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EQUILIBRIUM AND NONEQUILIBRIUM STATES
OF MODEL FROHLICH - PEIERLS HAMILTONIAN

PIBHOBASKHI TA HEPIBHOBAJKHI CTAHH
MOJIEJI ®PBOJIIXA -TTAHEPICA

Model Frihlich—Peferls Hamiltonian for electrons, interacting with phonons only with some infinite
discrete modes, is considered. It is shown that in equilibrium case given model i thermodynamically
equivalent to model of electrons with periodic potential and free phonons. In the one dimensional case the
potential is determined exactly, it is expressed in terms of the Weierstrass elliptic function and eigenvalue
problem can be solved exactly, ™ uilibrium states are described by nonlinear Schridinger and wave
equations which have exact soliton solution in the one dimensional case,

PoarmanyTe Mogent Ppbonixa—[Tafepnca gna enekTpoHis, W0 BIAEMOATIOTS 3 QOHOHAMA TIMBKH MpH
mesuux auckperhnx mogax. [Torasano, wo y pisnoeasHoMy BMTAEY AAHA MOTERL TERMOTHHAMITHO
CEBIBANCHTHA MOOST] CNEKTPOHIE 3 NERIOIHYHHM MOTEHUIAN0M Ta BITERHX Hig. B OEHOE

BHMAMKY MOTEHWIAN IHAXONWTHCA TOWHD | BHPRKAETRCA MEDE3 eRimTHAHY ke Bedtepwrpacca, a
JAMAYE HA BNACHI IHAMCHHA Tew Mae ToMHAl poss’asor. HepinnoBassi cTAHH OMHCYIOTLCA 3B SIAHMMH
HeniniiimnaMm pinnannman Upepinrepa Ta XoILODHM pinnanias, i o CEACEHMIPHOMY BHIAIKY MAIOTE
ToHA] CONITOHH Po3B’AZKH,

Introduction. In given paper we consider the model Frihlich —Peierls Hamiltonian for
electrons interacting with phonons only with some infinite discrete modes.

Equilibrium and nonequilibrium states are investigated.

For equilibrium states the hierarchy of integrodifferential equations for correlation
functions are derived. For nonequilibrium states the hierarchy of integrodifferential
equations for reduced density mafrixes (the quantum BBGEY hierarchy) are derived.

In both chains of equations we are faced with a problem of giving rigorous mathemati-
cal meaning to certain integral operators with factor equal to inverse volume of the entire
Euclidean space. It was proved that in a functional space of periodic (or quasiperiodic)
functions with certain cluster properties a rigorous meaning can be given to these integral
operators. '

In both cases the hierarchies for infinite sequences of correlation functions or reduced
density matrixes are reduced to one- and two-particles correlation functions or reduced
density matrixes.

It was proved that equilibrium hierarchy of the model Frihlich —Peierls Hamiltoni-
an is thermodynamically equivalent to the hierarchy of model with the approximating
Hamiltonian for noninteracting electron-phonon system.

Electron subsystem is under influence of an external potential that should be determi-
ned from condition of minimum of functional of free energy. In one dimensional case this
problem can be solved exactly and external potential is well known one-band potential
expressed through the Weierstrass elliptic function. It seems to us that in this respect the
model Frohlich—Peierls Hamiltonian can be usefil in theory of semiconductors,

The Hamiltonian of phonon subsystem can be diagonalized to the free system of
quasiparticles with a vacuum that is a certain coherent state of phonons.

For two- or three-dimensional Euclidean space the approximating Hamiltonian for
electron subsystem is again free system of electrons in periodic (quasiperiodic) external
field. Note that in the theory of senmiconductors the periodic (quasiperiodic) potential is
postulated. We derived such potential from the model Fréhlich—Peierls Hamiltonian,
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It is proved that the nonequilibrium hierarchy in the thermodynamic limit is reduced
to two nonlinear equations: the Schridinger equation for wave function of electron
and wave equation for lattice displacement. In the Schrédinger equation the lattice
displacement plays the role of potential and in the wave equation the modul of squared
wave function of electrons is nonhomogeneous term.

In one-dimensional Euclidean space and for acoustic phonons these nonlinear equati-
ons have soliton solution.

We proved the existence of the thermodynamic limit of correlation functions and
reduced density matrixes by deriving equations for them and constructing the exact
solutions for the obtained equations (in the one dimensional case).

1. Model Frihlich-Peierls Hamiltonian and approximating Hamiltonian.
1.1. Model Frihlich—Feierls Hamiltonian. Consider a system consisting of electrons
and phonons in a cube A of 3-dimensional Euclidean space R®, with the center at the
origin and with the volume V = V(A) = [? where L is the lenght of the edge of the
cube A.

We consider the periodic boundary condition.

The model Friihlich - Peierls Hamiltonian for electrons interacting only with phonons
having certain distinguished values of momenta, namely ¢ = m@ = ,, where m
belongs to a certain subset Z' = —Z' of the set of integer numbers m C Z' C £ hag
the following form [1, 2]

2 . .
Hp = kz (;—m g .u) Vrs Yra + 9 _w(g) Gy ag+
o q

78 T S Shakrrat00u0) Fro Venstet Baga Vi de]s (LD

kl !kl W8 T 2

where 84 is the Kronecker symbol, w(g), g(g) are some functions that will be fixed
later, g is chemical potential, m is mass of electrons.

We also suppose that the set 27 is invariant with respect to operation mg + 2" = Z'
for arbitrary mg C Z',

Here '&:k_,, 1.+ are the operators of creation and annihilation of electrons with mo-
menta k and spin s = %1, and E.q. a, are the operators of creation and annihilation of

. . 2
phonons with momenta g. Momenta k and ¢ are discrete vectors k& = "g'{ﬂl,ﬂg,nﬂ,
g= 2%{111,111,113} where my are integer numbers.

The operators ;ﬁk.,,ﬂﬁk., and &q, a, satisfy the canonical anticommutation and
respectively commutation relations

{wkl.ﬂ 'E’Ia:.s: } = Oty ke Osy.0a0 [n'ﬂ'l'rah] = dg,,02 {1'2}

and the rest of anticommutators and commutators are equal to zero. Here &y, 5, Oy ks
are the Kronecker symbols.

We now formally pass to the thermodynamic limit V' — oo (L — o) using the
following relations [2]
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(2m)? ; LW S
Tzk qu"'“ﬂ @ 335** = de=K) T Yea¥ (R2),
(1.3)

vi Vi vi
Qi e Wb T dem e ppee el

where (k) is a §-function and ¥ (k, s), ¥(k,s), a(g), a(g) depend on continuous
momenta k € R®, g € R? and they satisfy the same anticommutation and commutation
relations but with §-functions instead of the Kronecker symbol 8k, ks 8g;,q:. Note that
our results also are true for the case AY, with r=1,2,3.

After these substitutions the Hamiltonian (1.1) turns into the model Frihlich—Peierls
Hamiltonian of the infinite systems

A=Y [ (5~ 1) dtksote ok + [w(a) s@atwia +

2’”} EL [ S stk = ks~ 06a — Qmdol0)

smCE

X[ (ku s)blka, s)ala)+ (ko )o(kn, ) (@) | dkrdbadg,  (14)

f...dk=j;l,,.dk

e . &
Performing a formal pass to the thermodynamic limit we fix the ratio T’n =
= m(g, i.e. together with L vectors n also tend to infinity for all m C Z'. For
example, let Q@ = Q&) = 2_1r|:nhﬂn1“$:|. Now let [ — co in such a way LIV =

= (2+1)L,...,L® = (20 + 1)L where [ are integer. This means that we add to each
edge of pn:wous cube the edga with length L on the left and right hand side of it. We
have

QUE) = fm"""wl_w({m +1)ny, (214 1)na, (20 + 1)ng) =

- %(nllﬂﬂrﬂa} . Q{L‘j - Q:

m{ib} = m@

As it is accepted in Fréhlich—Peierls Hamiltonian, we suppose that w(g) = walg],
a(q) = golg]?, i. e. we consider the case of the acoustic phonons.

The model Hamiltonian (1.4) of the infinite system in the configuration space has
the following form

H=Y [ @9 (~g ~ ) v+ [ Ematawdy +
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s,mCE"

vy T [ bamawa s [ at)eo-rasg@n) +

+ f = ) (z, 8)W(z, s)dz f c':{ylﬂ'iq“”dﬂgiﬂm}l (13

By A% we denote the operator that in momentum space multiply by w(g) = wolg].
It is easa to generalize the model Hamiltonian (1.1), (1.4), (1.5) to the case with
and corresponding subsets Z} of integers numbers. Namely, let

QP =QD.m, mc2z, Z=-%,

where the set of 7 is finite or countable one.
We suppose that @9 # Q%) forall j; # j2 and my # ma.
In this case instead of (1.1}, (1.4), (1.5) one obtains

kz = -
Hy = E (H o .tl) Yh,s Wies + ?W{Ej Qg 0g +

LX)

% Z z z "-"-kuh-l-qaqlqﬂﬁgtq} l:‘é'k. "] Wha,sGg + ‘é’hvl L E‘ﬂ' ] '

*:Ikgiq J J-MCZ}
(1.17

+

B=F [ (a =)y odoh, )i + [ (o) (Dalo)da +

0
+ &[5 5 4 - ba - ita- Aolo)x

i smCE]

x [ ks, )0 (ka, 8)a(a) + B (kz, $)(ks,5) & (0)] dhrdhada,  (14)

szfu'&{z, s}(—% - )fﬂ(u:, s)dz +f5{y}ﬂ*u(y}du+

vZ 2. [f = § (z, s)(z, s)da f a(y)e' = Vdyg(QY) +

=, :m_'.z

+ f Q%= 3 (z, 5)p(z, 5)dz f E(y}ﬂ“ﬂﬂ’”dyy{@’m}]- (1.5 -

In what follows for the sake of simplicity we will deal with the case j = 1 because
the general case needs only additional summation with respect to 7.

1 .
One sees that the model Frihlich — Peierls Hamiltonian contains the factor v in the
interaction Hamiltonian,
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1.2, Heisenberg equations. Introduce the operators of creation and annihilation of
electrons and phonons in the Heisenberg representation by the following formulae [2]

‘;!: (¢, z, 5) = 't ‘1‘;" (x,5) e~ HE, Wi, z, s) = eHlh(z, s) e~HHY,
(1.6)
E{f-, y]l = EtH: &(y) E—ifﬂr ﬂl:ﬁ-, I.I'} —_ EiHla{y].e-{Ht

where ¢ is time, —oco <1 < co.
It follows from (1.6) the following Heisenberg equations

BP(t,z,8)
_Qpms)

- (_% s #) P(t,z, ) + {% 3. (e—“?ﬂ f a(t,y)e'Imvdy +

smcEr
+ &iQm= f &{a,yje"*ﬁmvdy)g_(qml] ¥(tz,5),

[0tz ) _ (

at - “#)Mt.r,sl + (t, =, 8)x

2m

i -{Qmﬂ { ‘le"
x e a(t, y)e dy +
(=
+ E!Qm: f E (t' I,I'}E-{lerdngl:Qm:I]1
(1.7)

ﬂﬂ{t, !.I'} - Ak i e I - =il
i—-——-at = Ata(t,y) + 7 mZC:B: f e ¥ (t, =, s}ﬁ-{m.s:tdx_t 9(Qm)

—iw =Ata(y) + % ’ .nzc:z: f e~ = g (8,7, $)P(t, 7, )TV g(Qm)de.

1.3. Equations for correlation functions. Define the following correlation functi-
ons (1, 2]

{ﬂ{t, y}} L V{ii}-t_ﬂ*m{n B_'ﬂH" }_L .I&{ﬂ-(t, ﬂ}d-lﬁﬁ'ﬂ'] :

(a(t,y) = V{EE-M{_TI e~BHA -1y (4 (t,y)e~PHA),

{é’{tllxl: 3]‘#’{*2: z?ls:]ﬁ (ta,ﬂ]} =
= dm (et )T (d o)tz ) B () ), (19)
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# .
a(ta,y) = a(ts,ya) or a(ta,ua),
<;{tllmlls}ﬁ'(tﬂbmils}> =

i V{}H-E:m{’nrﬂ”ﬁ e Tr(\*l (t1, 21, $)9(ta, xg.s}ls"‘""“)

where # is the inverse temperature and Tr means trace. We suppose that limiting
correlation functions (1.8) exist.
Derive for them equations using the Heisenberg equations. One obtains

_ia%{é(thm,s}\ﬁ(tmmm-‘?}} =
s (—% - )(&{h.-’rhs}i’[thmirs}) .

+ 2, [e"'"-'m*igfqm}% [ (20,0002, 20,aler, ) )y +

m_ Z*

+ Q= y(Qm}% f !"Q“"G'(h.m,slﬁ’(h-zza-ﬂ 5{;1,3,})@],
{%{a{g, llr]} = ﬂj.i(ﬂ-{t- y]}'i'

+ 3 o@me s [t (Yt z ez ), (9

s, mC 2
_ig{a (t.9)) = A} L)+

+ Z Q{Qm}e"q"‘”%fe““:’“‘<1zr{t,m,s}ﬂa[t,ﬂ:,s})dm.

smCE’

MNow dwell on equations (1.9). All of them contain integrals over entire three di-
mensional space divided by the volume of this space. We are faced with problem of
giving rigorous meaning to these integrals. To make these expression meaningful we
- assume that correlation functions (1.8) have the following cluster properties

<1Er{n.m1.~s)¢r(tz.xz,sjﬁ (s, y}} = (15-(:1,,-:11 s}ﬂa{tg,z:,;}><ﬁ{$31y]). (1.10)

Further we assume that the functions
($tzs)itz)). (b)), (@ E)

do not depend on time ¢ and can be expanded in the following Fourier series -
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(V6m(e,2.9)) = (Ve 0(e:9)) = Gy 3 90 9)(@mss),
mCZ

("E”ﬁ'>[@m.s} = Z {"E"(Qm + Q. Slﬂ’[QhS}}.

lcE

(1.11)
{a(t,y)) = (a(y)) = E e~V (a(Qm)),

{ mCZ*

(dew) =(d@w) = 2_1}¥ % eseam;r(&r;@m}}

where summation is carmed ::-ut over m C 2.
If one substitutes (1.10), (1.11) into (1.9) and amplmt-a the formula

¥
. 1 = -
-§-%-%
then one obtains

—iaiil(@(tsz:,aJﬂ{tmmn.s}) =

- (_-—- -_u)<ﬂ’1{fr1 1, $)¥(t2, T2, 3J>+

1 iz
+‘{2‘Tjim§f [ﬂ Q21 g(Qn ) (a(Qm)) +

+e9m=19(Q,m) (@ Eﬂm}}] < ¥ (t1, 31, )¥(ta, 72, 5]'> &

= (52 - ) Dlta,0, 000 02,20,00) + 2u(ar) (D (s, 20,00 22,9)),
(1.12)

where potential u(z) is determined by the formula
=i mz iQmE
2u(z) = @_}fﬂé [679=9(Qm){(a(Qm)) + €9"*(Qm) {uccam})],
and is a real function w(z)® = u(z).
The last two equations (1.9) reduce to the following ones

0=2a%a {yn+m 3 Qg Qum) (P ¥) (@ s) = ARG (1)) +w(y),
amCZ
(1.13)

A¥(a(y)) + —; 3 e Ig(Qu) () ¥)(~Qm, 8) = A (aly)) +w(-v).

:I &,mC Zf
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We have
)= =g 3 e g(Qm) ¥ (~Qmis) =

E F:I smCE!

- ﬁ 3 g (Qm)(# #)(Qm,8) = w(y)

s,mCE

because the sets Q,, and —Q,,, m C Z’, coincide and we suppose that g(Qn,) =

= g(—CQm)-
One can derive equations anu]crgmal to ones (1.9) for correlation function with

arbitrary numbers of the operators ﬁv (¢, x,8), ¥tz 8, a (t,9), alt,y). Itis easy
show that all of them reduce to equations of three correlation functions

(btnz)blta,zae),  GE) (@t

L4. Expression of functions w(x) .rmd' w(y). Consider the Fourier transform
of (1.13)

0 = w(@m){@&(@nm)) + 9(@m) T (% ¥)(~Qrm, ),

0 = w(Qm)(& (Qm)) + 9(Qm) 3 (4 ¥)(Qum, ),

(@(@m)) = - 232 505 9)(~@m o),
(1.14)

3 (@m)) = - Q’" Z‘{w (@ 5)-

Substitute expressions (a(Qm)), (& (Qm)) (1.14) in expression (1.12) for u(z)
S e e S -G ) +

meEZ’

o) =~y
2 =
+ B{QM#QJ—E) Z{‘llb V) (Qm, 3]] =

—{ b B ¢-ianz(Qm)" (B 9N~Qmss) =

(2“-} amEX’ {Qm}
= = 2 ‘Qm= g{qu p
(2m¥ ”22; @ (@Qm) (% ¥)(Qm. 9). (1.15)
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We used again that the sets Qm and —Qm, m C Zj, coincide and g(Qm) =
= 9(~Qm), ©(@m) = W(~Qm), ( V)Qm)" = (b ¥)(~Qm) (because
W @) = (b (@)(=).

It is obvious that u(z) = u(zx)*®, i.e. the function u(z) is a real one.
™
Now we are able to express the potential u(z) through {gb (z, s)¥(x, 3}) Suppose,

as it is accepted in Frohlich - Peierls Hamiltonian, that w(g) = wolgl, g(g) = golql?,
i. . consider the case of acoustic phonons. Then

w(z) = —ﬁ% S e () ) (Qumr ) = %??& (2, )o(z o)),

a,mEZ’

ol SO
(2m)# xo (em)¥wo’ @18

Let express w(y) through {a(y)) or (a(y)).
We have from (1.14)

(@(Qm)) = =22 505 4)(~Qm, ),

M=

(& (Qm)) = —% S ¥H@m, 8),

(a(=Qm)) = (& (Qm))-
Substituting the last formulae in expression for w(y) one gets

wisy= 'ﬁ EK Yy ( Q) (a(@m)) = ~A} (a(p)),

‘”{”}=_+:2_:Jf,,.§f "(Qm)(E (Qm)) = A E @), (LD
w(y) = w(y).
The last formulae also follows directly from (1.13),
Thus we express w(z) through (15{:!:,3}1&[1:,3}} and w(y) through (a(y)) or
(iw). |
1.5. Approximating Hamiltonian. Consider the following approximating Hamil-

tomian -

Hoe=Ho =2 [ @) (~ 5 - ) Wlar o) +

+ [@ataay + 3 [2uz)d (@, s)(z, o)z +
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+ f (E{y} + a{y}) w(y)dg — xfu’{zjdx +

+fw{ym—iw(y}dy = Hys + Huphs (1.18)

where H,. is the Hamiltonian of the electron system and M, is the Hamiltonian of
the phonons system.

Define the functions uw(z) and w(y) by using the condition of minimum of the free
energy as follows

OREINCTCDIICR)R
(1.19)
wy) = A} {a())o = A1 (@ (1))

Here (-)g denotes averaging with respect to the approximating Hamiltonian H,.
Let show that equalities (1.19) indeed follows from condition of minimum of
the free energy of the systems with the Hamiltonian H,. We have the free energy

Jim %111‘1'1‘&_‘””‘. It is easy to see that equalities (1.19) can be obtained differentia-
=+

ting lim %ln(Tr e~PHn) with respect to u(z) and w(y) and equating derivatives to

Voe—tom

zero. By direct calculation one can check that the averages (1,{! (t1, 1, 8)(ta, T2, 3}}0,

(a(t,¥))qs {a ¢, y}}u satisfy the same equations (1.12), (1.13) as the corresponding
averages (1.11).

We omit the proof that equation for the all averages of the model Hamiltonian H
(1.5) coincide in the thermodynamic limit with equations for the all averages of the
approximating Hamiltonian H,.

From (1.18) one sees that the approximating Hamiltonian consists from the Hamil-
tonian of electrons H,, with potential 2u(z) and the Hamiltonian of phonons without
interaction between electron and phonon systems.

Show that the Hamiltonian of phonons can be diagonalized. Represent it in the
momentum space

- f & (Qu(g)ala)dg + f & (Qw(—g)dg +

+ f a(g)w(q)dg + f w(g)w ™ (q)w(—q)dg. (1.20)

Mote that, as usual, we use the same denotation for the Fourier transforms of the
operator of creation and annihilation and the function w(g) in the momentum space
with momentum g.

Consider the following linear transformation of the operators a(g) and a (q)

(g) = wig)w™"(g). (1.21)

j=2 1|

alg) = &(g) —w(-glw~g), a(g) =

ISSN 00416053, Vicp. mam. aypi,, 2003, m. 55, e 8
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It is easy to check that the new operators a(g), E:l:{ﬂ satisfy canonical commutat-
ion relations and transformation (1.21) are canonical one.

Substituting a(g) and a (g) through &(g) and &(g) according to (1.21) one obtains
Hun = [ #au(@a@ds +2 [wl@u @u(-0de. (122

Determine the vacuum state o for @(g), a(g). It is obtained from equation

a(g)wo =0

or : ;
(alg) + w(—q)w™"(g))w0 = 0.
It is easy to check that ¢q is the following coherent state

o = e~ J wl-akw (@)ala)day) (1.23)

where |0) is the Fock vacuum.

Thus M,y describes the system of boson quasiparticles (quasiphonons) with the
vacuum that is coherent state (1.23).

The above obtained results can be summarized in the following theorem.

Theorem 1. The model Frdhlich— Peierls Hamiltonian (1.1), (1.4), (1.5) is thermody-
namically equivalent to the approximating Hamiltonian (1.18) and sequences of their
Green functions coincide in thermodynamic limit,

In given section we follow papers [1] in which analogical results have been obtained
in the one-dimensional case and for § = 1, i. e. for a periodic potential u(z).

In the next subsection we will show how to determine the potential w(z) and
funetion w(y).

1.6. Eguation for potenfial w(x) in one-dimensional case. In this subsection
we derive an equation for potential u{xz) from the self-consistency condition. We will
follow papers [1, 3, 4] and book [5). Namely, we have the following self-consistency
condition i = '

u(z) = — > (=, o)(z, ) (1.24)
for the acoustic phonons.

Denote by @z, E) the eigenfunctions of the Schridinger equation with the potential
u(z) and eigenvalue E (in the one-dimensional case) .

(@ E) + u(z)e(z, E) = Ep(a, B). (1.25)

Note that for the sake of simplicity we put 2m = 1.
The wave function of equation (1.25) is given by

oz, B) = [(x@ E))x(=. B)] " e (i f dyx(v, E}) r
]

x(z, B) = [p(E)} (B — (=), (1.26)

IS5 0041-6053. Vep. wam. xoypr, 2003, m. 55, M &
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PE) = (B - E1)(E - E2)(E - B),

7(z) = %{El + E; + B3 — u(z))

where E,, E;, E; are boundaries of the spectrum.
The potential u(z) is a one-band potential,

Represent the operators 1(z, o) and (z,s) through (x, E)

P(z,0) = f 5B, 0)p(z, EMIE,  (z,0) = f o(B,0)p(z, E)AE,  (1.27)

where integral is carried out over the spectrum of the Schrédinger equation (1.25).
The operators a(FE,s), a(E,s) satisfy the following anticommutation relations

{a(B1,01),0(B2,00)} = 6(Br — B2)o o (1.28)

and the rest of anticommutators are equal to zero.
Using representation (1.27) and anticommutation relations (1.28) one obtains from
the self-consistency condition (1.24)

1 2
ue) =< [ f(B)pla, B)P4E (1.29)

where f(E) is the Fermi distribution function.

From representation (1.29) one can derive an equation for u(z). Namely one can
check that the function |@(z, E)|* as product of sniutml: of Schridinger equation
{1.25) satisfies the following equation

(% - 41@% =17 (%u{z])) lee(z, B)|? = +¢E%IW{-’G.EJI*-

Mow multiply this equation by f(E), integrate over E and use self-consistency
condition (1.24). One gets

& : ] 1 8
Feu(e) ~ u@)zmue) =~ - [ BBt BFAE.  (130)
The integral in the right hand side of (1.30) is the averaged energy of electrons with spin

+1 in point = and equilibrium it does not depend on = (otherwise the electrons will
move from one point to another). Therefore

::a ul(z) — Gu{.a} u[:.'] =0, (1.31)

The last equation is famous Korteveg —de Vries equation. Integrating equation (1.31)
twice one gets.

E 2
(Eu{m]) = 2u®(z) — Zgou(z) — g3 (1.32)

where gg and g3 are constants.
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As known the Weierstrass elliptic fanction P(z) satisfies the following equation

2
(5P@) =4P%() - 0P - o (1.33)

Comparing (1.32) and (1.33) one conclude that potential u(z) can be expressed in
term of P(z), namely
w(z) = —2P(iz + w). (1.34)
It is well known that potential (1.34) is one-band potential.
The function w(y) can be obtained by using formulae (1.14) and (1.17) in which

-
oW} (£ @m,s) are already known as the Fourier coefficients of known functi-
on u(x).

Obtained above resulis is summarized in the following theorem.

Theorem 2. In the one-dimensional case the self~consistent potential is the one-band
one and is expressed through the Weierstrass elliptic function. '

2. Hierarchy BBGKY. 2.1. Nonequilibrium reduced density matrixes. Let p(0)
be nonequilibrium density matrix at time ¢ = 0. Introduce the sequence of reduced
nonequilibrium density matrixes [2]

{;j’ {f:yhal} Tt 1;’ {t,y,l,a,quﬁ'{t,m,,,f,,) L 'ﬁ'(tamlr-rl}lx
X @ (t,21) - @ (t2m)a(t 2'na) -0t 1)) =
= %T‘l’{ "’E' {t,yhﬂ';} T 12' (t'l r:l'nla-.!:.}ﬂ?{t: x‘l:rfﬂ} i .'!,Ir{t,a:;,n:lx

X & (8,21) & (£, 2ny)a(t, #'ny) . - 6(t, 21)p(0)) @1

where

E = Trp(0).

Note that the all operators are in the Heisenberg representation at the same time .
For the sake of simplicity derive equations for the reduced density matrixes with
si=s=1m=n=05=8n=0mn=1n=0ads =35 =0,
11 =0, ng = 1. The general case will reduce to these three cases.
' By using the Heisenberg equations (1.7) one obtains the following equations

2@ (.ot m ) = [F (52 +4) + (52 +4)]| 0 Cwmoreemm +

2m
o {Z [Eiﬂng{qm}% /E-iﬂml{.,;} {tl y.o’}‘lﬂ!(‘ﬁ,m,r} a I:t, 3}}'5;3 =+ .
R (] }i feiﬂ...x_'(qi, (£, ¥, o)lt, =z, T)alt z’}};iz’:l =
m) : LT p d

- z [eile'g{Qm)% fg-“-?m"{ﬁ- (t, 4, )bt =, 7) a (t,2))dz +

I5EN 0041-6053. ¥ep. sam. scypr, 2003, m. 55, Mo &



1082 D. YA. PETRINA
4%{& (t,2)) = A¥(a (t,2)) +

+ E;-Hﬂng(qm}%; f e~ (¢, 8)9(t, 2, 3))dx, (22)

2 (a(t, ) = Aba(t, ) +
+ ge—*ﬂ-ﬂ*gtama% [ 9= .z )tz e

We are again faced with a problem of giving a rigorous meaning to the integrals
divided by the volume V' of the entire space R? in the right hand side of (2.2). For this
we suppose that the reduced density matrixes (2.1) have the following cluster properties

(bt oW(tv.m) = ($(t.2,0)) it.v. 7)),
($(t,2,0)0(t0,7) & (1,2)) = ($(t,2,0) ) (v, TG (8,2),
(b2t n el ?) = (bE 20 )EnNaE ), @

($t.2.0)) = %emﬂ(a@. Qo)) W) =3¢ Q).

(at ) = 3@ (6 Qm), - (alt, ) = e (a(t,Qm),

forall £t = 0.
Note that, as it is commonly accepted in quantum physics, (1.&{: Qm: a‘}) (Wt @m. 7))

(a{t Qm}} {a(t, Qm)) means the corresponding Fourier transform with the momentum Q,
Substituting (2.3) in (2.2) one obtains by analogy with (1.12)

‘%((‘:"f*-m ) #(t z,7))) =

= [-(?_m +_;.|.) (?— + ,u.)] {ﬂd{t.yi r:'}) (¥(t, =, "':l})
+ Z [eia'":g{@m}{a (t,Qm)) + g~ 10w tgfgmj{ﬂ{t1 Qm}}] {’i!.' (t, v o)1 Plt, z, 7)) —
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= 3 [9Y9(@m) G (6, @m)) + =@ Y5(@m){alt @m))| (¥ (tvr 0) Y (a2, 7)),

(6 (6.2)) = AH(E (6.2)) + 30 eH (@) (B8 9) )0t ) (=Qm),
' 2.4)

i (a(t, #)) = A} (alt, ) + 3 e g(Qm) ({9t )t ) (@m),
where by ((Ea {t,a])m(t.s}})(i@m) is denoted the Fourier transform of
(<E’{*TI= S]I)(fﬂl:t. z, s}}) at momentum = Qyy,.

By using the method of separation of variables in the first equation one obtains the
following system of nonlinear equations

—s%{{a (t.z,0)) = (—% - )(ﬁv (¢, z, o))+
+[a%(E (t2) + A alt,2)] (9 (2,0)),

F0ean) = (~g - p) Witz )+

+[a% (@ (t.2)) + At {alt, 2)] ((t 2, 7)),
(2.5)

'Q:I[Qu.

£ (@ (t,2)) = a*:a (t,2)) + Z A¥((h (1,2, 9)¥(t,3,9)),

£§{a{t,z}} = a&{a{:, )+ Al (4 (.2, $)) (. 2, 5)))

where by A% and At are denoted the operators that correspond to the operators of
multiplication by the function w(Q,) and g{@m) respectively in the Fourier transform.
In the last two equations we again used that the sets {Q..} and {—=Q..} coincide.

MNow apply the operator -i% and iﬁ to the third and fourth equation respectively.
One obtains

T {ﬂ- (t,z)) = —wiA(a (¢,9)) +Eﬂ--’f (vp t,z, 5)) (it z, 8))) +

+;m{(_ 26 {t,z,s}}) (Wt z,8)) + {9 (2,2, 5)) (% {ﬂﬁ'{t,ﬂ:.s}})},
(2.6)

TESN 0041-6053. ¥ep. svam. xcypi., 2003, m. 55, Me 8



1084 D. YA. FETRINA

—%{G(t, x}} = -wgﬂ{ﬂ-l:f, I]I:H-

iy {g* (( (&=, ) ({2, z, 8))) +

+at K%{:ﬁ {t,z,s}}){ﬂ:[t,r, 8)) — {:‘I;Er (¢, z,8)) (%W’{t.z, S}}):I }:

Al = Ab. AL

MNow add the left and right hand sides of (2.6). One obtains

- 2 (6 (2 + (e, 2)) = —BA(G (1.2) + (alt, )+

123" a4 (4 (b2, 8) (ltz5))). @n
Apply to the left and right hand side of (2.7) the operator A%. One obtains

_%{ﬁi{a (t,2)) + Ad{a(t,z))) =

= —wiA(Aat(a (t,2)) + At{a(t, ) - 2&2&{{1}1 (t,z, 8)) (¢, z,9))),

(2.7)
o = wogs.
Denote by

w(t, z) = A (a (¢, 2)) + Ad{alt, 7). (2.8)

Then equation (2.7') looks like the following wave equation for w(y)

2 -
_%w{t, z) +wdhu(t,z) = —2a A (6,2, N WED ). (29)
We have also the equations for h‘b (t,z,s)) and ((t,z,5)}
200 (42, 9)) = (_% ’ #) (¥ (2, 8)) +w(z)( (. 2,9)),

(2.10)

i%{fﬁ(t.m. s)) = (—% - ,u) (¥(t, =, 5)) +wiz) (P(t, z, 5)).

It follows from (2.9), (2.10) that and (3(2,z, 5)), {1} (t,z,5)) do not depend on
spin s
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(Wltiz,8) = @WEa), (@ (¢3.9) = (b (t,2))

if initial data do not depend on it.

Thus we have proved the following theorem.

Theorem 3. The equations for noneguilibrium reduced densify matrixes (2.4) are
equivalent to nonlinear equatfons (2.9, (2.10) if initial reduced density matrixes satisfy
condition (2.3). We consider (Y(t,z)) as the wave function of electron and w(t,z) as
lattice displacemenis.

Equations (2.9), (2.10) have been derived in the one dimensional case by author and
Enolskij [&, 7].

Mote that in book [5] and paper [8] another, different from (2.9), (2.10), equations
have been derived on basis of postulated Hamiltonians with respect to two functions
Y(t,z) and w(t, x). Our equations (2.9), (2.10) follows directly from equation (2.4)
for nonequilibrivm reduced density matrixes.

2.2, Soliten solution of equation (2.9), (2.10) in one-dimensional case, Consider -

equations (2.9), (2.10) in one-dimensional case when A = a3 * € R!. For the sake

of simplicity we will denote (y(t,z)} by (t,z). Equations (2.9), (2.10) lock like
those

2 2
—%w(t,m] +w§§?w(t,r} = ~4a%|ﬂa{mzﬂﬂ, (2.9
i%*ﬂ(*-ﬂ] = (~ %% - #) (¢, z) + wlt, z)v(t, z). (2.10)

Consider solution of (2.9, (2.10") such that
Wl:t, I-} = Hi'{I gl 4 e Iﬂ}l hﬂ(ilmj F - I"l‘gr{"'F -Vi- mﬂ}in‘
From equation (2.9') one obtaing

2 ¥
0l0) = ~r g QP (=2 -Vi-zo

We suppose that V2 < w3,
This equation is satisfied of

w(Q) = ~r =g MOP

Then the second equation (2.10") is reduced to well known nonlinear Schridinger
equation

B 1 & dex
1E¢(':‘a, i'!.‘-} <+ (m 'E:-':“i + U 'lié{fa z) + whﬁ{t, 1}'2'!;1&, I} = (.
By using the following transformation of the wave function
W(t, z) = e*/(t,x) (2.11)

and the scaling transformation of the variables
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f_ 2o ,_' I|| dam
g = wE - wt, T = wm, {212}

one obtains the standard nonlinear Schridinger equation

2V, + gV () AV, P =0, (229)

Equation (2.13) has well known one-soliton selution [9, 10]

expi(—ﬂfm’ —4(E - — o+ g)
ch2n(z’ — 4€¥ — 20)

W(t, ") = 2in (2.14)

where the constants £, n, Tp, (9o are defined by initial data (0, =).

Substituting transformation (2.11), (2.12) into (2.14) one finally obtains

2 2
Exp_i(%uﬂm - (Fa-ﬂm—- Etl‘ﬁri)f—F—pt— lpo+%)
Pt z) = 2in T
chi[::—ﬂt—mu}

where

e [] =d 4o
A e T P

For the lattice displacements one obtains

1
r:.higim — vt —zo)
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