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ON SOME ASYMPTOTIC BEHAVIOUR
FOR SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS

PO ACUMIITOTHYHY HNOBEJIHKY PO3B’JA3KIB
JIHIAHIX TAOGEPEHITIAILHAX PIBHSHD
We present some sufficient conditions for linear asymptotic equilibrium of linear differential equations

in Hilbert and Banach spaces. The obtained results are applied to studying the asymptotic equivalence of
two linear differential equations.

Hagesieno jieski foctaTii yMoBH srinifinol acummrroTHynol pisnosarn ninifaux nudepeHmianbHX pis-
1AL y rinsGeprosomy Ta GanaxosoMy npocropax. Ojiepikalli pesyJIbTATH 3ACTOCOBAHO 1S JOCTill-
JKEINIA ACUMITTOTHYIIO] EKBIBAJIGITTTIOCT JIBOX JiNifuMX AHcepeHIiaabITHX PIBIIAID,

1. Introduction. Let us consider differential equation
x = A(t)x (1)

where A(¢) is a bounded linear operator on a Banach space B foreach t2t;20 and
is strongly continuous in £. :

Definition 1. The equation (1) is said to have a linear asymptotic equilibrium if
its arbitrary solution x(t) has a finite limits as t— 4+ and for each uge B
there exists an unique solution of (1) such that

lim x(t) = ug.
=3 +oo

Let us denote L, a set of functions that are absolutely integrable on R" In the

case of finite dimension space R" it is well known the following sufficient condition
[1] for the linear asymptotic equilibrium of (1):

NA@®Ile L. 2)
A. Wintner [2] generalized this condition by
lAnAMIle Ly o |AWA® e Ly, 3)

where

+oa
A = [A@ydr.

Authors of [3] and [4] presented another generalizations and extension of (2).

For the case of nonlinear equations the similar problems were investigated in
[5—8].

In this paper we will give some generalization of the conditions (2) and (3) we
applied the obtained results to problem of asymptotic equivalence.

2. The case of Hilbert spaces. Let us now consider the equation (1) in a Hilbert
space H. We denote by (-, ) a scalar productin H and by S(0, 1) the unit ball
in it.

Definition 2. We said that ||A(t)h|| uniformly belongs to L, if for all
he 8(0,1) there exists a number T>0 such that

+ oo
[lA@R]de < g < 1.
8
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Theorem 1. Let the condition A(t) = A*(f) be satisfied and ||A(Dh| uniformly
belong to L. Then the equation (1) in H has a linear asymptotic equilibrium.
Proof. For arbitrary uy € H let us consider the functional
+oo
Nt k) = Cho, h) - [ (A, h)dv, t2 T, heH.
t
Since
sup [ny( A)| < [kl + all o
IES
n(t k) is a linear continuous functional in H. According to Riesz theorem, there
exists in A elements x;(¢) such that

'ﬂ](fsh) w (xl(t}’h)'
Clearly
[x (DIl < (1+ @) Agll-

By setting xq(t)=hy, we have
Ax(t
[#259- atrmote

A = sup H(é-ilg—)—:i(r)xo(r),h)” <

[n]s)

1+AL

s i J“A(T)xo('ﬂ)—A(t)xo(r)lld‘l:‘—)0, as At—0.

This shows that x;(¢) is differentiable and
X (1) = A()xo(e).
Let us now consider the functional

+oo
No(t, k) = (ho, h) — J(A('c)x,(t),h)d‘r, t2T, heH.

!

It is easy to verify that |m (4, h)|<(1 +g+ a3 | ol
Therefore M,(t, h) is a linear continuous functional in H. Hence there exists

x,(t) e H such that
Na2(t, h) = {xa(t), h)
and

o)l < (L +g+g) [ holl-

Moreover we have
+Aoca

2] I (A(T)x)(T) — A@Dx(t), h)dz| <
t

Axy () _ . “ -
| rn A()x (8) "ilﬂlgl

1AL

1 [ 1A% (2) - Ax (1) ||de
!

= = —0 4
o 4

when At—0.
This means that x,(¢) is differentiable and

ISSN 0041-6053. Y&p. sam. xypH., 2003, m. 55, N*4



ON SOME ASYMPTOTIC BEHAVIOUR FOR SOLUTIONS OF LINEAR DIFFERENTIAL ...

X () = A(t)x (0).
Continuing this process we construct a linear continuous functional
4o
Nu(8) = Cho, b) = [ (A()x,4(%), h)dv
t
which has the following properties:

Nt k) = (x, (1), h),
1
=g

lx, Ol < A +g+...+gD) | Aoll < Il ol

j.},(f) = A(r)xn—L (T)

563

(&)
©

Thus, we obtain a sequence of differentiable function {x,(#)}. This sequence

- uniformly converges on [7, +e=]. To prove this statement it suffice to show that

” xu(n _‘tn-—l (.")” < ” h(] ” qﬂ-
In fact, for n=1 we have
|2 () =xo(OIl = sup |[(x,(O)—xp(2), h)| <
[h<t

+oo

< sup [[A@h] | x@]de < llholl g
lnfi=t 7

N

i. e. the formula (7) is valid for n = 1. Let us now assume that (7) is valid for n > 1.

Then
121 (8) =2, (Ol = sup [{x,4()) = x, (), k)| =
Inj<1
oo
= sup | [ (x,(¥) = x,4(0), A(Dh)dr| <
Inisil 7

4o
< sup [ [x,m-x, @ IA®A] < [[Roll "
Inlst

i. e. the formula (7) is valid for n+ 1. Let us set now

x(t) = lim x,(0)
N—3+oe

and show that x(f) is differentiable on [T, +==). In fact
" 't.u(t) - A.:J':—I (E)]l = §sup I( A(!)I,,_l(.‘.‘) - A(I)x::—Z(r)> h)l s

nfi=1
< sup ”xu-—l(t)_xn-—v'l(r)u || A(f)hﬂ =
Inl<1
= |[l'”_|(f)—x”_3(]f)” sup HA(r)h”

Ial=t

®)

Let te [T,T,]. Since A(r) is strongly continuous on [T, T;], according to

uniformly bounded principle there exists ¢ > 0 such that
IADA] < cll Al

forall te [T,T,], he H.
From (7) and (8) we deduce
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[ENGES A G] S C"hc"'?"_l

This prove that the sequence {x,(#)} uniformly converges on [T, Tll] and hence
x(t) is differentiable. Since

50 = AW, (8,
making n — +e= we obtain
() = A(Dx(2)
i.e. x(#) is a solution of (1). We prove now x(#) = hy when 7 — +o0. In fact

[[x,(8)=holl = sup I.(xn(f)_"’(hh)l &
Inf=s1

< sup j %1 @ | ACD)R|de < ” 0”
U] B
where ¢ — 0 when #— +oo. That means x,(7)— hy as.?z—> +oo. Since x,(f)
uniformly converges to x(¢), x(¢) tends also to hq as t— +oo.
We show now that there exists an unique solution of (1) which tends to sy as t—
— +c0, Suppose contrarily that there exists other solution y(¢) of (1) which has this
property. Then x(#) —y(t)— 0 as t— +oo. Clearly

!
(x(6)=y(1), k) = {xg=yo, h) + [ (A@x(x) - A®)y(x), h)dv =

o

]
= (xp— Yo, h) + [ (x(2) = 3(x), A(zh)) e
fy
and xo—-yo #0.
Therefore

[¢e(t) =y (0, k)] 2 [{xo=yo, )| = [ lIx(0) = @[ A(®R | d. ©
fy

Since x(t)—y(#)— 0 as t—> +eo we can suppose’
| x(t) =yl < |x(te) =yl = llxo=oll

forall ©= ¢
By virtue (9) we have then
> ‘ ,
* G -y, B 2 [(xg—y0, 8] = lxo=oll [ | A)Rldz.
: 1y

Making ¢t — +e= we obtain
[ xo- J’o”f} !(xn )‘0=h>|
Hence llxo=yollg 2 llxo=yoll-

This is a contraduction.
Let x(#) be an any solution of (1). Then
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t
@I < llxoll + sup [ x| A@A]dx.

hﬂslm

Let we denote

T= |;fifp. f I x| A)k||dx.

There exists a sequence {4,} < S(0, l) such that

5
Y-, < [Ix@]|A@K,dr < v,
o
where €,— 0 as n — +e. Hence

!
=Nl < llxoll + &, + [ x| AR, Jlae
o
By virtue of Gronwall — Bellman lemma we have then

]
Il < (e,+ Nl xoll)exp [ [| AC)R, [de.
fy
Consequently

¥
lx®ll < llxolle” < llxglle” < +oe.
Let ty,t,2 N where N is a sufficiently large. Then

< j A(T)x(T)dr, h>

= sup

fy
j A(T)x(1) dt
[nfj=1

I

< v Jllx('l:)ﬂ |A(D)R|ldr < ||xo]ee.
hli= i' .
This means that
]
| A)x(n)de
fy
converges and consequently x(¢) has a finite limit at infinity. Tlﬁs complétcs the

proof of theorem.
Remark 1. Theorem 1 is also true in the case of nonself-adjoint operator A (1)

under the condition that ||A(£)k|| and ||A™(¢)&|| belong to L, unifonnly for all
he S(0,1). 2
3. The case of Banach spaces. First let us prove the following theorem.
Theorem 2. The equation (1) has a linear asymptotic equilibrium if and only if
the equation
du

e = AU (10)

considered in [B] has a solution V(t) which tends to [ as t — +e and which
has a V"l(t)e [B] for tzt5=0.
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Proof. Let U(t) be a Cauchy operator of (1) (U(tp) =1). As well known, the

solution x(t) of (1) has a form :
x(t) = U(t)xg, xpe€ B.
According to supposition, the operator
U(+e)xg = x(+00)

is define on B. Moreover U(+e) is a bijection on B. By Banach theorem there
exists a U_:.f, € [B].

We setnow V(1) =U(H)U;L.

It is easy to verify that V/(r) satisfies all required properties.

Inversely let V(¢) be a solution of (10) with required in theorem properties. For
each uge B, V(f)ug is asolution of (1) tended to uy as t— +o0. Let x(#) =U(t)x,
be an arbitrary solution of (1) and T 2 ¢y. Then

y(t) = VOV (T)U(T)xq
is a solution of (1) which tends to V™' (T)U(T)x as t — +ee. Since
x(T) = U(T)xg = y(T),
we have then x(r)= y(f) i. e. any solution of (1) has a finite limit at infinity. For each

ug € B there exists only one solution of (1) tended to uy as t— +oo. In fact, if there
exists other solution x(#) =U(t)xq which tendsto uy as #— +oo then

U(t)xg— V(H)ug—0 as t—+oo

or
_ VOV U(TU(T)xg - V()ug— 0 as t— +oo.
Hence
v (MU (T)xy = u,.
Consequently
U(T)xq = V(T)uy,
i.e.

x(t) = V(t)ug.

We note that the equation (1) has an linear asymptotic equilibrium in R* if only if
it has this property on [fg, +22) where ty may be large enough. Lel us introduce now
the operators

P = 3, BEOAG + Y, S[ )
k=I k=2
f_.f

dr[ﬁ*(r)].

n n
Qu(t) = Y, ANAK®) - 3,
k=l k=2
Theorem 3. Lef the conditions
IP(Dlle Ly or |Qu(D]le L,

be satisfied for some nonnegative integer n. Then the equation (1) has a linear
asymptotic equilibrium, )
Proof. Let us denote by £ a set of continuous on [y, +°2) operator functions

X(t) satisfied the inequality
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I X()]] < R for t 2 t,.

It is easy to verify that & is a close set. Let us consider now the operator

n Heas
(SX)1) = 1= 3 AWX@t) + [BWX(D)de, t21, x(eQ
k=l f

We prove that for #; large enough, S is a retractile operator-on . In fact, since
;&(t) — 0 as = +oo
for ty large enough we have

i A xm

k=1

< gl X < &R,

+ oo
| B X(w)dr

Hence || (SX)(1)||<1+€&,R+€,R<R, i.e. S: Q—Q. Forany X (), Y(t)e Q
we have

n |
< R [[|B(®)]de < &R

| SX-SY]| < sup

IEF{}

+

Y AKX -Y®)]

k=1

Goa
[ R@[X(@)-Y®)]de

' 3

< gl X=Y[[+el[X-Y] = al|X-Y|

+ sup
(=41

where ct=g; + €, <1 for ty large enough. Thus § is a retractile operator on Q.
Consequently there exists a X(¢) € Q such that

oo
Xt = I - i AKX - [ B(WX(t)dr.
k=1 f
It is easy to verify that
X(t)—>1 as t— +ee.
We prove now that X(t) is a solution of equation (10). In fact

X = =Y Aoxe - Y, -%[,Z"(r)]xa) + B(OX() =
k=1 k=1

& *i AK@B)X(t) + ADX(2) + )i A X

k=1 k=1
hence
n n
[I + Y A“(r)]f((r) = [r +y A"(t)}A(t)X(r)‘
k=1 k=|
For t=ty and t; is large enough operator
Il
- A
k=1

is inversive.
Therefore X(t) = A(1)X(t). By virtue of Theorem 2, we obtain the required
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statement. Let now ||Q,(9)| € L. By analogous proof we can show that the operator

n Fow
(SX)1) =1+ 2, XOA® - [ X0, (vds, t 2 ¢,
k=1 t

is retractile on € for ¢y large enough. Hence there exists X (¢) € Q such that

: n o
X(1) =1+ Y XOAW - [ X(1)Q,(v)dr.

k=l t
Itis easy to verify that X(f)— I as t— +e and X(¢) satisfies the equation

X = -XA(t).
Since X(t) convergesto I as f—» +oo, X_I(r) converges also to I as t— +eo,

The proof of theorem now is followed from Theorem 2 and from that x~! (t) isa
solution of (10). _

Remark 2. The results (2) and (3) can be obtained from this theorem for n =0
and n=1 respectively.

4. Asymptotic equivalence.
Definition 3. The equations

x = A(t)x, (11)

Yy = B(t)x (12)

are said to be asymptotically equivalent if to each solution x(t) of (11) there exists
a solution y(t) of (12) such that

[x(t) =yl = 0(1) as t—>+e (13)

and conversely, to each solution y(t) of (12) there exists a solution x(t) of (11)
satisfying the relation (13).

The a8¥mptotic equivalence of equations are considered in [7 — 9]. We now apply
the results of Sections 3, 4 to obtain some sufficient conditions for asymptotic
equivalence of (11) and (12). Let us denote the Cauchy operators to the equations (11),
(12) with initial conditions

X(0) =Y(0) =1
by X(£), Y(t) respectively. Weset C(£)=Y"'()[A(t) =B()]Y(2).
Theorem 4. Let the condition
Yl <M, =20,

be holded and let the operator C(t) satisfies the conditions of Theorem 1. Then
the equation (11), (12) considered in Hilbert space H are asymptotically

equivalent.
Proof. Let x(t) be arbitrary solution of (11). It is easy to verify that z(#) =

=y! (t)x(t) is a solution of the equation
z = C()z. (14)

According to Theorem 1, the equation (13) has a linear asymptotic equilibrium.
Hence there exists

Z.. = lim z(1).
=30

The function y(t)=Y(t)z., is a solution of (12). Moreover
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| x(®) =yl = | Y(Dz() =Y (D)z.ll < Mllz(£) =zl >0 as 1 +oo,

Inversely, let y(#) be an any solution of (12). Then y(¢) =Y (#)yq. By definition of
linear asymptotic equilibrium there exists a solution z(¢) of (14) such that

Yo = lim z(#).
(S tee
Then the function x(¢) =Y (¢)z(¢) is a solution of (11). Moreover
lx(@®) =yl = | Y()z(t) - Y(D)zl £ Ml z(t) =20l - O
as t—» +oo. The theorem is completely proved.

Let us set now

+oa
¢ = [ Cwyde
I
if the integral is converged,

Gty = Y E e + 3, L Em)

k=1 k=2 ;E
H,( =Y ce)Ca - Y %[é*(:)}.
k=1 k=2

Theorem 5. Let the condition ||Y(£)|| <M be satisfied and let
H Gn(‘)” eL, or I Hu(f)” €L,

for some nonnegative integer n.
Then the equations (11), (12) are asymptotically equivalent.
The proof is analogous to that of Theorem 4.
Remark 3. From the process of proof we see that the condition of boundedness of
Y(t) can be replaced by one of X(t). In particular, if one of the equations (11) and

(12) is stable on right-hand and on left-hand (see [4, p. 167]) and || C(¢)|| € L, then
they are asymptotically equivalent. In fact, the conditions of Theorem 5 hold in this

case for n=0 (we see then Gy(t)=Hy(t)=C(2)).
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