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ON THE SPACE OF SEQUENCES OF p-BOUNDED VARIATION
AND RELATED MATRIX MAPPINGS

ITPO MMPOCTIP NMMOCJIIOBHOCTEMR p-OBN[E)KEHOi
BAPIAIII TA IOB’SI3AHUX MATPHYHHX BIJIOBPAJKEHb

The difference sequence spaces £oo(A), c(A) and eg(A) were studied by Kizmaz. The main purpose
of the present paper is to introduce the space bup consisting all the sequences whose differences are in
the space £, and is to fill up the gap in the existing literature. Moreover, it is proved that the space
buy is the BK-space including the space £, and also showed that the spaces bu, and £, are linearly
isomorphic for 1 < p < oo. Furthermore, the basis and the -, §- and y-duals of the space buy, have been
determined and some inclusion relations have been given. The last section of the paper has been devoted
to theorems on the characterizations of the matrix classes (bvp : foo), (bVeo : €p) and (bup : £1), and the
characterizations of some other matrix classes have been obtained by means of a suitable relation.

PiannieBa NoCNiI0BHICT NPOCTOPIB £oa (A), e(A) Ta co(A) Gyna susyena Kismazom. TonoBHOI0 MeTOK0
JaHOi CTarTTi € BBeJeHHA NPOCTOpY bup, WO CKIANAETLCS i3 MOCHIZOBHOCTEH, DI3HHLL AKMX HATEXKaTh
npocTopy f£p, a TakoM 3aNOBHEHHs TPOTANHH B icHylodiH Haykosiif nitepatypi. Kpim Toro, moseneo,
wo npoctip bup € BK-npocTopom, Akni Brmiouae npocTip £p, a Takox MokasaHo, WO MpocTopH bup
Ta £p € niniiino izomopduumu s 1 € p < oo. Buinaueno Gasuc Ta a-, G- i y-AyanbHi npocTopw
st bup TA HABENEHO AeAK] CTiBBIOHOLIGHHS BKMIOYEHHA, B 0CTaHHBOMY MyHKTI HABEAEHO TEOPEMH Npo
xapakrepusauiro Marpuinux knacis (bup : £eo), (bues @ €p) i (bup : £1). 3a momomoroio Bignmoeignoro
CMiBBIAHOWENHS OTPHMAHO XapaKTepH3aliio ReaKkHX iHLIKWX MaTPHYHHX Kiacis.

1. Preliminaries, background and notation. By w, we shall denote the space of all
real valued sequences. Any vector subspace of w is called as a sequence space. We
shall write £, ¢, ¢ and bv for the spaces of all bounded, convergent, null and bounded
variation sequences, respectively. Also by bs, cs, £1 and £,, we denote the spaces of all
bounded, convergent, absolutely and p-absolutely convergent series, respectively.

For the sequence spaces A and p, define the set S(), u) by
SO\ p)={z=(z) €w:2z=(zz) € pforall z € A}. (1.1)

With the notation of (1.1), the a-, 8- and y-duals of a sequence space A, which are
respectively denoted by A%, \? and \7, are defined by

A% =S8\ &), P =8()\ cs) and X7 =S(}, bs).

If a normed sequence space A contains a sequence (b,) with the property that for
every z € A there is a unique sequence of scalars (c,) such that

Iim “:J: — (agbg + a1by + - - + Cl’nbn) ” =0
T~—+00

then (by) is called a Schauder basis (or briefly basis) for A. The series > cypby which
has the sum z is then called the expansion of z with respect to (by), and written as
z = 3 arbe. A sequence space A with a linear topology is called a K-space provided
each of the maps p; : A — C defined by p;(z) = =z; is continuous for all 7 € N,
where C and N denote the complex field and the set of natural numbers, respectively.
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A K-space A is called an FK-space provided A is a complete linear metric space. An
FK-space whose topology is normable is called a BK-space (see Choudhary and Nanda
[1, p. 272,273]). )

. Let A, u be two sequence spaces and A = (ani) be an infinite matrix of real or
complex numbers a,x, where n, k& € N. Then, the matrix A defines a transformation
from A into p, if for every sequence z = (z1) € A the sequence Az = ((Az),), the
A-transform of z, exists and is in p, where (Az), = ), anxzi. For simplicity in
notation, here and in what follows, the summation without limits runs from 0 to co. By
(A @ u), we denote the class of all such matrices. A sequence z is said to be A-summable
~to 7 if Az converges to / which is called as the A-limit of z.

" Fora sequence space A, the matrix domain A 4 of an infinite matrix A is defined by

M={z=(zx) ew: Az € )} (1.2)
We shall assume throughout that p~! 4+ ¢~ = 1 for p, ¢ > 1 and write for brevity that

o0 ™
ank = Z Qnj, G(ﬂ,, k) = Z Qjk
i=k =0

for all n, k£ € N, and denote the collection of all finite subsets of N by F. We will also
use the similar notations with other letters and use the convention that any term with
negative subscript is equal to naught.
The approach constructing a new sequence space by means of the matrix domain of .

a particular limitation method has been recently employed by Wang [2], Ng and Lee [3],
Malkowsky [4] and Altay and Basar [5]. They introduced the sequence spaces (£o)n,
and ey, in [2], (%), = Xp in [3], (oo)r, = 7L, R, = 75 and (co)r, = 7§ in [4],
and (6p)E, = ep in [5]; where 1 < p < oo and Ny, Cy, R, and E, denote the Norlund
means, Cesaro means of order 1, Riesz means and Euler means of order r, respectively.
The main purpose of the present paper, following [2-5], is to introduce the space bv,
of sequences of p-bounded variation and is to derive some related results which fill
up the gap in the existing literature. Furthermore, we have constructed one basis and
determined the a-, - and ~y-duals of the space buy,. Besides this, we have essentially
characterized the matrix classes (bvp : o), (DVoo : £p) and (bup : £1), and also derived
the characterizations of some other classes by means of a suitable relation.

2. The space bu, of sequences of p-bounded variation. The difference spaces
Lo (A), e(A) and cp(A) were firstly defined and studied by Kizmaz in [6]. The new
sequence space A4 generated by the limitation matrix A from the space A either includes
the space A or is included by the space A, in general, i.e., the space A4 is the expansion
or the contraction of the original space A. Although, in the existing literature, the
matrix domain Ap is called as the difference sequence space whenever ) is a normed
or paranormed sequence space, in the case A-= £, we prefer calling this difference
sequence space as the space of all sequences of p-bounded variation and denote it by
bup instead of the usual notation £,(A), where A denotes the matrix A = (Ang)
defined by

A g (1) *, n-1<k<n;
nkE = 0, 0<k<n—lork>n.
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We treat slightly more different than Kizmaz and the other authors following him, and
employ the technique obtaining a new sequence space by the matrix domain of a friangle
limitation method. Following this way, we introduce the sequence space bvj, as the set
of all sequences such that A-transforms of them are in the space £, that is

P
bup = {:.-:: (z) Ew:Zimk—mk_l‘ <oo}, 1<p<oo,
i k
and
g = {m: (zg) € w:sup |z — zp—1]| < oo}.
keN
With the notation of (1.2), we may redefine the space bv, as
b”p=(£p)&: 1<p< oo (2.1)

It is obvious that the space bu, is reduced to the spaces bv and £.(A) in the cases
p =1 and p = oo, respectively.

Define the sequence y = (y), which will be frequently used, as the A-transform of
a sequence z = (z), i.e.,

k=10;

= i Ip,
Yk = (AZ) = { toEey; EST (2.2)

Now, we may begin with the following theorem which is essential in the text.

Theorem 2.1. The set bu, becomes a linear space with the coordinatewise addition
and scalar multiplication which is the BK-space with the norm || = ||, =|| Az |,
where 1 < p < co.

Proof. The first part of the theorem is a routine verification and so we omit it.
Furthermore, since (2.1) holds and £,, £, are the BK-spaces with respect to their
natural norms (see Maddox [7, p. 217, 218]) and Apn # 0, Hpk =0, k > n, for all n,
k € N, Theorem 4.3.2 of Wilansky [8, p. 61] gives the fact that the spiice by is a
BK-space, where 1 < p < o0.

Therefore, one can easily check that the absolute property does not hold on the space
buy, that is “z”bup # | [Il’[bu,, for at least one sequence in the space bvp, and this says
that buy, is a sequence space of nonabsolute type; where |z]| = (Jz|) and 1 < p < oo.

Theorem 2.2. The space buy, of sequences of p-bounded variation of nonabsolute
type is linearly isomorphic to the space £y, i.e., bup & £y, where 1 < p < co.

Proof. To prove this, we should show the existence of a linear bijection between
the spaces buy, and £, for 1 < p < oo. Consider the transformation 7" defined, with the
notation of (2.2), from bv,, to £, by & — y = T'z. The linearity of T is clear. Further, it
is trivial that z = 0 whenever 7'z = 0 and hence T is injective.

Lety € £, for 1 < p < oo and define the sequence =z = (z)) by zr = Z_Lo Yis
k € N. Then, we respectively get in the cases of 1 < p < co and p = oo that

1/1_9 1/p
el = (zi -wk—zlp) _ (z w) ~ lell,, < oo
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and
el =supiaee] = loll, < oo.

Thus, we have that z € bv,. Consequently T is surjective and is norm preserving, where
1 < p < oo. Hence T is a lincar bijection which therefore says us that the spaces buy
and £, are linearly isomorphic for 1 < p < oo, as was desired.

One may expect the similar result for the space by, as was observed for the space
5, and ask the natural question: Isn’t the space buy, a Hilbert space with p # 2? The
answer is positive and is given by the following theorem.

Theorem 2.3. Except the case p = 2, the space bu,, is not an inner product space,
hence not a Hilbert space for | < p < oo.

Proof. We wish to prove that the space bus is the only Hilbert space among the
buy, spaces for 1 < p < oo, firstly. Since the space bup is 2 BK-space with the norm
I 2 llpwy=]|| & |le, by Theorem 2.1 and its norm can be obtained from an inner product,
ie.,

5 = (A, Az)'7?

holds, the space bu, is a Hilbert space.
Let us now consider the scquences u = (uy.) and (%) given by

1. k=0 ;
ukz{l k1 and ¢ =(1,0,0,...).

Then, we see that
i+ €@, + = @[, = 8#4(27) =2 (I ully, +OI2, ), p#£2

i.c., the norm of the space br, docs not satisfy the parallelogram equality which means
that the norm cannot be obtained from an inner product. Hence, the space bu, with
1 # 2 is a Banach space which is not a Hilbert space. This completes the proof.
We wish to derive some inclusion relations concerning with the space bvp,.
Theorem 2.4. The inclusion &, C buy strictly holds for 1 < p < oo.
Proof. To prove the validity of the inclusion £, C by, for 1 < p < oo, it suffices to
show the existence of a number K > 0 such that ”"“Hbu,, < K”m”er_ for every = € £p.
Letx € &, and 1 < p < ~. Then we obtain, with the notation of (2.2),

3 Azl < 5727 (leel” + i lP) < 2" (Z el + 3 Exk_lip)
k i k

k

and
sup |Azy| < 2sup |z
kEN keN
which together yield us as was expected that

2]l < 2llll, (2.3)
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for I < p < co. Besides this, since the sequences ¢ = (1, 1,...) and z = (z) = (k)
are respectively in bu, — £y and b — oo, the inclusion £, C buy is strict for 1 < p < oo,
By the similar discussions, it may be easily proved that the inequality (2.3) also holds
in the case p = 1 and so we omit the detail. This completes the proof.

Theorem 2.5. Neither of the spaces bv, and £ includes the other one, where
1<p<oo.

Proof. Let us consider the sequences u = (u;) and = (x}) defined by wu =
= Z‘f:[, 1/(i+ 1) and z, = (=1)* for all k¥ € N, respectively. Then, since Au =
= {1/(k + 1)} € £, which gives that u is in bv, but not in £s,. Nevertheless, z is in
£ but not in hv,. Hence, the sequence spaces buy, and £y, overlap but neither contains
the other. This completes the proof.

Theorem 2.6. If1 < p < s, then bu, C by,

Proof. Suppose that 1 < p < s and z € bu,. With the notation of (2.2), Theorem 2.2
implies that y € £,. Then, the well-known inclusion £, C £, yields the fact that y € £,.
This means that z € bus and hence the inclusion bv, C bu, holds, as was asserted.

3. The basis for the space bu,. In the present section, we will give a sequence of
the points of the space bu, which forms a basis for the space bu,; where 1 < p < co.

Theorem 3.1. Define the sequence b*%) = {b") }nen O the elements of the space
buy, for every fixed k € N by
)y " 0, n<k;
n _{ . A G

Then the sequence {b*)}en is a basis for the space bv, and any = € bvy, has a unique
representation of the form ’

= XbH, (3.2)
k
where A= (Dzx)p forallke Nand1 < p < .
Proof. 1t is clear that {b'*)} C buj, since
AR =R g, k=0, 1, 2,..., (3.3)

for 1 < p < oco; where e is the sequence whose only nonzero term is a 1 in k-th place
for each k € N.
Let :t € bu, be given. For every nonnegative integer m, we put

M= Y " x b, (3.4)
k=0 :

Then, by applying the difference operator A to (3.4), we obtain with (3.3) that

Azl =37 X A0 = S " (Az)e®

k=0 k=0
and
. Im) _J 0, 0<i<m; .
{A(m = )}.- “{ (Az);, i>m. 4 e
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Given € > 0, then there is an integer mg such that

S e Vet

i=m

for all m > mg. Hence,

|z — 2], = [i |(A$)i|p} [ < [ i 1(m)i|?’} w <z<e

i=m i=myp

for all m > mgp which proves that & € bu, is represented as in (3.2).

Let us show that the uniqueness of the represéntation for z € bup given by (3.2).
Suppose, on the contrary, that there exists a representation z = ), pxb®) . Since the
linear transformation 7", from bv, to £p, used in Theorem 2.2 is continuous we have at
this stage that

(82) = S {869}, = Y e = i, mEN,
k k

which contradicts the fact that (Az), = A, for all n € N. Hence, the representation
(3.2) of z € buyp, is unique. Thus the theorem is proved.

4. The -, - and y-duals of the space bv,. In this section, we state and prdve
the theorems determining the o-, - and y-duals of the space bv,. Because of the case
p = 1 may be proved in the similar fashion and found in the literature, we omit the
proof of that case and consider only the case 1 < p < oo in the proof of Theorems 4.1
and 4.2, respectively.

We shall begin with to quote the lemmas, due to Sieglitz and Tietz [9], which are
needed in proving Theorems 4.1-4.3, below.

Lemma 4.1. A € (4, :41) ifand only if

sup Z: Z Qnk

KeF L lnek

g
<00, 1<p=co.

Lemma 4.2. A € (4, : c) if and only if

ﬂ]jm Qnp exists for all k € N, (4.1)
supz [ank]|? < oo, 1 <p < co. (4.2)
neN“L

Lemma 4.3. A € (b : ¢) if and only if (4.1) holds, and
Jm 3 o] = 3 | i e 43)
Lemma 44. A€ (4 : L) if and only if (4.2) holds with 1 < p < co.
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q
< m}
Then, (bup)® = ag, where 1 < p < co.
Proof. Let us define the matrix B whose rows are the product of the rows of the
matrix A~ and the sequence a = (ay,), that is to say that

Theorem 4.1. Define the set aq as follows:

{a— (ap) € w: sup Z

k

e

neK

B = (A—l)na)

where Bp, and (A1), denote the sequences in the n** rows of the matrices B and
A1, respectively. Bearing in mind the relation (2.2) we easily obtain that

"
GnZn =) anlk = (BY)n, n€EN. (4.4)
k=0

We therefore observe by (4.4) that az = (an2n) € £1 whenever z € b, if and only if
By € ¢; whenever y € £,. Then we derive by Lemma 4.1 that

up 3|5 |

KeF 7 lnex

< oo

which yields the consequence that (bup)* = aq.
Theorem 4.2. Define the sets dy and d by

q
dg=(¢a=(ar) Ew: supz Za_.,. < oo
neN T 1
and
T o0
d={ a=(ax) e”l”:ﬂ%z Zaj :Z Zaj < o0
k |i=k k |i=k

Then, (bup)? = dg and (bueo)? = d; where 1 < p < .
Proof. Consider the equation

Zakmk = Zak Zyj) => (Z Gj) Y& = (CY)n, (4.5)
7=0 k=0 \j=k

where C = (cpi) defined by

_J Yisas 0<k<n;
Cn.k—{ 0, g n, keN. (4.6)

Thus we deduce from Lemma 4.2 with (4.5) that az = (arzr) € cs whenever z =
= (zx) € byp if and only if Cy € c whenever y = (yx) € £,. Thus, (ax) € cs and
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(ax) € dg by (4.1) and (4.2), respectively. Nevertheless the inclusion d; C cs holds,
thus we have that (aj) € d, which gives us (bvp)P = dy.

It is of course that one may also prove the case p = co by using the technique in
proving the case 1 < p < oo with Lemma 4.3 instead of Lemma 4.2. So, we leave the
detailed proof to the reader.

Theorem 4.3. (bvp)? =dy, where 1 < p < co.

Proof. This may be obtained in the similar way in the proof of Theorem 4.2 with
Lemma 4.4 instead of Lemma 4.2. So, we omit the detail.

Before giving our corollary on the monotonicity of the space bup, we give a definition
and a lemma concerning with the perfectness, normality and monotonicity of a sequence
space (see [10, p. 48, 52]), below.

Definition 4.1. Lef )\ be a sequence space. Then, \ is called

(i) perfect if X = \*¢;

(i) normal if y € A whenever |y| < |zi|, k = 1, for some z € X;

(iii) monotone provided X contains the canonical preimages of all its stepspace.

Lemma 4.5. Let A be a sequence space. Then, we have:

(i) A is perfect = A is normal = X is monotone;

(i) A is normal = \* = X\7;

(iii) X is monotone => A* = )P,

Combining Lemma 4.5 and Theorems 4.1 4.3, we get the following corollary.

Corollary 4.1. The space bu, is not monotone and so it is neither normal nor
perfect.

5. Certain matrix mappings related to the sequence space bv,. In this sec-
tion, we desire to characterize the matrix mappings from the sequence space bu, to
some of the known sequence spaces and to the itself. We directly prove the theorems
characterized the classes (bup : £oo), (Voo : £p) and (bup : £1), and derive the other
characterizations from them by using the suitable relation between the concerning ma-
trix classes. We shall begin with a lemma due to Wilansky [8, p. 57] which is needed
in the proof of Theorem 5.1, below.

Lemma 5.1. The matrix mappings between the BK-spaces are continuous.

Theorem 5.1. Let 1 < p < oco. Then, A € (bup : £o) if and only if

q
m
j ) N 5.1
i%%;;am <oo, neN, (5.1)
supz i&nk|q < co. 5.2)
neN k

Proof. Let A € (bup : £os) and 1 < p < co. Then, Az exists and is in £, for all
« € bup. This leads us to the fact that {ani }xen € dg for all n € N which shows the
necessity of (5.1).
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Suppose that the sequences © = (zx) and y = (y) are connected with the rela-
tion (2.2). Then, since zp = Z:;.‘za Az; holds for every k € N, we obtain the equality

k oo
Y anszi =Y Gng (Z ij) =22, GnkAT; =) Gnjyj, nE€N. (53)
k k j=0 J k=j i

Since bu, and £ are the BK-spaces, there exists some real constant K > 0 by
Lemma 5.1 such that

142]l,,, < Kl2]],,

for all z € bup. Therefore, by the Holder’s inequality we derive from (5.3) that

(T lams DY (S 1)) _

“Amnzm S 1Zkﬁmyk| <

. < sup
lull, — new [, neN llvll,,
1/q
- =~ 19
o () <

for all # € bu, and this proves the necessity of (5.2).

Conversely, suppose the conditions (5.1) and (5.2) hold, and take any = € bv,. Then,
the sequence {ank ke € dg for all n € N and this implies the existence of A-transform
of z. Therefore, taking into account the fact y = (yx) € £, by Theorem 2.2, we again
obtain by applying the Holder’s inequality to (5.3) that

1/q 1/p .
> Gnkyk| < sup (Zi&mlq) (Z ['yk[p) < oo
k neN %

k
which means that A € (bup : £ ). This step concludes the proof.
We wish to give a lemma concerning the characterization of the class (£ : £p)
which is needed in proving the next theorem and due to Stiglitz and Tietz [9].
Lemma 52. A€ (¢ : &p) if and only if

P
sup Z

S 6| <00, 1<p<co (5.4)
FeF n |keF

A =
l4z]l,,, = sup

Theorem 5.2. A € (bves : £p) if and only if

me
mli.mmz > anj| =) lank|, nEN, (5.5)
k |i=k k.
bl
;‘ég; kezi;ank <o, 1<p<oo, (5.6)
sup > |ank| < o0, p=co. (5.7)
neN %
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Proof. Let A € (bues : £p) and 1 < p < oo. Then, Az exists and is in £, for every
T € bus. This leads us to the necessities of the conditions (5.6) and (5.7) with the
sequences zz and z = (z) which are defined by

zp=) bWandzy=k+1, FEF, keN,
keF

respectively, where b(¥) is defined by (3.1). The necessity of the condition (5.5) in the
cases both 1 < p < oo and p = oo is immediate, since {anx }reny € d foralln € N.

Conversely, suppose the conditions (5.5) and (5.6) hold, and take any = € bve..
Then, Az exists. Since = € buy, if and only if y € £, by Theorem 2.2, we therefore
have from (5.3) by Lemma 5.2 that Az € £, whenever By € {,, where bn = Gns for
all n, k& € N. This proves the sufficiency of (5.5) and (5.6).

Let us finally suppose that the conditions (5.5) and (5.7) hold and take any z € bveo.
Then, Az exists, again by (5.3) one can easily see that

[[42],,, = sup |52 anikye| < [lyll,., - sup 3 |Gnk| < o0
= neN|k = neN k
which shows the sufficiency of (5.5) and (5.7), and this completes the proof.
Now, we may give the theorem characterizing the class (bu, : £1) whose proof is
similar to the proof of Theorem 5.1, above and so we leave the detail to the reader.

Theorem 5.3. A € (bvp : £1) if and only if (5.1) holds, and

sup Z Z Gnk
k

FeF ner

q :
2L P (5.8)

Lemma 5.3. Let A\, u be any two sequence spaces, A be an infinite matrix and B
a triangle matrix. Then, A € (X : ug) if and only if BA € (A : p).

Proof. Let B be a triangle matrix, A be an infinite matrix, and z € w4. Then, we
have by Theorem 1.1.4 of Wilansky [8, p. 8] that

B(Az) = (BA)z.

This leads us to the desired consequence that Az € up whenever z € A if and only if
(BA)z € p whenever z € A which is what we wished to prove.

It is trivial that Lemma 5.3 has several consequences some of them give the neces-
sary and sufficient conditions of matrix mappings between the spaces of sequences of
p-bounded variation. Indeed, combining the Lemma 5.3 with Theorems 5.1, 5.2 and 5.3
and choosing B as one of the special matrices A, E,, C; and R; one can easily obtain
the following results. Let ({x) be a Seqixence of non-negative numbers which are ngt all
zero and Ty, = ) tx for all n € N. Therefore, we have the following corollaries.

Corollary 5.1. (a) C € (bup : bveo) if and only if (5.1) and (5.2) hold with dn
instead of ang, where dnx = cni — Ca—1,p foralln, ke N

(b) C € (bvp : €L,) if and only if (5.1) and (5.2) hold with dny instead of ang,
where dnj, = Z?:o (:) (1—r)"Iricy, foralln, k € N.
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(c) C € (bvp : X&) if and only if (5.1) and (5.2) hold with dn, instead of ank,
where dng, = 1/(n+1) c(n, k) foralln, k € N.

(d) C € (bvp : 1%) if and only if (5.1) and (5.2) hold with dny. instead of an,
where dny, = 1/Tp 35_q ticir for all n, k €N,

(e) C € (bvp : bs) if and only if (5.1) and (5.2) hold with dny, instead of Gnk, where
dng, = c(n, k) foralln, k € N.

~ Corollary 5.2. (a) C € (bveo : bup) if and only if (5.5), (5.6) and (5.7) hold with

dnk instead of ank, where dpg = cpk — cp—1,k foralln, k € N.

(b) C € (v : €p) if and only if (5.5), (5.6) and (5.7) hold with dny, instead of
nk, where dnk = Y7 o ('j‘) (1—r)*Iricjy, foralln, k € N.

(c) C € (bveo : Xp) if and only if (5.5), (5.6) and (5.7) hold with dyy instead of
nk, where dnp =1/(n+1) e(n, k) foralln, k€ N.

(d) C € (bveo : 75) if and only if (5.5), (5.6) and (5.7) hold with dny, instead of
Gnk, Where dpy, = 1/Th, E}":U ticik for alln, k € N.

Corollary 5.3. (a) C € (bvp : bv) if and only if (5.1) and (5.8) hold with dnx
instead of ank, where dny, = cnr —Cp_1k foralln, k e N.

(b) C € (bup : €f) if and only if (5.1) and (5.8) hold with dny instead of ank, where
dnk = Yo (3) (L —r)"Irdcyy for all n, k € N,

(c) C € (bup : X1) if and only if (5.1) and (5.8) hold with dyy instead of ang,
where dpp, = 1/(n+1) e(n, k) for alln, k € N.

(d) C € (bvp : %) if and only if (5.1) and (5.8) hold with dyny, instead of ank, where
dnk = 1/Tn Y 5o ticjk for all n, k € N.
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