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DISCREPANCY PRINCIPLE AND CONVERGENCE RATES
IN REGULARIZATION FOR MONOTONE
ILL-POSED PROBLEMS

IIPHHITAII HEB’SI3KH TA IIBHIKOCTI 3FIZKHOCTI
IIPH PETYJISIPH3AII MOHOTOHHHX :
HEKOPEKTHHX 3ATAY

The convergence rates of the regularized solution as well ag ils Galerkin approximations for nonlinear
monatane ill-posed problems in Banach space are esiablished on the basis of the choice of regularization
parameler by the Morozov discrepancy principle.

Ha ocuoni puBopy napaseTpd peryAApuasnil niAnoninme o mpiiineny men’ s3kn Mopo3oRa RC1aIoR-
JIeno WMIKOCT] AGIAI0CT] AK PEryNAPUIORAITHY POID"S3in HeAiniME MONOTOIIHE HEKOPERTINY
sapay y GanaxonoMy npocropi, Tak i Tx nafoxens Caswopring,

1. Introduction. Let X be a rcal refllexive Banach space having the property: X and
X* are strictly convex, and weak convergence and convergence of norms of any
sequence in X follow from its strong convergence, where X° denotes the dual space
of X. For the sake of simplicity the norms of X and X" are denoted by the symbol
[I-1l. We write {x* x} or (x,x*) instcad of x*(x) for x*€ X" and xe X. Let A
be a monotone and conlinuous operalor with domain D(A)Y=X and range D(A)c
e
Our interest is 1o consider the operator equation
Alx) =f feD(A). (1.1}

Without additional conditions on the structure of A as strongly or uniformly monotone
property, equation (1.1} is one of ill-posed problems. It means that the solutions of
(1.1} depend discontinuously on lhe data f  Therefore, lo find ils -approximative
solution we have to use stable methods. A widely used and effective method is the
Tikhonov regularization thal consists of minimizing some funclional depending on a
parameler. When A is nonlincar, this funclional is usually non-convex. So, we cannol
use the resulls in the theory ol convex analysis to minimizer the Tikhonov functional.
These difficultics can be overcomed for the class of problems inveolving monotone
operators by using another version of Tikhonov regularization in form of operator
equalion

A(x) + aUfx—x%) = f5, (1.2)

where x7 is some element in X thal plays the role of sclection eriterion, and f are

the approximations for f such that || f5=foll £ & with well-known levels 5 — 0. The
parameter o is called the parameter of regularization, and U is the standard dual

mapping of X, i.e. the mapping from X onlo X * Ihat satisfies the requirement

(Unxy = NI« Ul =«
Suppose that the following conditions hold:

(Ux)=U(yhx=yr2 myllx-x»lI, mg>0 522 (1.3)
U -l s crRllx-xlI° 0<d =<1, (1.4)
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where C(R), R >0, is a positive increasing function on R = max {||.x]l. || v}}

(see [1]). .
It is well-known (see |2, 3]} that equation (1.2} has a unique solution, hence-forth

denoted by .J.'g. andif 8/ —0 as @ —» 0 then the sequence | x5} converges 1o a
solution xp of (1.1) with the properny

flxg=xll = minffa-".
VE Sy
where Sy denotes the set of all solutions ol (1.1} (5, # &) Morcover,

“1‘3 =Y |I € Mlea-x"1 + 2

the function pio)=a I.ri -y 1| is continuous for o e |Gy, =) oy >0, and
limg _, _p(a) =l p(x") = f3]l. Forcach fixed &> 0 the value . that satisfies the
condition /o =0 as &= 0, can be chosen by the Morozov discrepancy principle
formulated as follows,

Assume that |AGx®) -f5]l> k8" O<p<i. K>1. For 0 <8< 8 < 1. there

cxists a value ® such that pi(iE) =K T—=0as 5—=0 and .1.';5-, -+ Xp, O/ 0 —
=0 as §—=0 (sce |3, 4]

The solution .r& can be approximated by the solutions of the linite-dimensional

problems

Al + atlix-x" = g (1.5

where A" = E'AP,, Uix) = P UPAX) fi'= P fs. x""=Pa", P, denotes a
(linear) projection from X onto its subspace X, E: is the adjoint of P, and
XpcXye1 ¥ Px—=x YxeX (||PJ =1)

For each @ >0 equation (1.5) has a unique solution x> . and the sequence | xﬁ_ =¥
CONVETEes 1o .r: as m— +== (scc [5]). Wis very important for computation o know
convergence rates of the sequence | .n.-f; }. whether

: s R
P !‘%IE"'."H.M = An

o —p

and convergence rates of the sequence {.\*::. ,,} :

For the lincar ill-posed problems these guestions are completely studied when the
values o = o(8) is chosen arbitrarily or by the Morozov discrepancy principles (sec
[6 = 11]). For nonlincar case these questions were studied in [12 = 16]. In [17] and
[1%] the convergence rates of the regulanzed solutions of the ill-posed equation
involving nonlincar monotone operator in Banach space are investigated when the

regularization parameter is chosen arbitrarily such that @ ~ 8" < pel.

In this paper. by using the discrepancy principle for parameter choice we obtain the
estimate Tor convergence rates ol the regularized solution as well as its Galerkin
approximations. In particular, the obtained resulis bere are guaranteed under weaker
conditions that in [17. 18].

As usually, the symbols — and = denote weak convergence and convergence in
norm, respectively. and the notation « = & is meantthat a = O0k) and b= 0(a),

In the following section we suppose that all above conditions are satisfied,
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2. Main results,
‘ﬁSSﬂmPﬁDn 2.1. There exists a constant T >0 such that for y in some
neighbourhood of Sy and x e §y the following relation is true:
HAG) A=A )y -2l < Tlly-x|1A )y -2)].
This condition is illustrated by concrete problems in [19].

First, we prove a result about convergence rates for {x,,f,L 1.
Theorem 2.1. Assume that the following conditions holg:

(i) A is Fréchet differentiable at some neighbourhood of Sy with Assumption
2.1 for x=xy:
(ii) rhere exists an element z € X such that
A'(xg)'z = Ulxg-x";
?-E the parameter T = (8) is chosen by the discrepancy principle.
&

[&-x] = 0%, o= min{=2,2).
r=1 s

Proof. From (1.1)=(1.3) and condition (ii) of the Theorem it follows
muf38 - x| < (Uxd ~2°) - Ulxy = =), - xo) <
S L f=A(B) B -m) + (Wetomx®x0- ) 8
$ 3k - x| + (A o). (xo- )

< 3d -] + 2l G0 (xo- DI o
On the other hand, from Assumption 2.1 it implies that
A" (x) (xo— xE) || < [ ACxE) = £l + =ll 8 —xp )| 1A (x0) (28 —x0) | <
S AR —fsll + & + =l 58 —xg 1 1A Ceo) (28 =) [I.

If = D:{E] is chosen by the discrepancy pnnmple then for sufficiently small § we
have || xﬁ —xgfl = 1/2. Hence,

J(s8)- 5] - @|sk-2] = o -
[ 4 G0 — %) < 2| a(=z) - 5] +3) <
< 2(K8"+8) = 2(k+ 1H&"
and
2 < 2llwo-2lek-17"'8"
(see [3] or [4]). Consi:qucnlly. from (2.1) we obtain
mgr"xgi —xu.1r < 2| xp-x"|ICK - ]]_I-ﬁl_‘uﬂxg —xl;.” +
+ 2|l zll ¢k +1)8"

Using the implication
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abcz0 p>gq a" s ba"+ c=a'= G{bmp_w-l-f}
we obtain
& 1] . I—j'l P}
g = = D 5 N H = m —_— Tk
"Tﬂ tﬂ‘" (8) m{s—l =

The Theorem 2.1 15 proved.
As spoken above, for numerical implementation one should consider the finite-

dimensional approximation for tﬁ by the solutions of (1.5). Therefore, the problem
of selecting the value o by the discrepancy principle is necessary to consider in
relation with finite-dimensional approximations of the space X. First of all, we see that

if A iscoerciveor {A(x)—fx)>0, |x]l=r, =0, i.e,(1.1) has solution, then A,
possesses the same properties, i. ¢., equation

A "{A'} = _f“,' fﬂ — H:_f. {2.2}

has solution, too. Thus equation {1.5) can be viewed as regularized equation for (2.2).
It is reasonable 1o remark that the solution x, of (2.2) does not always converge o a
solution of (1.13 as n — == (see [20]). On the other hand, it is casy to see that

ﬂA"{xn' u}_ -'Erj = |I ﬁ:{r‘frl-‘;n'“} _fﬁ”| — ||A{.rn'} '.f&"

as n — =, Because of the last inequality and ||A(x™) - f5]l > k8" we have
"A”{x"'"} -5 ﬂ > K8" for sufficiently large .
On the other hand,

R Py
5 -] = |12 (SNl <8 2§ = Puxo.
For sufficiently small o such that
Il:l'.".rn"' - x4 " < (K-1)&",

|+ & < 20a%-uol + 5,
¥} [

we have the inequality
o, - 2% < 2afx®" -] + & s k8",
Therefore, the value o can be chosen by p, (@) = k8" and

- b - o
— 5o = x° 57

5 + eyl

where
pute) = [|a"(s8,)- & |
Yo = mnx{‘r,,{xu}. Yl ) v, (2). 'f;{f]}.
T} = 1 U=Poxll. v () = 1 (I = Bl

and ¢ is a positive constant. This way in finding the parameter @ requires to solve
the equation ”A"[.‘t‘%l"}— fér” = K&". This is a very complex work. So, we should
use its slightly modification as follows.

The rule:

choose az(c,6+ t‘g'f,,.}:l. c;=1. 0D=p<] such tha
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HA"[.tEI"]-_ﬂﬁ"
a"(sd.)- 7] s k8" &k, 2 &
As in [3], we can verify that @8, y,) = 0, (6+v,)/ TS v,) =0 as §—= 0

| = k3"

and # = o, Let .t%_n be the solution of (1.5) with o = &. The convergence and

rate of convergence {-"g.u} to vy as 8= 0 and # — == are determined by the
following theorems.
Theorem 2.2, If 6/c. yolx)/o— 0 with xe 85, as 8. = 0 and n — o=,

then the sequence | .\:ﬁ_ o} comverges fo xg.
Proof. For xe 8, x"= Pox, from (1.3) and (1.5) it follows

mui.l::,, - " |r S (U0, - ) - U = a%"), a8, -x™ s

T L Wy B {1 o) WP -

ol N R
S L(B(f- 1+ A0 - A) B, - ") +

+ (U = x™), 5" 25 (2.3)
O the other hand,
NAG™ Al € NA )l = Pox]] + tllt1=Pox|Il A (x) = Poax]| <
= Cornlvi{Tyda) + 1),

where € is some positive constant depending only on x. Therefore, from (2.3) we
have ot

+

5+ q]Tn{-T}{TTnLT}‘F l]]| ;
[V i

ﬁ. - P I

i i-"l-|-’-'|ﬁ:. o=x" |:|l <
+ (U = x™"), 2= a2 (2.4)

Since &/o yulx)a—=0 as & o — 0 and n = ==, the sequence {xﬁl at s
bounded. Without loss of generality, let 12 p=x, 05 B,o=20 and n = +oo, We
write the monotone property for A" as follows

{A"f.\'"} - "“"{-"ﬁ.u}* - l_'vl.: 2l YyelX, = P.x
Because E:ﬁ,- = F;:, the last ineguality is transformed into the form

(A" = A"(xS ). k" =5 )z 0

Hence.

(A —f5. 5" 28 ) + u||.r:_n - x“'"H Py || =0
Passing to the limit as &, @ = 0 and n — +== in this inequality we obtain
(Al -for—x )20 Vaelk
By Minty lemma (see [20, p. 257]) v, € 5,
On the other hand, from (2.4) we also obtain (U(x - x"), x —x 20 ¥Yreld,
Because of the convex and closed property of §, we have (U{rx) + (1 —r)x - 2,
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x=x320 Yxe 8, te (D, 1) Passing to the limit as r— | in this inequality we
get (Ulx;—=x%),x-x,)20 ¥ xe 8, Consequently, “x. -xuu < “x—x'uu
¥ xe 8 Since .S‘n is a convex and closed subset of a strictly convex Banach space
X, then x, = x". Therefore, the entire sequence {J‘u n} converges weakly to xg.

Replacing x" by aj in (2.4) we can sec thal the sequence {xu.n} CONVerges
strongly to xy as &, @ — 0 and n — +oo. Theorem is proved.
Theorem 2.3. Suppose that the following conditions hold:

(i) A iz a Fréchet differentiable ar some neighbourhood of Sy with Assumption

21 for xy=xg;
(ii) there exists an elememt z € X such that

Allxg)"z = Ulxy =20

 (iii) the parameter o = o8, y,) is chosen by the rule.
Then

58, =50 = O((B+y, V=PVl 4y M=) 4 (5P 4y 3V7),
Proof. Replacing x in (2.4) by xy we obtain
mUII 1"!2 " -.'l'g Il =

< 3+GY(Tru + D) Tuiﬂ~+'3||_fg,,_lg|[+(uuﬂ-;.un x5 ) +

(U{xﬁ — MM = Uy = x0). xf = x5 ,,} (2.5)
From (1.4) and Assumption 2.1 it follows that

[(U{.ru i T Uixg—x }x“-xmﬂ>| < c2’y i|x.§,,.~:f::|f.
where R = [[xg—x%[, and
l(U{xu- 03 = x5 )| = (Ut =20 xf —xg)| +
+ Y] Al = o) | + (2" A 0E - x0))| <
S (R Ao = o)) va + (2" ACxodxg = 55.,0)|-
On the other hand,
' ]{z".ﬁ'(.rn}{xn-4'3,,,1)' <
S [(" £ - AGE )| + (2" Al - Ag) - ACxg) (xS, — x0))]| <
s Dzb(|A"CE 00— A | +8) + Tl = xo || (=", A'Crod o =28.0):
Since I|”g-"_"""ﬂ ”—!ﬂ. we can write 1";&,,-—an = 1/2 for sufficiently small o,

B and large n. So, when o is chosen by the rule we have ||A"|:_1:§r‘”]—f§'|l < K8".
Consequently,

(2", Atrg) (g =38 )| s 20zl (] A"eef 0 - faH*"E) < 2 zek; + 15"
Therefore,
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DISCREPANCY PRINCIFLE AND CONVERGENCE RATES IN REGULARIZATION ... 997

(UG =2, x5 -8 )] < (R+]|ACxgdxl, = x0)|)va + 202liK; +1)87.

Finally, inequality (2.5) has the form

- ’"uﬂ*‘%.u"'*'ﬂlr s
< G(E+r)" " +yd)|d, -]+ &8 + Gy, G0

Thus,
] - =3
Ixiﬂ —-I:{]J. |I < O({E“'Tu}“ pYis=1) +T"ﬂﬂs-l}+(5ﬂ _l_.?."}lh}.
Hence,
lelﬁl_.ar - g |F < G(EE_I_T"}H—HIHI—]] +T:'3|ri:—l:| +{ﬁ” +Tn]”;)'
Theorem is proved.
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