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MODEL BCS HAMILTONIAN AND APPROXIMATING
HAMILTONIAN FOR AN INFINITE VOLUME.

IV. TWO BRANCHES OF THEIR COMMON SPECTRA
AND STATES*

MOJEJILHAN I'AMIJIbTOHIAH BKIII
TA AITPOKCHMYIOYHANA TAMIJIBTOHIAH

TP HECKIHYEHHOMY OB’€ML.
IV. IBI I'IJIKH IX CIIVIbHUX CIIEKTPIB TA CTAHIB

‘We consider the model and approximating Hamiltonians directly in the case of an infinite volume. We show
that each of these Hamiltonians has two branches of the spectrum and two systems of eigenvectors, which
represent excitations of the ground states of the model and approximating Hamiltonians as well as the ground
states themselves. On both systems of eigenvectors. the model and approximating Hamiltonians coincide with
each other. In both branches of the spectrum, there is a gap between the eigenvalues of the ground and excited
states.

PosriiapaioTsea Mojlelihbii Ta anpokcHMylouuil IamiisToniany Gesnocepe/iiso npH NeckinyenioMy o6 emi.
INokasano, wo ofH/ma 'aMIJIBTOIHAIIH MAIOTL JIBi I'JIKH CHeKTpa Ta J(i CHCTEMH BJIACIHMX BeKTopin, HKi
CKJIAJAIOTECS 3 GCIOBIHX CTAINE MOJIEJILIIONQ TY 4TPOKCHMYIONOI0 I'aMiJbTonianiB Ta ix s6yuxens. Ha oGox
CHCTEMAX IJIACHHX BEKTOPID MojleJILIHI T4 anmpoKcHMylouRH raminsTonianu sGiratorees. B ofox rinkax
CMEeKTpa iciIye WiJmia MidK BJIACIIHME 31aYelllIMH OCHOBIIOTO Ta 36YJKelHX cTanis,

Introduction. The present work is a direct continuation of our previous works [1-3]
devoted to the investigation of the spectrum and states of the model Hamiltonian of the
BCS theory of superconductivity in a finite cube under periodic boundary conditions and
the thermodynamic equivalence of this Hamiltonian and the Bogolyubov approximating
Hamiltonian. In [1-3], we studied the spectrum of the ground and excited states of both
model and approximating Hamiltonians asymptotically exactly as the volume of the cube
tends to infinity and proved their thermodynamic equivalence in the following sense.

The averages (per unit volume) of the model and approximating Hamiltonians over
the ground and excited states coincide with each other in the thermodynamic limit, i.e., in
the case where the volume of the cube tends to infinity. This thermodynamic equivalence
takes place both for the ground and excited states of the model Hamiltonian and for the
ground and excited states of the approximating Hamiltonian. In this sense, the model
and approximating Hamiltonians have two branches of the spectrum and two branches of
eigenvectors. .

In the present work, we consider the model and approximating Hamiltonians directly
for an infinite volume in certain Hilbert spaces of translation-invariant functions. Earlier,
we studied the model Hamiltonian directly for an infinite volume and showed that it differs
from the free Hamiltonian only in the subspace of pairs [4—6]. We established that the
model and approximating Hamiltonians coincide with each other on the ground state of
the model Hamiltonian. In the present paper, we establish that they completely coincide
in the following sense.

We consider the ground state of the model Hamiltonian and its excitations. We intro-
duce the operators of creation and annihilation for which the ground state of the model
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Hamiltonian is a vacuum. The excited states are introduced by the action of the operators
of creation on the ground state. We also introduce the excitations of pairs. These exci-
tations form a basis in the Hilbert space of states of the model Hamiltonian, and, at the
same time, they are its eigenvectors. On this Hilbert space, the model and approximating
Hamiltonians coincide with each other, i.e., their actions on the elements of the Hilbert
space coincide.

We also consider the ground and excited states of the approximating Hamiltonian. We
introduce again operators of creation and annihilation for which the ground state of the
approximating Hamiltonian is a vacnum. The excited states of the approximating Hamil-
tonian are introduced as a result of the action of the operators of creation on its ground
state; they form a basis in the Hilbert space of states of the approximating Hamiltonian
and are its eigenvectors. On this Hilbert space, the approximating and model Hamiltoni-
ans coincide with each other.

The operators of creation and annihilation that correspond to the ground states of the
model and approximating Hamiltonians are not unitarily equivalent, and the correspond-
ing Hilbert spaces generated by the action of the operators of creation on the ground states
are different. Thus, both Hamiltonians (model and approximating) have two branches of
the spectrum and two systems of eigenvectors belonging to different Hilbert spaces.

In both branches of the'spectrum, there is a nonzero gap that separates the eigenvalues
of the ground states from their excitations. The physical consequences of the presence
of two systems of eigenvectors for the model and approximating Hamiltonians will be
studied in a separate work. )

We also want to note another, purely mathematical, aspect of this work. We express
the ground states of the model and approximating Hamiltonians and their excitations by
using the operators of creation, as is usually done in the Fock space. At the same time,
both the ground states and their excitations do not belong to the Fock space, and if their
norms are calculated as for elements of the Fock space, they diverge exponentially with
volume. For this reason, in the present work we propose a completely new approach. It is
based on the fact that the ground and excited states are completely determined by certain
sequences of functions; we treat them as elements of a certain Hilbert space of pairs and
excitations HF &) HF. The scalar product and norm in this space are finite and do not
have volume divergences.

We define the action of the Hamiltonians on the ground and excited states by using
the canonical anticommutation relations as in the case of the Fock space. However, the
sequences of functions that characterize the result of the action of the Hamiltonians are
again regarded as elements of the space H¥ @ HF. Thus, we again avoid volume diver-
gences.

We use extensively that the operators in the model and approximating Hamiltonians
that contains two operators of annihilations of electrons with opposite momenta and spin
are proportional to the unit operator on the coherent states of pairs that represent the
ground states of the model and approximating Hamiltonians. Actually we have given a
new direct and complete proof of the same assertions used and proved by Bogolubov [7]
and Haag [8].

Note that the elements of the space H¥ @ HF and the action of the Hamiltonians
on them are the thermodynamic limits of the corresponding elements in a finite volume
as this volume tends to infinity. We use the same notation as in [1—3] and impose the
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same restrictions on the potential. We continue the enumeration of sections, theorems,
and formulas.

This article has been comleted during my stay at ESI in May, 2002 as a guest of the
Austrian Academy of Sciences. I would like to express my gratitude to Prof. W. Thirring
for the invitation and stimulating discussions.

15. Hilbert space. 1. Hilbert space of pairs. Consider the operators of creation
a*(k,o) and annihilation a(k,o) of electrons with momentum k and spin 0. Momenta
k € R?® and o = 1. We use the following denotation

= (k,c'),

de... /dk.
o==%1

The operators a*(k, o) and a(k,o) satisfy the following canonical anticommutation
relations '

and

{a™ (k1,01),a(ks,02)} = 6(k1 — k2)b0y,0, (15.1)

where §(k1—ks) is d-function and &y, o, is Kronecker symbol. The rest of anticommu-
tators is equal to zero. We will also use the following denotation

G.+(k, 1) = G.+(k), O’-(k, 1) = O’-(k),
at(—k,—1) = a*(-k), a(—k,—1) = a(—k).

Introduce the following state of pairs

F=2 5 [l Ba)at (B)a* (k) . a* (k) (k) OV ... b
R (15.2)

The state f is defined by the sequence

f = (fu,fl(kl)"" ,fn(kl"" )kﬂ-)!"')!

of symmetric functions fn(k1,... ,kn) = fa(ki,... , ki,), where (i1,... ,1n) is some
permutation of numbers (1,...,n), and fo(k1,...,—ki,... ,kn) = fa(k1,... ,k
. ykn), 1. e. fn is also even function.
We introduce the following scalar product of two states f and g

9= Z fgn(kl, -y kn)at (k1)a™ (=k1) ... a* (kn)a™* (—kn)[0)dEs . .. dkn,

n-U

(where gn(k1,.-. ,kn) are again symmetric even functions)
(ho) =3 o [Tl Rdathus )l 053

and norm ||| = (f, f)m-
Denote by H* the Hilbert space with elements f (15.2), scalar product (15.3), and
-with norm || f|| < co. We say that H¥ is the Hilbert space of pairs.
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The Hilbert space HF can be obtained from states of the Hilbert space H{; in which
element f and g are defined as follows [1 — 3]

f= Z Z fn(kh kn)afﬂtkl--'“;“tkn]o)’

n—.(]

oo
1
s Z i Z G Koy ,kn)a;:'lafkl . ..a}fﬂafkﬂlo).
n=0 " ki,...kn

(15.4)

g . ; 27
Summation in (15.4) is carried out over the momenta k = ThN= (n1,m2,m3), ns

are natural numbers, i = 1,2,3, V' = L. The scalar product of f and g is defined as
follows

By = a3 Falki Endoalky,. . kn) =

n=0"" ki#.. . #kn

= Z Vﬂ_Z kys...tkn fﬂ(kl: ¥ ] !kn)gﬂ(kl: )kﬂ) (].55)

(see details in [1 — 3]).
One can consider (f, g)’v as corresponding to (15.3) integral sums with the elementar

infinitesimal volume 1/V and functions fn(k1,-..,kn), gn(k1,-.. ,kn) equal to zero
on all hyperplanes k; = kj, (3,7) C (1,...,n). Itis obvious that .
Jim (£,9)y = (£,9). (15.6)
—00

2. Coherent states of pairs. Consider the following special state of pairs
o 1
o=> o /f(kl) oo f(kn)at (kr)at (k1) . .. a* (kn)a™ (—k,)|0)dk; . . . dky, =
n=0

= JFRIa (Ra* (=K)dk (15.7)

with [ |f(k)|?dk < co. We say that ® is coherent state of pairs with wave function
f(k), the same for all pairs.
‘We have

(®,8) = f PP .. | F (k) Pdky .. e = € VPR (158
'n.—O

Denote by ®; the following coherent state
By = & fok)a* (K)a* (—K)dk|qy (15.9)

where fo(k) is the eigenfunction of the operator Hy with the lowest eigenvalue Eyp [1],

k) = )/ (B - 3 ol ), e= ( / [u?(k)/ (- > +2u) 2} dk)_*.

By ®§ denote the following coherent state

38 = ¢! fS(R)a* (k)a* (=k)dk)() (15.10)
where
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o e

and g(k) = -;—~ — . The constant ¢ shall be determined later (see Section 16).

Note that the states @ (15.7) as well as f (15.2) do not belong to the Fock space. It
follows directly from the following, equivalent to (15.2) and (15.7), representation of f
and ©

f= Z /fﬂkh e k)8 (ks + K)o 8k + K X

'n.—ﬂ

xat(k1)at(ky) - ..a* (kn)at (k,,)|0)dk1dk; . . . dkndk,,, (152
®=Z$J}%Wh+@~ﬂhmh+@n
n=0

xa*(k1)a*(ky) ... a* (kn)a™ (k) |0)dk1dk, . . . dkndk,,. (15.7')

Obviously functions fu(ks, ... ,kn)8(k1+k1) ... 8(kn +kp), f (kl)é(kl AT
.. f(kn)8(kn+ky) are not square integrable withrespectto (k1, &y, . . . , kn, ky,). Norms
of f and & calculated as elements of usual Fock space are equal to

12 =3 2V [albsse. ) Py .. b,
n=0 " (15.11)

Ie)? = Z Vﬂ/|f (k1)|2dk = &/ 1F () dk

n—O
where V = V(R?) is the volume of threedimensional space R3.
Consider the following state

B = ,{2 nil% fxm@l: v gm)f (k1) - f(kn)a™ (@1)a™ (—q1) -
..at(gm)at (—gm)at (k1)at (=k1) . ..at (kn)at (—k,)|0)dqs . . . dgmdks . . . dkn =
= Z ;%;'/fn(kl:--- Jkn)at(k)at(=k1)...at(kn)a™ (—ky)|0)dks . . . dkn,
o (15.12)

where
Ik, ... s kn) = sym[Xm(km) f (km+1) - - - F(kn)],

and ¥ (q1,--- ,qm) is symmetric square integrable function. The state @, is a partic-

ular case of state f (15.2).
3. States of pairs with excitations. Consider the following state

fi= > o [ ) falkss Bt (R) . )
n=0
xa* (k1)a* (k1) ...a* (kn)a™ (=ka)|0)dp1 . . . dprdks . . . dkn =
_ % -/‘Ilg(p]_,... ,p)a*(py)...a* (@)dpy ... doof (15.13)
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where function ¥y(pr;.~.,p;) is antysymmetric and square integrable. We suppose, for
the sake of simplicity, that the operators a*(p1),...,a%(p) correspond to electrons
with spin +1. Generalisation to case with some numbers of electorns with spin —1 is
obvious. '

The norm of state f; is defined as follows

1A% = (fr f) =
= Z nl “ -/[lpl(pll e :Pl)] Ifn(kl: vee gy kﬂ)[zdpl dpldkl dk‘n o)

1 .
=7 [ 106, p0Pdpr...dmilfl. (15.19)

The scalar product of two different states (15.3) is obvious. For example, if

1 1
g=7 f hi(p1, ... ,p)at (1) ...a* (p)dps . .. dpig
then
Ly P R ——
(f:lg!) == .ﬁ / ‘I’!(pl: ] |pl)h£{pl, ca ,p{)dpl an.a dp;(f‘ g)_ (15-15)

The states f; with ||fi]] < co belong to the Hilbert space H{” @ HF, where HP
is the [l-particle Fock space of fermions.

Note that states with pairs with excitations f; (15.13) and Hf @ HF can be ob-
tained from corresponding states of ’Hf v @ HE in which states f; and g; are defined
as follows

oo .

11 .

fi= E Fﬁ § l:[Jf(plﬁ"' :pl)fn(kls-" skﬂ)a;"'a;; x
n=0"" " pi#..EpEkFE.FEra .

xaf oty ...af aFy |0),

(15.16)
- 11 k k + +
ZTT Z h-’.(p11<" )pi)gﬂ.( Lyroe g n)a'pl---ap; X
n=0 piFEFEpFEk # . E
><1f1.;‘:"1l:}."'_'kl . .a*k;afk“]O)
and their scalar product as follows _
- e
(fc,gz)’v=ZEﬁm T Ti(p1,-- - PP, s P1) X
n=0 p1#.EnFEkiF. Fkn
X fn(k1y- - s kn)gn(ks- .. s kn) (15.17)

(see details in [1, 2]).

One can consider (fi, ;) as corresponding to (15. 15) integral sums with the ele-
mentar infinitesimal volume — and functions ¥;(p1,...,p1)fn(k1,... , kn),
hi(p1,.-- »p1)gn(k1,- .. ,kn) equal to zero on all hyperplanes where some pairs of mo-
menta coinside. It is obvious that

Jim (fo)y = (ua)s  Jim (1AI)? = 1412 (15.18)

In what follows we will consider scalar products and norms for infinite A = R3 as
the thermodynamic limit (15.18) of corresponding scalar products and norms defined for
finite A as above by (15.17).
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16. Two methods of determination of the spectra and eigenvectors of the approx-

imating Hamiltonian in infinite volume. 1. The first method. Consider the approximat-
ing Hamiltonian in infinite volume [7]

Ho= [ (L.~ 1) a*@ato)ip+e [ ol o)a* (oo +
+c / v(p)a(—p)a(p)dp — g~ VI, V =V(R®). (16.1)

It can be formally obtained from H, o in finite cube A

2
Hon=) (% = ;u) agap+c(V) ) vpajat, +
4

P
+c(V) Z Vpa_pa, — g LA(VIVI, V =V(A), (16.2)
P
by the following replacements:
vE oL 4
= = k), lim = ——ax = al(k),
Vses (2m)2 a = o (k) = @m)i * (k)
B, (2 @y O = 8(k + K,
. (2m)® _ : _
‘}_D:TJ.MTZJC:...— dk...,  Jim c(V)=c.

The constant ¢ and ¢(V) should be obtained from condition of minimum of energy
of ground states of H, and H, s respectively.
The Hamiltonian H, can be diagonalized

B o /E(p)a"'(p’)a(p‘)dp‘+0(c)VI (16.17

where the new operators of creation ot (k) and annihilation c(k) satisfy the same.
canonical anticommutation relations (15.1) as the operators a*(k),a(k) and are ex-
pressed through the operators a*(k), a(k) by the following formulae

ot (k) = u(k)a* (k) + w(k)a(=k), o (=k) = u(k)a® (~k) — w(k)a(k),
a(k) = u(k)a(k) + w(k)a*(=k),  o(—k) = u(k)a(-k) —w(k)a*(k),
(

u(k) = s (160 (20 + 7w ),
w(k) = % (1—e(k) (k) + czvz(k))_%)% ,
Cle) = / [e(k) = (2(k) + o (R)) *] dk — g-1c2,

16.3)

E(k) = (2(k) + c?(k)},  e(k) = o — p.

Note that canonical transformations (16.3) are not unitary equwalent because the op-
erator of multiplication by functions u(k) and w(k) are not the Hilbert — Schmidt class
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and the necessary conditions of unitary equivalence are not fulfilled. For system in fi-
nite A transformations (16.5) are unitary equivalent because the domain D (support of
the potential v(k) ) contains only finite number of quasimomenta and, due to the Fermi-
statistic, system under consideration has finite degrees of freedom.

The Hamiltonian H, s can also be diagonalized

Hop =)  E(p)oagop+C(c(V))VI, V=V(A),
? (16.2"
Cle(V)) =

(2$)3 > le(k) = (2(k) + (V) }] — g7 A(V).
k

It is easy to check that state ®§ is the vacuum state for the operators ot (k), (k)
(k)8 = (u(k)fg (k)a* (k) +w(k)a* (~k))BF(k) =0,
o(—k) 85 = —(u(k) 5 (k)a™ (k) +w(k)a™ (k)25 (k) = O.
Therefore
H,®2 = C(c)VeE,

ie. ®¢ is eigenvector of H, with (infinite) eigenvalue C(c)V. If one introduces the
renormalized Hamiltonian

H,r=H, - C(c)VI = / E(k)at (k)a(k)dk (16.4)
then ®§ becomes its eigenvector with eigenvalue zero
H,, 88 =0.
Define the following excited eigenvectors (eigenstates)
©*(P1,...,0) =t (p1)...aT(@)®F, [>1,
@1y B~ O —Gm) = &t (B1) ... o (7)) ¥
xat(g)et(—q1)...a" (gm)ot (—gm)®5, l+m>1.

They are eigenvector of H, and H, »

(16.5)

Hn-()oa(p-lx"' 1.?3!1QI1 —q1y--- |Qm)_q'm) =

i m
= (ZE(PJ +2ZE(qI) + G(C)V) (Pn(p_ll" . lﬁ:gli_QI: e :Qm;“?m)-
=1

i=1

(16.6)
We consider eigenstates ©%(P1,...,P1, Q1,—q1,--- ,Gm,—qm) Wwith different
(P1,-.. 01, Q1,---,qm) ordifferent [,m as orthogonal ones, because they are orthog-

onal for finite cube A. They are normalized on & -functions for A = R3.
Consider normalized excited states

1 o =
(P?m = Tml /‘Ill(Pl: i :.'PI)Xm(QI.: e :Qm)ﬂ'-l-(Pl) .o a+(PI) X

xat(g1)at (—q1) ... o (gm)at (—gm)dpi - . . dpida: - . . dgm®F (16.7)
where functions ¥;(p1,...,m) and Xm(q1,- .. ,gm) are antisymmetric and symmetric
respectively and have supports in D (support of v(k)). The function Xm(g1,--- ,@n)
is orthogonal to the function f§(k) with respect to all variables g1, ... ,Gm, i.e.
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ffc?(qum(q, Q-+ ,Im)dg =0 (16.8)

due to symmetricity of Xm(q1,...,gm). Note that condition of orthogonality (16.8) is
not necessary but it will be important in the next section. The reason why the function
Xm 1s orthogonal to f§ is that we do not want to have excited pairs in the same state as
in ground state.

The norm of ¢ is defined as follows

11
llofnll® = ﬁ;ﬁ/l%(pl,--- ,p1)%dp1 ... dpy X

x f om (@1, - -+ » Gon)[2dgs . .. A | B2 (16.9)

and corresponding scalar product. It means that ¢, C 'H;F R HE ® ®&. (For motiva-
tion of formula (16.9) see (16.9) and (16.10).)

Now we show how one can construct the function X (g1,--- ,qm) orthogonal to
f&(k). The function f&(k) depends only on |k|. Then one can construct desired func-
tion Xm(q1,...,qm) as symmetric product of m functions x1(g1)-..Xm(¢m) and
functions x;(g) are product of two functions, one of them depends on |k| and the sec-
ond depends on variables 0 < § < 7, 0 < ¢ < 27 and is orthogonal to unit on unite
sphere. For example x:(q) = xi(|g])Ymi(6, ) where Y,i(8, ) is spherical function,
Im|+1>1.

Obviously that

n 2%

] F8(k) i (k) dk = / Fe (kDK K2dk f f Yt (6, ) sin 0d6dp = 0,
00

/v(k)x;(k}dk A

Note that x;(k) is also orthogonal to v(k) = v(]k|) and to any functions that depend
only on [k|.

‘We summarize the obtained above results in the following theorem.

Theorem 15. The approximating Hamiltonian H, has eigenvectors p*(pi,...

P G1, =Ly -+ »Gmy —Gm) (16.5) with eigenvalues Y-, E(p:) +2 35T, B(q:) +

+ C(e)V. The eigenvectors ©%(P1,... yPi,q1; —q1,- - - 8m, —dm) are orthogonal basis
in the Hilbert space Hf @ HE @ 28.

Note that there is the gap E(p) in the spectrum of H, (the difference between the
eigenvalues of the exitation o™ (p)®¢ and the ground state ®§ ).

We introduce the state f  in finite cube A

1
Chna =1 D, VP P)Xm(q1y - 1 Gm), -0 X

T (e (@)m
xa;; af,h e .aq'*'ma"_'qm &g (16.7%)
with norm
Uebmally = 2 =2 5w )2t )2 x
tplm,.& v - Il ml VH—m IP1y--- 1 Xm ql:'_" y @m
(p)i#(a)m
=it I |
x> v > |75 (k)2 - . . 1£8 (k) . (16.9")
n=0"" (B)n# (BN () m
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Note that in (16.9) wehave p1 # ... # oy # q1 # .. # qm # k1 # .
. # kn, because states with different (5); or (g),, are orthogonal [2]. We have the
same denotations for the ground states ®g, ®§ for finite and infinite cube.
It is obvious that

hm {”(p.'.m‘A“V)z ”(Ph'n"2
(16.10)
Jm || Ha s, ally = [|Ha,rofmll?

because for finite cube A

1 m
1
HarAPim,p = 371 > Do Em)+2) ) Elw) | Wi, .51) X
(Phi#(g)m Li=1 i=1

R Gty o U YO o OG0T O o v 0is 0 OF (16.11)

—@m
and we have the same expression Hg rpf, for A = R3 but the sums 2P # (@Om
*are replaced by the corresponding integrals [ d(p)id(g)m ... . Recall that E(p), E(g)
are bounded in D. We have proved the following theorem.
Theorem 16. The Hamiltonian Hg . a in finite cube A (16.27), (16.11) converges
to the Hamiltonian H,, with A = R? on the states Pfm,a in sence of (16.10).
2. The second method. It consists in the following. We define the second ground state
®y as an eigenvector of two operators. The first operator is

I = c/v{p)a(—p)a.(p)dp -c2g~VI, (16.12)
the second operator is
2
= [ (L -u)et@atiip+e [vo)t Dal-ode, 613

¢ is a constant to be defined later.

Note that the sum of two operators (16.12), (16.13) is equal to H,.

The eigenvalue problem for the first operator and the ground state ®¢ is formulated
as follows

LBy = (c / v(k)a(—k)a(k)dk — L:zg-lvr) $o = 0. (16.14)

It follows from (16.14) that ®@g is the following coherent state
By = eff(k}a*"(k)a’f(—k}dklo)

with an arbitrary function f(k) and constant ¢ = g [ v(k)f(k)dk. One puts §(0) =

as its commonly accepted. (We use that in @ the pairs with the same momenta are
absent.) The term —c?g~ 1V I compensates divergent as the volume V result of action
of the operator ¢ [ v(k)a(—k)a(k)dk on ®g. Itresembles counterterms in quantum field

theory.
To determine the function f(k) we postulate that $g (or its compone.nts with n-
pairs) is an eigenvector of the second operator (16.13)

2
£l = [ / (;Tn - ,u) o (B)afk)dk +e / u(k)a+(k)a+(—k)dk] o = ES.
(16.15)
Eigenvalue problem (16.12) is reduced to the following set of equations
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> [(% - )7 £n) + ). ) £ =

i=1
=Ef(k)... f(ka), n2>1. (16.16)

It follows from (16.16) that eigenvalue problem (16.15) is degenerated and for given
n has eigenvalue E = E, = nE; where f(k) is solution of equations

@f; _9 ) F(k) + cv(k) = Bof (k) (16.17)
foy = —8
Ey — % +2

Substituting f(k) in expression for the constant ¢ one obtains equation for Ep

2kdk

Ey— — + 2p
that has the unique negative solution Fy such that ﬁlg |Eg——+2,u| >A>0ie Ep

is the lowest eigenvalue of eigenvalue problem (16.17) and A is the gap in the spectrum
(see detail in [1], Sect. 6). We will use the function f(k) (16.17) normalized to unity and
denote it by

-3

folk) = —— | [ ( e

2k? #
Ey — Brn + 2,[1.)

Thus from equation (16.15) one obtains ®p and solution of the set of equations
(16.16) with function f(k) = .fo(k) (15.9).
The coherent state @ is eigenvector of the operator

J (& - 1)a* Ga@an+c [ viora* Ga*(-sap - 2,
N = [a*Patpdp

with eigenvalue zero.

‘We obtained the second ground state ®( of the approximating Hamiltonian H,.

Now introduce new operators of creation and annihilation for which ®( is the vac-
uum. It is easy to check that the following operators

at (k) = u(k)a™ (k) + w(k)a(—k), a(k) = u(k)a(k) + w(k)a™t (=k),
ot (—k) = u(k)a™ (=k) — w(k)a(k), a(—k) = u(k)a(—k) — w(k)a™ (k),
) (16.18)
u(k) = (L+ )72, w(k) = —folk)(1+ 3 (k)
with fo(k) defined according (16.17), have the property
(k) o =0,

i.e. ®q is the vacuum for operators (16.18).
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Define the excited states of the vacuum &

@(B1,--- ;1) = o (#1) ... & (@) B0 (16.19)
and suppose that p; # —p; i.e., that there are not operators with opposite momenta and
spin.

Repeating the calculations analogical to ®; one can prove that

(H —%N)@o_o

(16.20)
Eu =
Ho— 22N )o(r, .. ,7) = Zs(p‘ De@i,... )
=]
. y ; " 2 i Ey
i.e,, ®o and its excited states ¢(p3,... ,5;) are eigenvectors of H, — TN'

It is obvious that excited states with n pairs in ®gp
= o - .1
w@1,...,o)" = a+(P1)‘--&+(Pz);ﬁ/fo(kﬂ---fu(kn)a"'(kl)ﬂ"'("kl)---
.aT(kn)at (—kn)|0)dEk;y ... dkn = ot (51) ... (7)) B]

are also eigenvectors of I with eigenvalues nFyp + Ei=1 e(p:).

In proving (16.20) it was used the fact that the operator ¢ [ v(k)a(—k)a(k)dk acts
only on ®q due to absence in @(p1,... ,7) pairs of operators o™ (p;)a™(—p;) and the
following formula

‘P(ﬁl;- +F :ﬁ{) = Ct+(p"1) &+(}§})@a =
= (1+ 2} ... (1+ f2m) Fat (B1) ... o (21) o

(see [2], Sect. 10). The system of excited states (p1,... ,71) is orthogonal.
Note that

at(p1)at (—p1)®o = (—fo(p1) + a* (p1)a™ (—p1)) B0 (16.21)

therefore
[c/v(k)a(—k)a(k)dk - czg"lv.f} (et (p1)at (—p1)®o) =
= [~fo(p1)ctg™ V& + cu(p1)V o] # 0. (16.219)

This means that state (16.21) with one (or more) excited pairs can not be eigenvector
of H, in the framework of the second method. Later in the end of the next section we
will construct a proper excitations of pairs.

The obtained above results we summarize in the following theorem.

E
Theorem 17. The approximating Hamiltonian H,— —°N has the orthogonal system

of eigenvectors (P, ... ,P1), L = 0, with eigenvalues Z‘_l e(p:) — —Z The Hamil-
tonian Iy has the orthogonal system of eigenvectors w(p1,... ,p1)" w:rh eigenvalues
nEo + Yiy (1), Dt # —Pi-

In the next section it will be shown that ¢(p1,...,71) are eigenvectors of the model
Hamiltonian with the same eigenvalues. The system (p1,... ,5;) can be used as a basis
of the Hilbert space H¥ X &, with the following normalized elements

1 _ _ - — =
o= ﬁ_/‘l‘z(m,--- »P1) (P, .- s P1)APL - dpy =
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- %/”b‘(ﬁl"“ p)at (P). o (P)dps - - dpi®o (16.22)

where ;(p1,... ,5) is antisymmetric and

1 i
1 [ @i 2P dA < oo.

The scalar product of two element w; and g;, where

1
o= | M@, B @) ..ot @) . di,

is defined as follows

(‘Phg!) = ‘;—] /.w!(ﬁl) tee }p_f)hi(p_l) e lﬁ)d’p_l v dﬁl(@ﬂ'l (bﬂ)i

. (16.23)
lodl® = & [ Wi, 2P . (@, Bo).
‘We have
(Ha - &N) wr =
2
l
1 ) . o S g oo o
=1 [ (e =20 wten... .deten, ... 5)d .. .. dmo
: i=1 :
(16.24)
In proving (16.24) we suppose that ¥;(p1,... ,71) is equal to zero if some §; =
= -—-p_j_

Remark. In what follows we will use the vacuum states ®o 5 and ®F , in the cube
i a ¥

A with norm equal to unity and with the same denotation ®$¢ and $§.

. A
lolly " 1251y
Consider again excited state ¢(p1,...,p) in finite cube A
l
1
O it = O .. O Bo = H(l + fg(p:))2af, .. .a} x

i=1

x IT (+ pkatat 0 IT (1+ 540

k() K
Recall that in order'to calculate (l¢g,.... s ll%)% we use canonical commutation rela-

tions and in obtained expression multiply all fZ(k) by % (see for detail [2], Sect. 10).

Then one obtains
1 i

(..l =TT (1+ 57300 ) T (1+ %fg(pi))_l _1

i=1 i=1
One can also calculate norm of @y, ... 5 using canonical commutation relations for
a(p),at(p) and the fact that B¢ is the vacuum, i.e., a(k)®y = 0. Then one obtains
again
2
(I, 1) = (o, o)y = 1.

Performed above calculations show that one obtains the same results by using the
operators ot (k), a(k) or the operators a™(k), a(k).
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‘Note that the norm of the state

af ...ap®o=a} ... af [] 1+ folk)a} _k)|o}1‘[(1+ fo(k))

is not equal to unity, for finite K i:ut becomes equal to unity in the limit V" — oo. It
follows from formula

1 1 =
(e, - 0olly = T (1+5:80) I (1+580) =
k#(p) k
: 1
=11 (1+ 5762)
i=1
It is obvious that limy e [lag; ... af ®oll%, = 1.
17. Two methods of determination of the spectra and eigenvectors of the model

Hamiltonian BCS. 1. The first method. Consider the model BCS Hamiltonian [9] for
infinite cube A = R3

-1

2
P iR i o
H= | [ -
(& -»)a* @atrids +

i f v (@')a* (p)a* (~p)a(—p)a(p)dpdp’ = Ho+ Hy  (17.1)

where V' = V(R?) is the volume of the three-dimensional space R3.
The model Hamiltonian (17.1) has a rigorous meaning in the Hilbert space of transla-
tion-invariant functions and its spectra has been investigated in detail [4 — 6]. We present

a short review of these results.
Let us consider the following coherent state

oo
T = okl (k)a® (=k)dk|g) — H™ % /fu(kl) < fo(kn) x
n=0 "

xat(ky)at(=k1)...a" (kn)at (—kn)dks .. . dkn|0) = Z — o} (17.2)

and determine the normalized to unity function fp(k) from condmons that each ®f
an eigenvector of H with the lowest eigenvalue. From these conditions we obtain

2
Z‘,(% )fo(kl) fo(kﬂ)+z [ o fak)akfalb) .. (k). folk) =

i=1 C
= Enfo(kl) .« fo(kn), (17.3)
ie. HO} = E,®f.
In obtaining (17.3) we again used the identity %;5 (0) = 1, and the fact that, accord-
ing to the Fermi statistics, in ®p pairs with the same momenta are absent.
By using the method of separation of variables one concludes that fo(k) is the solu-
tion of the equations

2
(22k__2#)fg(k}+cv(k) Eofo(k), c= / v(k) fo(k)dk,
(17.4)
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It was shown in the previous section that for considered potential there exists unique
solution of the last equation (17.4) Ey < 0 that is divided from the rest of spectra by the
gap |A| > 0 (see [1], Sect. 6). The normalized to unity function fy(k) is the following

o |
k 2(k)dk
- ([ e ) g

2k? .
and |Eg — — + 2u| > A > 0. The eigenvalue E, = nFEy. The coherent state $g is

completely determined.
If one consider the renormalized Hamiltonian

H.o=H- %N, N /a+(ﬁ)a(ﬁ)d}3‘

then the coherent state @y is its eigenvector with eigenvalue zero
H,®q =0. (17.6)

We can repeat the calculation from the previous section, introduce the operators of
creation and annihilation of quasiparticles (16.18) for which ®y is the vacuum. The
excited states

o(B1,... ;) = ot (p1) ... o™ () Do
are the eigenvectors of H, with eigenvalues Y b_, &(p;) — %l. The states o™ (p1). ..

...at(p) P are the eigenvectors of H with eigenvalues nFEq + Zi:l &(p;). (We sup-
pose, as in previous section, that p; # —p; forall 1 <i<1[))
The proof of these statements follows directly from representation

@1, 7)) = (1 + f3(P))* ... (L + f3(p)) 2 a* (71) - . . o™ (1) ®o
and from an observation that
Hrp(Bi,. ., 0) = (1+ f3(p1))? ... (L + £ () 2a* (1) ... a* (50) Hr %o

in virtue of ; # —p; (see also [2], Sect. 8). We summarize the above obtained results
in the following theorem.

Theorem 18. The renormalized model Hamiltonian BCS H, = H — %N has
eigenvectors ®g, w(P1,...,01), i # —Pj, L = 1, with eigenvalues 0, Ei=1 elpi) —
—%E respectively.  The Hamiltonian H has eigenvectors ®F, ¢™(pi,...,01),
n > 0,1 > 1, with eigenvalues nEy, nEy + Zi=1 e(p;) respectively. Note that
Zi:& e(pi) — _‘?"2_2!’ > %I, i.e., there is the gap in the spectra of the operator H.

Consider the renormalized excited state

1
o = H/‘I’z(fz,--- et (p1)...at(B)dpy ... dpi®o =

1
= E/‘I’I(Ph--- p1)apy ... dpi %), (Bl = (P1,--- ,01)

and corresponding state in a finite cube A
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By p = Z ‘I’:Uh: caP)ag .. .af o = Z ‘I’z(m, D) Bz, A-
13'1. Px. P
(Note that in the previous papers [1 — 5] we denote ®g 4, (I)_(ﬁ)uA by @, @), because
we considered systems only in a finite cube A.)
‘We have

1
19 = [ 1%, 7)Pdgi .. dpil Sl

; 1 1
(1Beallv)* = | > yrl¥ulp, - o1)[? %
n=0"" pi#..Em#A(kn)

X 3 etk lfo(kn)P.

nl
kl #-"'_rékﬂ

Obviously
. 112 _ 2
Jim (1900l = 120 (17.7)

Further we have

B =g [ (Z e(0i) - —e) U, )at (). o (B . Ao,

i=1

oo 1 n
b= 5 5 0| (Setei + St -
n=0"\ o & i=1 i=1

kl.n--- vku

Dy +2ﬂ))‘11:(391, e ) folk) - Folkn) +

+ 2 (k). 7o (o). ‘fc(kn):J }a;,g .k X
=1

xa;:'; atk; ” a’k—n a—jhn [0) + Z q;(pl‘ B ’pt)B(P)lé(p)hA (17'8)
(?1. B19)
(see [2], Sect. 8, formulae (8.3), (8.13)).
We have from (17.7), (17.8)

Jim ([ Hya@ually)? = [ Hr @il (17.9)

because
I

Z Y(@1,-. -, P)Bpn sl =0
(111. -spt)
(see [2), Sect. 8, formulae (8.14)).

We also take into account that
2k? ;
(—— —2u— Eﬂ) folk) +euk) =0, c= [o(Wifak)tk,  Jim Bo(Z) =

‘We have proved the following theorem.
Theorem 19. The Hamiltonian H, p in finite cube A converges to the Hamiltonian
H, in the whole space A = R® on excited states in sence (17.9).

V—u}c
v
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One can consider the excited states ; and ;4 with the operators at(gi),...
..ot (@) or of,...,af instead of the operators at(p1),...,at(p) or ag,...
; ,a};. The Theorem 19 is true also in this case. Itis sufficient to replace ¥;(p3,... ,51)
by Ty, ,21) [Tica (1 + fo(pe)?)?.
2. Exczted states of pair. As was shown in the prcwous subsection equation for eigen-
value of one pair has a unique solution Eyp

v2(k)dk
w42 By
2m

and corresponding eigenvector

k 2(k)dk
fo(k) = 1;(‘,:2) / : 2(k2) 3
E0"2—+2# (Eg—%+2,u)

such that [ dk|f°(k)|* < oco.

The rest of eigenvectors belong to continuous spectra and we determine them using
equation for eigenvectors and from condition of orthogonality to fo(k) and to v(k).
Namely, we represent eigenvectors that correspond to the continuous spectra —w < E <
< w as follows

fe(k) = fe(|k)Ym(0,9), |m|+1=1.

Then equation for eigenvector fg(k)

(%" ' )fE(k)+v(k)/u(k)fg(k)dk—Efg( )

2
is reduced to the following equation
2K _ o) fa(k) = Efs(k) (17.10)
o — oW ) 2 E i

due to the condition of orthogonality [ fz(k)v(k)dk = 0 (see Section 16, formula (16.8)).
From (17.10) it follows that

2
(% _ gp) Fe (k) = Efs (k)

and
fe(lkl) =6 (ﬁ B E)
Thus, solution of equation (1’?.10) is
fe(k) =46 (— — 24— E) Ymi(6,), |m|+1>1 (17.11)

The general excited state of pair is superposition of functions (.17.1 1)

f(k) = / dES (% - 2u— E) > em¥Ymi(6, ) (17.12)
Im

—w

with
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Iom, l+|m|=1

Note that fg(k) are orthogonal to fo(k).
Now construct the general excited state of the ground state g with [ alectrons (or
quasiparticles) and m excited pairs

11
Plm = Eafwt(ﬁ-l:--- , 01) sym(f1(q1) ---fm(km))a—"(P"l) ..at (@) x
xat(q)at(—aq1) .. -a*(gm)a* (—gm)dpi ... dDidgs ... dgm®o, l+m 21,

(17.13)
where
2k? .
fi(g) = ('_,mT - 2p— Ei) ZCE.mYmt(a: ©), —w=lE<luw,
Im
E{#Ej‘l (ilj)c(l)"‘ :m)‘
Note that the functions fi(q1),... , fm(¢m) are generalized ones.
We have
1
Hopym = Tl /‘I’E(P-l:--- ,01) sym(f1(q1) - - - fm(gm)) X
1 E m
® liz (e(’pi) - ?0) + Z(Ze(qi) - Eo)} at(p1)...at(m) x
i=1 i=1
xat(g1)at (—aq) ... a* (gm)a* (—gm)dp1 . .. dDidgs - . . dgm Po, (17.14)

2e(q;) = Bs, Hp®o=0.
If one replaces the operators of creation of electrons a*(71) ...a" () by the operators
of creations of quasiparticles a*(pi)...a™ (pg) then formula (I‘}' 13) will be true, it is
sufficient to put under integral sign the.factor H,_ (1+ f2 (p:))%.
Remark. We have already constructed excited states of pair and general excited state
of the ground state & namely (¢, (17.13). Now we are able to investigate the operator

H,— EQ-N on y,m by the second method (see Section 16). It follows from the orthogo-

nality v(k) and fi(k) that [v(q)fi(¢)dg =0 and we put limy_.o V' [ v(g) fi(g)dg =
= 0. Itis again p; # p; forall pair (3,7) C (1,...,1).

Then the operator ¢ [v(p)a(—p)a(p)dp acts only on ®g in ¢y, and its action
cancels with the operator c?g~*V1I, i.e. Iipim = 0.

Obviously that

Eo B
(o= 2207 i =

=[f (ﬁ - n=22) &t @aoiin+ [ v)a* B)a (~)dp] i =

2m

- m‘/wi(ﬁl" - p)sym(fia) - - fm(gm)) ¥

1
x [E (&‘(p ) — ) + Z@E(Qﬁ) Eo):t at(p)...a* (@) x

xat(g1)at(—q1)--. &+(qm)a+(—qm)dp1 c.dpidqy ... dgm®o = Hrpym . (17.15)
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It follows from (17.14), (17.15) that the excited state
1
O P = a0 . a* () oy [ (). Fon(am) X
xat(g1)at(—q1) ... a* (gm)at (—gm)da: - . . dgmBo

is eigenvector of the Hamiltonians H, — %QN, H, with eigenvalues [ELI (s(pi) i
E, = .
_?D) + Z(E‘ = EU):| e =1
=1
E
(Ha - ?GN) ‘P(P_l;- .. :ﬁ)m =

i m
= [Z (5(?{) w2 %) ¥ Z(Ei = EC')] :p(ﬁ! wiad :ﬁi)m;
i=1 im=]

. (17.16)
2 (5(1017) - %) % ;(Ei - Eu)] (@1, - Pl)m-

i=1

H,.(P(ﬁ,.., :ﬁ)m =

3. The second method. Consider the ground state ®§ (15.10) of the approximating
Hamiltonian H, and the action of the model Hamiltonian H on ®§F. We obtain by
analogy with (17.3)

mag=3 [{S[( -2) 50k 500 .. 1500 +

n=1 =1

+13 (k) . ca DO £ (k) ... fs(kn)] }a+(k1)a+(-k1) ... a* (kn)a* (—kn)[0)
(17.17)

where
1= gfv(P)f“(p)dp-

Note that, according to (15.10") the constant ¢; is function depending on ¢, i.e.
C1 =C1 (C)
It is easy to show by direct calculation that

nag= [ (i - 1)t @ale)dp + e [ vila* a*(-r)ip| 85 AT.18)

2m

(see, for example, (17.3) with f§(k) instead of fo(k)). The state ®§ is coherent one
and, as in Section 16, formulae (16.14), one has

[cl f v(p)a(—p)a(p)dp — g‘lc%VI} §=0. (17.19)
Taking into account equalities (17.18), (17.19) one obtains

mag=| [ (”—2 - 1)a* Ga(-dp+ 1 [ o(p)a*()a* (-p)do+

2m

+e1 / v(p)a(—p)a(p)dp — g"lc§VIj| ¢ = H, D5 (17.20)
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If one uses the operators of creation and annihilation of quasiparticles o (k), (k)
defined according (16.3) then one obtains

Hag =H,25 = | [E(p)aﬂﬁ)a(mdwc(cuvr} 8 = C(c)V 8,
(17.21)
2B =0, Cle)= [ [eoc) (R + c’:.’v?(fc))lfz] dk — g~1el.

Note that C(c;) depends on ¢; the same way as C(c) depends on c.

Earlier in Section 16 the constant ¢ was defined from the condition of minimum of
C(e) with respect to c¢. Now we define the constant ¢j from the condition of selfcon-
sistene ¢; = g [ v(p)f*(p)dp where in f(p) we put the same constant c;. It follows
that the constant ¢; > 0 should satisfy the following equation of selfconsistence for
v(p) =v >0

. 3 _ dk
==o | '\/(x/ez(fc)+c%+e(k))2dk e | V) + & + ()

or
e g‘u/ . dk
Vex(k) + 3 +e(k)
k
Deriving this equation we put 1/c3 = c1, ¢ > 0 because integrand v (k) = —v;%

should be negative.
Note that in this case the constant ¢; defined from equation of selfconsistence but not
from the condition of minimum of energy of the ground state.
It follows from (17.21) that ®¢ is also eigenvector of H with the eigenvalue C(c1)V.
Now consider the action of H on excited states

@* Dy, ..., 7)) =at(P) ..ot (7)2F, (17.22)

Taking into account that H; acts only on ®§ due to the condition p; # —pP; one
obtains an analog of (17.16)

oo 1 i
R D S § RPILCAI VR [V

n=0 =1

+ 30 [peo0 5 SR 5 k) + FE ) a0l 0| }

L
x [T (2 + (78@:))?) a* @) - .. a* B)a™ (kn)a™ (k) ..
i=1
..t (kn)a* (—kn)|0)dky . .. dkn =

5
= [ (& -)o Bama+er [ w(kya* (ke (k| o"(Br .20,
(17.18")
Taking into account that the operator ¢; [ v(k)a(—k)a(k)dk acts only on 3F in
©%(Py,...,P;) due to the condition P; # —P; one obtains an analog of (17.19), namely
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[clfv(k)a(%k)a(k)dk - g"lchI] ©*(Py,.--,0;) =0. (17.191)
From equalities (17.18"), (17.19') one conclude that
(Pa@].r o 13_9!) = HG(PG(}_)I: cee rﬁ!) ==

=/[E(p)a"'(_ﬁ)a(ﬁ)dﬁ-l-C(Cl)VI}Qaa(ﬁls-“aﬁ’.):

L
s (ZE@,-) + O(cl)V)ga“(ﬁl, — (17.23)
i=1

The above obtained results can be summarized in the following theorem.

Theorem 20. The model Hamiltonian H coincides with the approximating Hamilto-
nian H, on the ground and excited states 3§, ©*(Py,...,—D;), e = 1, D; # D;, of the
Hamiltonian H, and formulae (17.21), (17.23) hold.

Note that in our previous papers [1 — 3] it has been proved that

i A , -
A 7(%: (Ha — Ho,a)®0) =0, lim (2§, (Ha — H,2)®85) =0
and analogous equality for excited states of ®g and ®f.

In present paper we established directly for A = R? that

H®y = H, @y, H®§ = H, %5

and analogous equalities for excited states for ®5 and &§.
These differences are connected with the following circumstances. For finite volume

(Z VpG—plp — g"lczVI) By =
P .

(=]
1 Z 1
=8y ak & Hfofkl}---fn(kn)a;“tkl -0 aTy |0) x
Lyeeryin

n=1

x Y wh® =B, =Y uhk). (724
k

k=k1,... ;k=kn

We have estimate || B;®||? < v?(af? 4202 f%e*f?), f = supy |fo(k)| and there-
fore ;

Jim_ By = 0
and
. 1
‘}_l?lmf,gl[51¢oll =0

even for arbitrary small § > 0 (see [1], formulae (7.7), (7.8)).
The operator B; is connected with Fermi statistic, according to which in $; pairs
with the same momenta are absent and it compensate these absent momenta in ¢ =

= % Zk;kau(k)-

For infinite volume

c/u(p)a(—p)a(p)dp@o =g~ 12V ®,
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because [ v(k)fo(k)dk = c even if the function fy(k) is equal to zero on hyperplanes
k =ki,...,k =k, (according to Fermi statistic). -

4. Ground state with excited pairs. Consider the following state with ground state
®F, m excited pairs, and [ quasiparticles

@ @1 BIm = o7 [ ym(@). mlam)) st (@)a* () ..

o at(gm)at (—gm)day . .. dgme®(By, -, B), P # D (17.25)

where f1(g1),- .., fm(gm) are the excited states of pairs defined by formulae (17.11)
with Eq,...,Bm.
Consider the model Hamiltonian H on ©*(Fy,...,7;)m-. We have

e @ore- B0 = oy [ (B )svm(fi@) - fmlam))a* @) (-au).
’ i=0

o0t (gm)at (—gm)das - . . dgm@® By, - - -, (By) +

"'% sym(fi(q1),- -, fm(gm))at (q1)a* (—q1) - ..

s a+(9‘m)a+(_'fi'm)dq1 ces deH(Pa'@]_: cee :ﬁz) =

= (ZEi)wa(pls"-;ﬁi)m'i'%fsm(fl(QJ.):"'!f?n(Qm)) X

i=0

Xa+(QI)a+('—QI) . -a+(9m)a+(_qm)d‘h e dgmHop® (D1, - -, B1) =

m m
= (Z E..:) T P, Y (ZE(}D;) + C(cl)V) ©*(Brs -3 B)m.  (17.26)
i=0 i=1

Recall that we used in (17.26) the formulae (17.23).

‘We summarize the above obtained results in the following theorem.

Theorem 21. The excited state p*(Py,...,D;)m (17.25) of the ground state ®% with
m excited pairs with wave functions f1(g1),..., fm(gm) (17.11), (17.12) and | quasi-
particles with momenta pi,...,P1, Py # —Dy, is the eigenvector of the model Hamilto-
nian H with eigenvalue

m m
> Ei+ Y E(p) + Clca)V
i=0 i=0
and formulae (17.26) holds.
Using the same calculation as in Section 16 (see formulae (16.21), (16.21)) one can
show that the excitations

a+(QI)a+(_QI} e a+(Qm)a+(_Qm)§0a(P1a s =P£)= >0,

are not the eigenvectors of the model Hamiltonian H, but they are eigenvectors of the
approximating Hamiltonian H,.

Earlier we showed that the state (16.21) a™(p1)a™(—p1)®g can not be an eigenvec-
tor of H, in the framework of the second method of H,, i.e. it can not be an eigenvector
of H. Note that ¢(B;,...,7;)" is eigenvector of H butnot of H,.

Thus, there are some eigenvectors of H that are not eigenvectors of H, and vice
versa.
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5. Concluding remarks. In the given paper we used the following approach to inves-
tigation of the model and approximating Hamiltonians directly for infinite volume. The
ground states $q, $§ and their excitations are represented by the operators of creations
a*(k) or a*(k) as usual elements of the Fock spaces. But we consider the sequences
of functions that define ®p, ®§ and their excitations as elements of the Hilbert space
HE @ HF and calculate scalar products and norms of these sequences in HF @ HF.

The ground states ®g, § and their excitations do not belong to the usual Fock space,

‘We define the action of the model and approximating Hamiltonians as usual, using
canonical anticommutation relations as in the case of the Fock space. But results of action
are again regarded as elements of the space H¥ & HE.

Using above described approach we avoid divergences connected with infinite volume
(see Section 15, formulae (15.11)).

For example, the average energy of the model Hamiltonian H over the ground state
g calculated in HF @ HP is equal to

(‘(I’g;f’:’;) @:%)2 f folk).. fo(kn)Z[(% )fo(kl) - folkn) +

+ [ oepkdksol) . v(k) . fo(kn)] dky ... dbn =

1 &1
= mZEﬂEO/fﬁg(kl)-“foz(kn)dkl---dkn =E0/fg(k)a’.k = Ep.
¥ n=1""

(17.27)

Thus, the average energy of H over the ground state ®q is finite for infinite volume.

If one repeats the same calculation for the average energy of H over the ground state
®; as in the usual Fock space one obtains V Ey [ f2(k)dk = V Ey.

This means that the average energy of H over ®y per volume calculated in the usual
Fock space is equal to the same average calculated in the space HF @ HF but not per
volume.

In the next paper we will investigate the model Hamiltonian proposed by Thirring and
Tlieva [10, 11] directly for infinite A = R3.
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