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A-ALMOST SUMMABLE SPACES
A-MAMKE MIICYMOBAHI TIPOCTOPU

In this paper, we investigate some new sequence spaces which arise from the notation of generalized de la Vallée-Poussin
means and introduce the spaces of strongly A-almost summable sequences. We also consider some topological results,
characterization of strongly A-almost regular matrices.

BuBYaloTECs A€sKi HOBI MPOCTOPY MOCTITOBHOCTEH, 110 BUIUINBAIOTH i3 TO3HAYEHHs y3arajJbHeHuX cepennix Bamre [Tycce-
Ha Ta NPOIYKYIOTb POCTOPU CHUIIBHO A-MaiKe ITiJICyMOBaHUX IOCIITOBHOCTEH. TakoXk pO3MISAAOTHCS AesKi TOMOJIOTIuHI
pe3ysbTaTh Ta XapaKTepu3allis CHIBHO A-Maibke peryJsipHUX MaTpHLb.

1. Introduction. Let w denote the set of all complex sequences = = (z). By lo and ¢, we denote
the Banach spaces of bounded and convergent sequences x = (z,) of w normed by ||z|| = supy, |xk|,
respectively. A linear functional L on [, is said to be a Banach limit [2] if it has the following
properties:

L(z) >0 if x >0 (i.e., z, > 0 for all n),

L(e) =1 where e = (1,1,...),

L(Dx) = L(z), where D denotes the sift operator on /o, that is D: {o, — (o defined by
D(x) = D(a) = {wni1}-

Let B be the set of all Banach limits on /.. A sequence x € ¢, is said to be almost convergent
if all Banach limits of x coincide. Let ¢ denote the space of the almost convergent sequences.

It is easy to verify that if 2 is a convergent sequence, then L(z) = lim, x,, for any Banach
limits L. In the other words, L(z)takes the same value for any Banach limits L. It is notable that
this condition is meaningful not only for convergent sequences, but also for a certain type of bounded
sequences. Lorentz [7] proved that

. 1 o .
¢ = {:c : w}l—rpoom—i-lzoxnﬂ exists uniformly in n}
1=

Almost convergent sequences were studied by Lorentz [8], King [7], Duran [4], Nanda [12],
Savas [13-15] and others.

The strongly summable sequences have been systematically investigated by Hamilton and Hill [5],
Kuttner [6] and some others. The spaces of strongly summable sequences were introduced and stu-
died by Maddox [9, 11].

The goal of this paper is to study the spaces of strongly A-almost summable sequences, which
naturally come up for investigation and which will fill up a gap in the existing literature.

Let A = ()\,,) be a nondecreasing sequence of positive numbers tending to oo such that

)\n—i-l < >\n +1, )\1 =1

The generalized de la Vallée-Poussin mean is defined by
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I
" kel
where I,, = [n — A\, + 1,n]. A sequence x = (z) is said to be (V, \)-summable to a number L, if
tn(x) = L as n — oc.
Let A = (ayk) be an infinite matrix of nonnegative real numbers and p = (p) be a sequence

such that pi > 0. (These assumptions are made throughout.) We write Az = {An(x)} if A,(x) =

= Zk ank||zk||P* converges for each n. We write

dn(Azz) = Z Apyi(x Za n, k,m)|xg|P*,
zeIm
where
alnkm) = = 3 e
m €Ly,
If we take \,, = m,m =1,2,3,..., the above reduces to
1 m
tmn (Ax) = D y Apti(z Za n, k,m)|xg|P*,
=
where

(nkm m+1zan+zk

We now write
[/Ab\,p]o = {z: dpn(Axz) — 0 uniformly in n},
[A)\,p] = {x : dymn(Axx — 1) — 0 for some [ uniformly in n}

and

[/b\,p]oo = {:L‘: sup dpn (Axz) < oo}
The sets [AA, p] 0’ [fb\, p] and M)\, p] -, Will be respectively called the spaces of strongly A-almost
summable to zero, strongly A-summable and strongly A-bounded sequences.

If x is strongly A-almost summable to [ we write x; — Z[AA, p]. A pair (A, p) will be called
strongly A-almost regular if

:L'k—>l:>xk—>l[/i)\,p].

2. Main results. In this section, we give few propositions which are useful in the sequel of this
papetr.

Proposition 2.1. [f'p € (., then [A,\,p]o, [fb\,p] and [fb\,p} o are linear spaces over C.

Proof. it is easy to prove, so we omit the detail.

We have the following proposition.
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1412 E. SAVAS
Proposition 2.2. [AA,p] C [/b\,p]oo, if

| Al = supZa(n, k,m) < oo. 2.1
ok

Proof. Assume that z;, — l[fl 2 p] and (2.1) holds. Now we write

< Kdpn(Ayz = 1) + K Y a(n, k,m)|I[”* <
k

< Kdpn(Axz — 1) + K (sup [[[7%) Y a(n, k,m).
k
Therefore, @ € [Ay, p] ., and this completes the proof.
Proposition 2.3. Let p € (., then [A,\,p]o and [A,\,p]oo (inf pr > 0) are linear topological
spaces paranormed by g (see [11]) defined by
1/M
g(z) = sup[dmyn(A,\x)} / )

m,n

where M = max(1, H = sup pg). If (2.1) holds, then [/Ab\,p] has the same paranorm.

Proof. Obviously g(0) = 0 and g(z) = g(—=). Since M > 1, by Minkowski’s inequality it
follows that ¢ is subadditive. We now show that the scalar multiplication is continuous. It follows
that

g(az) < sup|af*/Mg(z).

Therefore + — 0 = axz — 0 (for fixed a). Now let @ — 0 and x be fixed. Fot given € > 0 there
exists N such that
dmn(Ayaz) <e/2 (YnVm > N). (2.2)

Since dy, ,(Axz) exists for all m, we write

dmn(Axz) = K(m), 1<m<N,

(Vn, 1 <m < N). (2.3)

and

Then |a] < 4,
dmm(A)\Oéﬂi) <

| ™

It follows from (2.2) and (2.3) that
a—0=ar—0 (xfixed).
This proves the assertion about [/b\, ply- Ifinfpy =6 >0and 0 < |af <1, then
g (ax) < lal’g () Va € [Ax,plo-

Therefore [fl)\,p]oo has the paranorm g. If (2.1) holds it is clear from Proposition 2.2 that g(z)

exists for each = € [Ay, p].
Proposition 2.3 is proved.
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Remark2.1. 1t is evident that g is not a norm in general. But if p; = p for all k, then clearly ¢
is a norm for 1 < p < oo and a p-norm for 0 < p < 1.
Proposition 2.4. [A X p] o and [A 2 p] o, are complete with respect to their paranorm topologies

[A,\,p] is complete if (2.1) holds and

Z a(n, k,m) — 0 uniformly in n. 2.4
k

Proof. Omitted.
Combining the above facts, we obtain the main result.
Theorem 2.1. Let p € {~. Then [A;Hp]o and [A;Hp]oo (inf pr > 0) are complete linear

topological spaces paranormed by g. If (2.1) and (2.4) hold, then [fl,\,p] has the same property.
If further p,, = p for all k, they are Banach spaces for 1 < p < oo and p-normed spaces for
0<p<l.

3. Topological results. We now study locally boundedness and r-convexity for the spaces of
strongly almost summable sequences. For 0 < r < 1 a non-void subset W of a linear space is
said to be absolutely r-convex if z,y € W and |y|" + |u|" < 1 together imply that yx + py € W.
It is obvious that if W is absolutely r-convex, then it is absolutely ¢-convex for ¢ < r. A linear
topological space F is said to be r-convex if every neighbourhood of 0 € E contains an absolutely
r-convex neighbourhood of 0 € E. The r-convexity for » > 1 is of little interest, since E is -
convex for r > 1 if and only if E' is the only neighbourhood of 0 € E (see [10]). A subset B of
E is said to be bounded if for each neighbourhood W of 0 € E there exists an integer /N > 1 such
that B C NW. E is called locally bounded if there is a bounded neighbourhood of zero.

We first prove the following theorem.

Theorem 3.1. Let 0 < p, < 1. Then [A,\,p]o and [Amp]oo are locally bounded if inf p;, > 0.
If (2.1) holds, then [Ay, p| has the same property.

Proof. We shall only prove for [AA, Ploo- Letinfp, =60 > 0. If x € [fl X p] o then there exists
a constant K’ > 0 such that

S a(nk,m)|eyP < K7 (Ym,n).
k

For this K’ and given 6 > 0 choose an integer N > 1 such that
K/
NO > —.
)

1
Since N < 1 and py < 6 we write

Then, for all m and n, we get

Za(n,k;,m) ‘%

k

p 1 K’
< Ek:a(n,k,m)|xk|p’“ < N, <.

Therefore, by taking supremum over m and n, we get
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1414 E. SAVAS
{z:g(z) <K'} C N{z: g(z) <}
For every § > 0 exists N > 1, for which the above inclusion holds, and so

{z:g(z) <K'}

is bounded.

Theorem 3.1 is proved.

It is known that every locally bounded linear topological space is r-convex for some r such that
0 < r < 1. But the following theorem gives exact conditions for r-convexity.

Theorem 3.2. Let 0 < pp < 1. Then [fl,\,p}o and [A/\,p}oo are r-convex for all r where
0 < r < liminf pg. Moreover, if pr, = p < 1 Vk, then they are p-convex. [fl,\,p] has the same
properties if (2.1) holds.

Proof. We prove the theorem only for [A,\,p]oo. Let [A,\,p]oo and r € (0,liminf py). Then
exists ko such that r < pi (Vk > ko). Now define

ko fe’e)
g(x) =sup | > _a(n,k,m)lze"+ Y aln, kym)lzP*|.
Ml p=1 k=ko+1

Since r < p, < 1 (Vk > ko), ¢ is subadditive. Further, for 0 < |y| < 1,
yIPE < y" (V> ko).

Therefore, for such ~, we have

9(yz) < |v["g(x).
Now, for 0 < § < 1,

U={z:g(z)<d}

is an absolutely r-convex set, for |y|" 4 |u|” < 1 and z,y € W imply that
g(yx + py) < gva) + guy) < "g) + 1pl"a(y) < (37 + |ul")s < 6.
If pr. = p (Vk), then, for 0 < § < 1,
U={z:g(z) <d}

is an absolutely p-convex set. This can be obtained by a similar analysis and therefore we omit the
details.

Theorem 3.2 is proved.

4. Some further results. Let £/ and F' be two nonempty subsets of the space w of sequences.
If © = {z}} € E implies that {Zk ankxk} € F, we say that A defines a (matrix) transformation
from F into F, and we write A: E — F. (E, F.) denotes the class of matrices A such that A:
E— F.

Let ¢ and (V, \)g respectively denote the linear spaces of null sequences and sequences A-almost
convergent to zero.

We now characterize the class of strongly A-almost regular matrices.
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Theorem 4.1. Let 0 < 0 < pp < H < oo. Then (A, p) is strongly \-almost regular if and only
if A€ (co, (v, )\)0), where

R . 1 . .
(V,A)o = {x: n%gnooﬂ ZI Tn+ti = 0 uniformly in n}
1€1n

It is known that (see [1]) A € (co, (V, A)o) if and only if
[A]l < oo
lim,, 00 a(n, k, m) = 0 uniformly in n (Vk).

To prove Theorem 4.1 we need the following result.

Lemma 4.1 [9, p. 347]. If px, qx > 0, then co(q) C co(p) < liminf PE 0.
dk

Proof of Theorem 4.1. Necessity. Suppose that (A, p) is strongly A-almost regular. Therefore

e — 1P = 0= a(n,k,m)|z, — 1] =0
k
1 1
nk

uniformly in n. Since > —
P H

> (0, by Lemma 4.1,

zp — 1= |z — 1|YP 0.

Thus
= 1= Za(n,k,m)(wk —-1)—=0
k

uniformly in n and, therefore, A € (co, (V, )\)0).
Sufficiency. Since py, > 6 > 0, by Lemma 4.1,

:L’k*)l:>|$k*l|pk*>0.

Again we have A € (co, vV, A)o). Therefore @y, — | [fl »,p] and this concludes the proof. Note that
pr < H superfluous in the sufficiency and 6 < p; is superfluous in the necessity.

Theorem 4.1 is proved.

We next consider the uniqueness of generalized limits.

Theorem 4.2. Suppose that A € (co, (V, Ao) and p = {py} converges to a positive limit. Then
x = {x} = 1 = 3, — I[Ay, p| uniquely if and only

Z a(n, k,m) - 0 uniformly in n. 4.1
k

Proof. Necessity. Suppose that A € (co, (V,)\)o) and {py} be bounded. Let xj — [ imply
that xp — [ [AA, p] uniquely. We have e — 1 [fl X p]. Therefore the condition (4.1) must hold. For
otherwise e — 0[A, p] which contradicts the uniqueness of [.

Note that the restriction on {py} (except boundedness) is superfluous for the necessity.
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Sufficiency. Suppose that the condition (4.1) holds and A € (co, (V,\)o) and that p, — 7 > 0.
Further assume that x;, — [ imply that x; — Z[AA,p] and z — l'[fl,p] where ‘l — l/| =a > 0.
Then we get

lim » " a(n,k,m)uy =0 (uniformly in n), (4.2)

n—o0

where
U = |1‘k — l|pk + }:L'k — l‘pk

By the assumption we have u; — a”. Since A € (co, (V, )\)o), ug — a” implies that

Z a(n, k,m)|ur —a”| =0 (uniformly in n). (4.3)
k
But we have
a” Z(n, k,m) < Z a(n, k,m)uy + Z a(n, k,m)|u, —a’|. (4.4)
k k k
Now by (4.2), (4.3) and (4.4) it follows that
lim a(n,k,m) =0 (uniformly in n).
n—oo

Since this contradicts (4.1), we must have [ = [.

Theorem 4.2 is proved.

Suppose that 0 < pi < gr. We conclude this note by showing that [A X q} C [fl A p] is not true
in general. However the inclusion holds for a special class. We prove the following theorem.

Theorem 4.3. Suppose that || A|| < co and KN bounded, then [A,\,q] C [Ax,p].
Dk

Proof. Write wy, = |z — l|% and pr/qr = k. So that 0 < 7 < 7 < 1 (7 is constant). Let
T < [fb\,q]. Then
Z a(n,k,m)wr — 0 (uniformly in n).
k
Define up = wy (wp > 1) =0 (wp < 1) and vy = 0 (wr > 1) = wg (wr < 1). So that
wy, = up + v, w)F = ul* + v)*. Hence it follows that u}* < uy < wg, v/* < v]. We have the
inequality

v
Za(n,k,m)w;’k < Za(n,k,m)wk + <Z a(n,k,m)vk> A}
k

k k

Hence, = € [A), p] and this completes the proof.
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