the ones obtained in this paper by specializing the parameters involved in the problem, which
enhances the utility/scope of the work.
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