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ON POLYMER EXPANSION FOR GIBBSIAN STATES
OF NONEQUILIBRIUM SYSTEMS
OF INTERACTING BROWNIAN OSCILLATORS

PO MOJIMEPHHH PO3KJIAJ
JIISI TIBBCIBCBKAX CTAHIB HEPIBHOBAJKHHAX CHCTEM

B3AEMO/IIOYMHAX BPOYHIBCBKHX OCITHJIATOPIB

Convergence of polymer cluster expansions for correlation functions of general Gibbs oscillator-type
systems and related nonequilibrium systems of Brownian oscillators is established. The initial states for
the latter are Gibbsian. It is proven that the sequence of the constructed correlation functions of the
nonequilibrium system is a generalized solution of the diffusion BBGEY-type hierarchy.

Beranonneno 36ixuicTs knacTepimx poaknanio ans kopenauifing dyreuili saranswix rpareonx rifboin-
CHKHX CHCTCM OCUMIATOPHOMG THITY TA CNOPIIHEHNX HEpiBHORAMHHX cHoTesM Gpoynincakux ooUMRATOpin
¥ Tepraapnasmiuniit rpansul. Movarrosi crann ana ocrannix ¢ riGGcipcexnmn. Josenero, wo mocnigon-
HicTe nofynosannx dryHKuiil KepiBHOBAKHOT CHOTEMH € YIATRNLHEHHM Poan’makom dHxyaifinol icpapxil
Tuny BEETKI.

1. Introduction. In this paper we generalize the results of our previous paper [1]
devoted to the thermodynamic limit transition in Gibbs systems of oscillators interact-
ing via ternary interaction potential. In [1] we showed that reduced density matrices
(quantum correlation functions) of the quantum systems are expressed in terms of the
correlation functions of Gibbs path oscillator systems with interaction determined by a
pair complex potential, satisfying the Kunz condition [2] and worked out the conditions
implying convergence of a high-temperature polymer expansion. Here the pair potential
is more general.

‘In this paper we also perform the thermodynamic limit at high temperatures and a
small time interval in lattice nonequilibrium systems of Browmnian oscillators interacting
via a pair (general) superstable potential whose states are described by the sequence
of correlation functions. These systems can be reduced to Gibbs oscillator path lattice
systems with a complex pair interaction potentials (the reduction is fulfilled in terms of
correlation functions) whose real part satisfy the superstability and regularity condition
[3] which is more general than the Kunz condition. This requires a generalization of the
conditions leading to convergence of the polymer expansion.

We consider, as in [1], 2 general Gibbs system on a lattice Z9, whose sites label
variables from the measure space (£2, Fy), where £ is a complete metric space, Fyis a
positive g-finite measure, which is finite on compact sets, with the potential energy U,
being the continuous function, expressed through the one-particle potential u(w) and the
two-particle complex-valued potential us_y(ws, wy)

Uwa) = 3 ulwe) + Y teoy(wewy), (L.1)
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ON POLYMER EXPANSION FOR GIBBSIAN STATES ... 1357
where A is a finite set with the cardinality |A|. We will require that

[Re ey (wa, wy)| < %Jf[m —y(v(wsz) +vlwy)), Je=|Jlh €00, Jv=0,
(1.2)

e e L', P), e el (LP) P=e?p, B,r>0, (1.3)

Im“:—y{“ﬂ':uwjr} o .fu{j:!: = I,I'l]if’{”::wy}:

1.4
lI¢llz = f1¢(W.w'lI“P(dw}P(d=ﬂ'} <00, [[Jollx < oo, =9
where |z is the Euclidean norm of z € Z% and by ||F||; we denote the norm of the
Banach space L7(Z%).

The first condition 15 more general then the Kunz condition {on the right-hand side of
{1.2) there is product of two square roots of the positive function v, depending on g, Ty
respectively, instead of their sum). Conditions (1.2), {1.3) imply the superstability and
regularity conditions [3].

Gibbs comrelation functions are given by

pMux) = Z5! f €U Py (dugy x ),
{1.5)
2y = ]E-Eu{wﬁ].ﬁ[dﬂﬂﬂ} =0, BeR*.

Here the integration is performed over UMYl and QMM respectively, Fy(dwy) =

= [] Faldws). Both potentials and Fy may depend on the inverse temperature 3.
TeEXN
The polymer high temperature expansion is given by

=Xl & 4 (o)
pax(wx) = ( E_ﬂ“{"’}ﬁr(dw]) ¢ cor pMwx) =

Zay(xuY) P
= Y R {M]Fux {W]l (1-6}
rezn;.x Zn ‘/

where F,, (wy) are the truncated Boltzmann functions satisfying the Kirkwood - Saltsburg
recursion relation (5.1) [1, 2]

Pldw) = ( f a"*’ufwﬁ.{m:)-l e~ Pu() Py (du).

The polymer expansion is derived with the help of the Ruelle [3] algebraic techni-

que [2].
Polymer correlation functions

ATET
Axuy) = Zagen
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1358 W. L. SKRYPNIK

satisfy the Kirkwood - Saltsburg (K8) polymer eguation [1, 2].
Standard arguments [2, 3] (see Appendix and Proposition 2.1 in [3]) which demands
only condition (1.2) yield the bound

P
A Gfwe)
a8 _sup z fP{MHFWx(WY}l = Elxlﬂ.BA.Arl:ﬂ.B}m_lg levm. i
e YEA"|Y|mm {17}
4>0, Bg=0,
where

B ¢ = BES [ :
A A NE?'IJ,EEA‘[EZA’ = y{W}

be(w) = e~ BB =Jovw)) / e.ﬂﬁ{w',‘lle-ﬂ‘ur(m.u!’) - 1}P(dw'),

B:B,‘LA‘. A=A =25
In order to establish convergence of the polymer expansion in the thermodynamic
limit, i.e. A — Z9, it is necessary to prove that [2, 3]

lim B =0, lim BD =0, (1.8)
F—0 F—0

where

D= fcﬂﬁfw]_p{dw].
(1.7} implies that there exists 5(X) such that (see [1, 2])

AX) Pa(X) < MEX, |pa(X) = B(X)| < ™leo(), E=e7M(B+ mﬁ};b}

where A C A and ) is the distance of A from A® = Z¥\A and € is a decreasing at
infinity function.

From (1.8), (1.9) it follows that eB£ < 1, e > 1 for sufficiently small 5. In simplest
cases [ is non-zero and finite, but in a general case this parameter may tend to infinity
at the zero temperature,

In [3] we derived (1.7} with

H(w) = Joyu(w) + 67 In(1 +b(w)),  BP(w) = f |¢(w, )P Pld'),  7>3,

and proved (1.8) if the real part of the complex pair potential satisfy the Kunz condition
with the function v. This was done with the help of the Kunz-type estimate of B. But the
Kunz condition together with (1.3) are quite restricting and do not allow to consider the
case, important for our paper, of the following real-valued potential energy for classical
and quantum systems

Ulan) = @@ + 3 dolle = elamas)s 8= s

TEA EXTT.N
20(q=, @y) = (024°(02)) 81" (0=, ay) + (Byu®(gy))8yu°(gy G=): vy ER.
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ON POLYMER EXPANSION FOR GIBBSIAN STATES ... 1359

The obvious inequality 2ab < a?+b?, a = 8,u%(g.), b = 8:u(gs, g,), cannot yield
the condition (1.3) even if the derivatives of the pair potential u%(q, ¢) satisfy (1.2). But
we will show that a more refined estimate yields (1.2), (1.3) (se¢ Proposition 4.1). Using
(1.2), instead of the Kunz condition, one is obliged to generalize the first term in the
function ¥ in order to have (1.8). For such the generalization we find conditions, leading
to (1.8), in the following proposition.

Proposition 1.1. Let (1.2) - (1.4) hold,

O(w) = () + B In(1+bw),  v(w)>0,

and ||e®7||2, ||e#7=¥| 2, ||e~FCr==)||, be bounded at f# = 0. Then there exists a posi-
tive eonstant B such that Ba 4 < J(A, A")B, where J(A, A") = ess Eup ¥ Jx -

I-EA"
8) holds if

éiEzﬁu + gl litve™ P2 log =0, Jim, 51+ I1¢a)fue™"1lz = 0.
(1.10)

It is not difficult to check that in the case of ¢ = 0 and classical system (1 = R, Py
is the Lebesgque measure) the conditions of the proposition and inequalities in (1.10) are
satisfied if n > m, where 2n, 2m are the degrees of the positive polynomials u(q), v(g),
respectively (it is necessary jo rescale the variable ¢ — f~%%gq in the above norms).
The similar condition is required when the Kunz condition is used.

In formulating our main theorem we will use the Banach space Bg,_ g5 of sequences
F = {Fx, X € Z%} of function Fx (wx) with the norm

[|Plg;—po = ess Eup £ exp {—,*3 % ‘Ufk’:}} [Fx (wa)l-
[ EX
We will say that fy, € Be,_gg, A C 29, locally converges to f in B, _gg if for every
bounded A there exists a decreasing at infinity function £ such that

lixalf — fallle-sv < &(A),

where 4 is the operator of multiplication by the characteristic function of A and A =
= dist {4, A%}, i. e. A is the distance of A from A® = ZH\A.

A choice of © in (1.7) should yield the analog of the Ruelle superstability bound [3]
for the correlation functions in (1.5) at high temperatures. This choice is quite obvious
and is written down in the following theorem.

Theorem 1.1. Lef the conditions of Proposition 1.1 be satisfied

Fw) = eufw), -‘-‘*-’-%.

and for sufficiently small B the ineguality ||e=#=7-¥)||__ < e holds.
Let, also, the conditions (1.2) - (1.4), (1.10) be satisfied. Then for sufficiently small
B pBa converges uniformly on compact sets to §(X) and relations (1.8), (1.9) hold.
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1560 W. I. SKRYENIK

Moreover, the sequence pp = {pa,x,X C Z%} in (1.6) locally converges in B¢, s to
the sequence p = {px, X C Z%} € Beg,— g5, given by

px(wx)= 3 AXUY) f P(dwy) Fy, (wy), (1.11)
YCXe

F.x (wy) satisfy the K S-recursion relation (5.1) and ||p||eg;-p5 = M(1 — £eB)~L.

This theorem generalizes Theorem 1.1 from [3]. The only difference in the proof is
that one has to demand that ||e=#(—7-*}|| , < e for sufficiently small inverse tempera-
tures, This condition is necessary for the proof of (1.7) (see Appendix) and is obvious
for classical systems.

Let A € 5., where S, is the sphere of the radius r centered at the origin (we imbed
Z4 in RY), When one estimates the difference of the expressions in (1.11) and (1.6) it
is necessary to estimate the sums over the sets A°®, Siairs ﬂ\S§A+r- The sums over
the first and third sets are estimated with the help of (1.7), the first inequality in (1.9)
and the inequality

J(A4,4%) £ 3 J(lul) = ().
vz

This inequality becomes obvious if one makes a translation of the set A in the sum in
such a way that the set A4 after this translation touches the origin in the point at the
distance dist {4, A®} from A®. Here one uses the translation invariance J(A -+ z, A’ +
+z) = J(A, A’). Making estimates of the sum over ¥ in the expression for the polymer
expansion one has to bound it by the sum over m and the sum over subsets ¥ such that
|¥| = m and then apply (1.7). The second sum in this way is estimated with the help
of (1.7) and the second inequality in (1.9). As a result the function £ will also contain
the three terms:

&(A) = 2(1 — eBg)~ [E"m & Eﬂ(gj + Eu(%)] ,  eBE<l,

where we used the inequality dist {4, 55, .} <r'.

Cur main application of Theorem 1.1 concerns systems with § = RxQpx )y =Rx
%15, where {1y is the probability space of the Wiener measure P, (dw), concentrated on
paths starting from g, and the conditional loop Wiener measure P&ﬁ:q[dw), concentrated
on paths starting from ¢ and arriving at g at the time 3. The measures Fj in these cases
are given by

Po(dw) = dgPy(dw) Po(dw*), (L12)

Py(dw) = dgP? (dw)Py(dw*), (1.13)

respectively.
In both cases the potential ¢ is given in terms of the stochastic integrals

Blw,w') = 7 [ nf du'*(r)ou°(w(r), w(r) + [ w*(r)a’uﬂcwcf:u.ﬂf(-rn} :
[

(1.14)
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ON POLYMER EXPANSION FOR GIBBSIAN STATES ... 1361
where w = (g, w,w*), #(8') is the derivative in w(w’). The real part of the interaction

potential will not depend on w*®.
Using the formula

/ j f{f}dW'(T})

and the elementary inequality (a + b)? < 2(a® + b*) we obtain

f Po(dw®) Py(dw')¢? (w, w’) <

2

Po(dw*) = [ f2(r)dr
[i]

< i~ f[{ﬁu“[w('rlsw'f'r]}): + (8"’ (w(r), w'(r)))?] dr. (1.15)
0

This formula will be used for deriving the estimate of ||¢]|=2.

In this paper we will not consider measures (1.13) which correspond to quantam
systems of oscillators interactiong through a factorized ternary potential as in [3]. But
all our estimates from the fourth section can be used for a proof of convergence of the
polymer expansion for reduced density matrices of quantum systems with the potential
energy Us (see the beginning of the third section) in the thermodynamic limit. This is
an interesting system since it has the Gibbs ground state with the pair potential from the
Smoluchowski equation.

Cur paper is organized as follows. In the second section we consider systems of
interacting Brownian oscillators and formulate Theorem 2.1 which establishes an exis-
tence of the correlation functions in the thermodynamic limit. In the third section we
show how a reduction of the nonequilibrium systems to Gibbs diffusion path systems
with a complex pair potential (1.14) and a pair potential ¢ is performed and formulate
Theorem 3.1 whichyis a version of Theorem 1.1. Theorem 2.1 follows from Theorem
3.1. The fourth section is devoted to-a proof of Theorem 3.1. In Appendix we prove
Proposition 1.1.

Earlier (see [4, 5] and references there) we proved existence of the correlation func-
tions of nonequilibrium systems of interacting Brownian particles in the thermodynamic
limit for Gibbs initial correlation of functions utilizing the same reduction of the system
to Gibbs path systems with a factorized three-particle potential. Here we demonstrate
that oscillator systems are easier to treat since there is no necessity of applying compli-
cated, as in the case of particle systems, LP bounds.

2. Brownian oscillators. Dynamics in the system of finite number of Brownian
linear oscillators, whose one-dimensional eoordinates g, are indexed by the site = of the
d-dimensional lattice Z¢, interacting via a pair potential J{|z—y|)u(gz, gy), is governed
by the Smoluchowski equation for the density p"‘(qx;t] of a probability distribution,
where gx = (gz, = € X) € RI*l X C 29, | X| < 0o (| X| is the cardinality of X):

| %ﬂ'ﬂ(fh;ﬂ - m%{ ﬂm{ﬁ'lﬂ, =+ %U"{Qx]}pﬂ[qx;t], (2.1)
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1362 W. L. SKRYPNIK

Ugx) =D u%(ga) + Y 6l (0= 0), 62 (g ) = Jo(lz — ¥)u°(gz0 00)s
=eX =, yEX

(2.2)

where 3 is the inverse temperature, u%(g) is an even bounded from below polynomial
of the 2n-th degree, u®(g,¢') = u%(¢’. q),

[4°(0,0)] < 50°(a) +v°(@), 23)

10w(6,0)] < 30 +Y@), 1000 ) < SRI@ V), @)

where v°,v',v" are positive polynomials in |g| of degrees 2m, 2m — 1, 2m — 2, respec-
tively, and m < n and 8 is the partial derivative in g.
Equations (2.1) is the forward Kolmogorov equation for the stochastic oscillator
equations )
g=(t) = _5=Uan'h[:t}} +ﬁ_&‘i‘3=(ﬂ| TEA,

where 1 (t) are independent processes of the white noise.

Solutions of the infinite system (z € Z%) were proven to exist in [6, 7]. A convergent
(high temperature) cluster expansion for associated measures in the case of Gibbsian
initial measures is proposed in [8] in the simplest case. In [9, 10] the nonequilibrium
systems, described by the infinite systems of stochastic equations, are treated as Gibbs
lattice oscillator path systems if the equations have a solution.

Let us consider the nonequilibrivm correlation funetions for the set A of finite cardi-
nality |A|, assuming that initial correlation functions are Gibbsian and generated by the
potential energy U

pPMax,t) = 21 fP“(qn'.t}dqu, Zy = fﬁ“(ﬂ'ﬁ;t}dqm

where the integrations are performed over RIM\XI and RIM, respectively,
1

U(ar) =mU%ga) + Uaa), m0 > 3. (2.5)
Ullga) = > ulg=) + 3 ub_,(g=: ),
TEN = HEMA
luz(a, &)l < =D (e) + v ()], 11T < oo, (2.6)

where v! is a positive polynomial of the 2m*-th degree, m* < n! and u!(g) is an even
bounded from below polynomial of the 2n'-th degree, n! < n.

From the required conditions and the Feynman —Kac (FK) formula it will follow that
the correlation functions exponentially decrease at infinity in every variable. This makes
it possible to prove the law of conservation of probability following from the gradient
character of the Smoluchowski equation.

TEEN 004 1-86053. Vip, mwam. xcypii., 2003, m. 55, Ne 10
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ON POLYMER EXPANSION FOR GIBBSIAN STATES ... 1363

Due to the law of conservation of probability the partition function £ does not
depend on the time:

Zn ik fe"'ﬁ'&'["“]'dqﬂ.

Taking into account this law we derive the following hierarchy:

zEX

%ﬂ“(u;ﬂ =) & {ﬁ“lﬁmﬂ‘“‘qu;f} + p™(gx; 80U (gx) +

$: X f Eﬁsuﬂ_y]{qx-'qu}f!"‘(qxw;t}dey}-

VEALK
In the thermodynamic limit the following hierarchy is written as

%P(gﬂ:i t)=> & {ﬁ“ﬂxp(q;:: t) + plax; £)8:U" (gx )+
TEX

+ Z f{aﬂﬁg_v}mm?r]ﬂ(qxuy;t}dqy}. (2.7

yEX®

where X© = Z9\X.

We will say that a sequence of correlation functions is a generelized solution of the
diffusion hierarchy if it satisfies the last hierarchy which is averaged in the time and the
oscillator variables with an infinitely-differentiable test function with a compact support
and all the derivatives in which are acting not on the correlation functions but on the
test functions (the first derivatives change signs).

Theorem 2.1. Let § be sufficiently small, conditions (2.3), (2.4), (2.7) be satisfied,
BlX) be the limit of the polymer correlation functions ga(X) of the initial Gibbs system,
=1l <coandn—m—2m+1>0, i =max(m,m!nl), m'<m. Then
there exist bounded funciions py (qx;t) and positive numbers M’ £'(8,t"),& < —:: such
that

1) the finite volume correlation functions p™(gx;t) are given by

Phaxit) = 3 AalX UY)pr(ax;t),
YEAMX

their sequence p™(t) belongs to Be g (1-ayuo and le™ (@), B0 S M';
2) pM(t) converges locally in B g (1-guo 10 the sequence plt) = {plgx:t), X C
C Z*} € B, 8 (1—eyue With the same norm whose elements are given by

plaxit) = 3. BXUY)py(ax;t); (2.8)
¥YcX~

3) the sequence p(t) iz a generalized solution of the diffusion hierarchy (2.7).
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1364 W. 1. SKRYPNIK

This theorem is a consequence of Theorem 1.1 and a reduction of the considered non-
equilibrium systems to diffusion Gibbs path systems in which interaction is determined
by a pair and a ternary interaction potentials. It is proven with the help of Theorem 3.1(a
version of Theorem 1.1), formulated in the third section. We believe that the condition
on n,m,n! can be removed for the systems with the quadratic interaction potential
u(g,¢") = (g — ¢')%. In this case the ternary potential degenerates into a pair potential
depending on A.

3. Diffusion Gibbs path system. After the rescaling time we obtain the following
Smoluchowski equation for ¢/ = 5~

2 axiB) = 3 8:(0:0"(axi B) + Plaxi BIOBV(@x)).  GD)
=EXN

The reduction of the above nonequilibrium system to a Gibbs oscillator path system
is fulfilled in two steps. '

The first one is the transformation of the Smoluchowski equation into the heat equa-
tion. In the second one we solve the latter with the help of the FE-formula. Indeed,
after the substitution

P(ax,; BY') = e~ FU @)y (gy; t),

the following heat equation for ¢ is obtained:

o blaxit) = 3 B2(axst) + BU{ax)plaxit) ¢2)
: zEX
a(ax) = 3 3 [-020%an) + SO0}

zeEX

We solve the Cauchy problem for the heat equation with the help of the well-known
[11,12] FK (Feynman —Kac) formula. The obtained solutions are the (generalized) L2-
solutions. From the Kato—Relich theorem it follows that the the operator on the right-
hand side of the heat equation is essential self~adjoint on the Schwartz space [12]. This
together with the Trotter formula implies that the FE-formula produces the generalized
solution of the heat equation (2.1). This formula also produces the generalized solution
of the Smoluchowski equation (3.1) via the above substitution for the initial data chosen
in the previous section.

Application of the FE-formula gives

PMaxit) = f P ((gy) x) Pa (dwxc),
(3.3)

PM(a,w)x) = 25 [ €20 Py((dgdo)mx),

where Fy(dw) is the Wiener measure on paths starting from g, Pp(dgdw) = dgFy(dw),

Zn= [ e PRy (dgdw)a),  Pol(dadu)x) = T] Poldgedos),

zEX
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U((a,w)a) = 50°(an) = 3U°wa(®) + U(wa®) + [ Ua(wa(r))ar =
: o

= Ug{q;k:l 4+ {‘w,.\{f}} 4+ ng{w,\ {‘J‘}}d’?‘, (3.4)

where integration in two integrals is performed over the spaces ﬂ.ux! ﬂml"'xl respec-
tively, and (1, is the probability path space.

It is obvious that we arrived at the path Gibbs system with a three-particle potential
hidden in the second term in the expression for Us.

Let us decompose the [lp-term into three terms

3 (@:U%ax))? = S (0u0a))? + 3 Jollz — ul)e(gsr ) + Ublax),

TEX TEX EyEX

where the pair potential ¢ is given by
(e, @y) = (B2u”(g:)) 020" (gz, ) + (Byu® (@) By’ (Gy: =)y Gmr@y €R, (3.5)

and

=EX \wEX

Uslax) =D (Z Jo(lz = y1)8:u°(g=, ‘ﬁr])

Hence

U((g w)x) — [ Vjtwx()ir = 3 ullawla) + 3 ees(@whe (a0,
.0 =E =Y :
(3.:6)

where

(g, w) = so(g) +ua (w(t)) + f wa(w(r))dr,
Uz —yl(q: W)z, (7, w}v} =

= Jo(lz — yl)uo(g=, @) + v1,2—y (we(t"), wy{f}HJn(Im yl}fu-:{wa Thwy(r))dr

ﬂu(a) =2"""(g), wmlg)= ( ~ %) u®(g) + u*(9),
ua(g) = % -8%(q) + %ﬁ(ﬂu”(q)llz] . uolgz,ay) = %ﬂu['&:hr}-
U1z—y (02 Gy) = Uzoy (92 0y) — %J'nilz = I’ (g=, ay),
u2(gz, ay) = —% [62u°(gzay) + 33%“(%1.@:}] + Bip(gz.9y)-

ISSN 00416053, Vep. aam. aeypr., 2003, m. 53, Me 10
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In order to transform the [7j-term we must use the formula

g f
exp § —=- Ua{wx::rndr} -
e

¢
= [ew {¢§ > e i) | dw;{r}é‘:u"{%(ﬂ-wu(?‘}l} Po(du),
ERT Y 0

where on the right-hand side of the equality the stochastic integral is written and Fp is
the Wiener measure concentrated on the probability space (Y consisting of paths which
start from the origin.

Hence we are dealing with the systems with the potential energy (1.1) and the
complex pair potential whose imaginary part is given by (1.14) and

sy (12, 05) = Jo([2 — Y1) (e ), %)
and the real part
Reus_y(we,wy) = ey (@, W)=, (@ w)y),  wlw) = ulg,w). (3.8)
As a result
Paw)x) = [ o wx)Podus) 39

and the function g (wy) is given by (1.2). We see that only the imaginary part of the
pair potential depends on w*. This fact will be exploited by us in our estimates.

' Theorem 3.1. Let the conditions of Theorem 2.1 be satigfied. Then the condition

(1.10) and the conclusions of Theorem 1.1 hold for the system with the potential energy

(L:1), measure Fy(dw) and the complex pair potential determined by (1.12) and (1.4),

(3.7), (3.8), respectively. Moreover the functions py in Theorem 2.1 are expressed as

sl d) = f Po(dw}) Pax (dwx) f P(dury ) Foue (wy),

P(dwy) = (fﬂp{—ﬁzu(wy}}f’u{wr}) ﬂp{—ﬁzutwy}}f’u{dwvl
YEY

yEY

Corollary 3.1. For the functions py and the correlation functions from Theorem 2.1
the following bounds are valid

lev(axi®)l < M(eBEMEX exp{-8 Y a(az) }, @3.10)
zEX
lplaxi )] < M(1 - eBE 8 exp{ -6 3 ula:) }. (3.1)
TEX
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where

pulg) = —In [ Py(du)Po(du)e -3, £ = e [ Po(dw)esu),

We will use the following inequalities in the next section in the proof of the theorem:

wW(g) = (n—eld®™ —c, wlg) 2 (m—2"'—e)g*™ —¢

) (3.12)
{3“&)2 > {szl::aﬂjz o E}qi{h—lj —c
We will also need the following inequality:
lp(a)] < (elg™ + <), (3.13)

where ¢ is a sufficiently large positive constant, £ is a sufficiently small positive constant
and p is a polynomial with a degree strictly less than 2I. Inequalities (3.12) are a
concequence of (3.13).

4. Proof of Theorem 3.1. In order to prove Theorem 3.1 one has to check that
the potentials of introduced Gibbs diffusion path system satisfy the conditions of Theo-
rem 1.1.

Proposition 4.1. The pair potential u,_,, satisfies (1.2) with J = |Jp| 4+ J*,
‘f
v(w) = vo(g) +va(w(t) + f va(w(r))dr,
a

1
ol (‘?" N 5)"”- v =v', vy =vy+ P,
where vy = v", v§(q) = ¢ (¢*™+™~1 + 1) and ¢’ is a constant.

Proof. The proof follows from (2.3), (2.4). Functions vy, vy are the contribution
from 8%u(q, ¢"), ¢ respectively. The nontrivial bound of the pair potential ¢ from (3.4)
follows from the fact that 8u%(g) is a polynomial of the (2n — 1)-th degree, the bound

(g, @) = (181" (g=)l + 852 (g5 )18 (gz: @) + 18y (g3, g:)) <
< lg=""1 + lgy Pt + ) (gal*™ 7 + gy 1) =
i cl'ﬂqzjﬂf_n-lrm—-u -+ |qylifn+m-—1] + |q,£!2n-—1|q‘||ﬂm—1 H lﬂ'=|2m_1|qyliﬂ_")1

where ¢ is a positive constant (here we use the inequality (3.13) for all the terms in the
expressions for 82u%(g), v" with | = 2(n — 1) and | = 2(m — 1), respectively) and the
inequality

l0sl™ gy1™ + lgs|™ gy ™ < 274 (Jga[™ 472 + |gy|"+72).
The last inequality is proven in the following way (ne > ny):

laz*llgy?] + lay* llaz® | < lg=l™ layl™ [l=1"*""" + g™~ ™] <
v v
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1363 W. [ SKRYPNIK

< 27 (g™ + lgylP™ Mlg=™" +lgyf™ ™) <
< 27} (lge] + gy )™ (el + lay )™ ™ = 27 (gl + I+ <
< o™ +n-;—ll:|q,mjﬂ1+n1 + |Q'r|m+m}-

Proposition is proved,
Proposition 4.2. If t' < co then the following inequalities hold

' Ju
Lim [|e#¥]l2 < o0,  Jim [|e?7]l < oo,

Proof. We will rescale the variables in the integrals by g = -7 and have to use
the following formula;

me(dw}f{Wﬁ:).'--- yw(te)) = fﬂ{dw}'ffﬂw(ﬂ_zh}.--- JwigT))  (4.1)

which follows from the well-known definition of the Wiener measure by rescaling the
oscillator variables by g (g5 — gg5)

f Pyoldw) f(w(ts), . . ,w(tx)) =

k-1 }
= [ @ 0P (@r,90) TT PO~ @pen, ) ... da

j=1

and the formula
| P 2 —
Pi(an,9¢) = exp{t6%} o od) = (drt) "} oxp { ~CU= LY - 610057 (g, 0).

After the rescaling the infegral is multiplied by ¢* in the previous formula and this
multiplier is cancelled by the g—* which results from the right-hand side of last formula
and the fact that there is a product of k similar terms on the right-hand side of the
previous formula.

Let us define the operator S, of scaling by

S!I‘F(gi 'll.?} = FESI'EI- gwp]l Wg{tj = ng-st}.l

For our measure P we have (u,v do not depend on w*)

=1 o
lebevifg = ([ essamriqpy(du)) [ es0-25mmtamagpy(an), " 62)

-1
|i£ﬂ.}.u“§ i (f am&&'..u{q,w] quq (dw J) f‘"'ﬂs'pu{mm]—ﬂ.!, E,ﬂ{#.w}]dqpq [:dw}
(4.3)

Relations (4.2), (4.3) follow from (4.1) and the Trotter formula.
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It is evident that

P
Syulg, w) = vuo(gq) + 1 (guw(g~2t')) + f wlgw(g~?r)dr. - (44)
i

MNow, we have to find the limits of the functions under the sighs of integrals in (4.2),
(4.3) when g tends to zero, make uniform estimates in g.
It easy to check that

lim y_ﬂ".é'g.u[q, wh = glirgng“hu{gq,gw,} =meg™,t <o g =4, (45)

=0

where n is the positive coefficient before g™ in the expression for u®(by definition).
Here one has to take into account

v P | s x 0
Eh_{gﬂwl:y T] i w{ﬂ} =4q,
and the fact that only u° and u* make contribution to the right-hand side of (4.5). Indeed,
the coefficient before the term g2 in S,8%u%(g), S, (Hu)? is less than g*"~1 =
= g~Zgin, g=Int2(In=1) = g=2In regpectively, since k < 2(n —1), k < 2(2n - 1)
for the first and second polynomials, respectively. The coefficient before the term ¢2*

in the expressions for Syul, AS vy, also, is less than g=2g*".
As a result

sli.né'aﬂ_msy'«'fmwi =0, F-h = B, (4.6)

since the degrees of the polynomials vy, v; do not exceed 2(n — 1).
Applying (3.13) for the functions v", 8%u® with | = 2(2n — 1) we see that

Blua(B~Fg) + | (B~ Hq)]) < B (eg®™ V) 4 cle)), B<1.
This inequality and the third inequality in (3.12) imply that
Blua(f~ % q) —val6~ % q) = BE[(2nm)? — )PV 4o, & << (2m)?
and ¢ depends on £,
That is
exp {—ﬂf[S,ug (w(r)) — sgu:;{[w{f}}}dr} < ﬂ"’ﬂ*‘.
o .

Two first inequalities in (3.12) show that the exponent of the part of u, containing ug, uy
are also bounded by a sufficiently large constant.
Hence the Lebesque dominated convergence theorem and (4.5) prove the equalities

-] g
tim 9o = ([ emordg) [ emmii-aaa, o

: Bdav]]l, — !
o [0l =1, £ 00,
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1370 W. L. SKRYPNIK

This concludes the proof of the proposition.

Let us consider now the conditions in the Proposition 1.1.

From the Helder inequality for the norm induced by the Lebesque measure on [0, 2]
F Rl < A llpliblles  P~* +g~2 =1 with h = 1 we derive

i t ﬁ
f wAm=1(r)dr < (#)1- B (f w‘lﬂin-l}(f]d-r) =
o

(1]

e Rt o 22n-1)
= (¢)5==T R’_’f P—m:

, , s
fwztn-t-m—l}{_r)d,r < {tijl—ﬂﬁﬂﬁi (f wﬁ{ﬂn—l}(f}d.r) —
o

o
_yispagen o 20n-1)
where
1_!'
H‘.=‘[111:3":2""_1:J (7)dr.

From Proposition 4.1 it follows that for some constant ¢ the following inequalities
hold:

‘.I'

full['w Ndr < e [{t"}""_--‘-'Rm + 1]

[=]

f vh(u(r)dr < c[(€)FRREET 11].
Q

With the help of (3.13) (8%u° is a polynomial of the 2(n — 1)-th degree) and the

M we derive (1 —p1

Holder i ; _
older inequality for p An—1

. =
.
[1* wlar < [y RE 1]

o

These inequalities and the last inequality from (3.12) imply that
exp{—Ble(u — ug — w1) + 2J. (v — vo — v1)]} < exp{—e((27m)* — €)5°R + 8(R)},
6(R) = 2¢8 [(#) B=F RE=E 11] U, + 2667 () FFR RS 1] S+

+ef [{t‘}m"—‘rﬂﬂ--——f + 1] +efc.
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ON POLYMER EXPANSION FOR GIBBSIAMN STATES ... 1371

After rescaling R by A% we obtain

(v = vo — v1) exp{—PBle(u — up — u1) + 2Js (v — vp — 1))}l <

5a(1+ﬁ‘55':_59+ﬁ"5'5). (4.8)

where
a=coup[1+ [(¢)¥=FRESY 1] +

+2 [zt’}fn;—‘rﬂ%"n—'f'?‘ +1]] exp {~e((2mm)? ~ )R+ 8o(R) }

and 8g(R) = :ﬂ?ﬂ[ﬁ'g}t}. The function #(3~2R) equals zero at zero temperature.

Indeed, the temperatare has the following powers in the coefficients before the square

brackets in its expression

_2(m-1) 2n-m)+1
n-1 -1

¢ is finite since the powers of R in (3 2R) are strictly less than unity. The power of

£ in the last term on the right-hand side of (4.8) we also derived from the equality

2[n+m—1}|_2{n—m}l}u 1

g | g

1 >0, 2—

fn+m-1) 2m-—1

: n—1 2n—1

taking into account that [ stands before vf in the expression for vy (see Proposition

4.1).
From (3.12) for wg,wy and (3.13) for wg, vy after the rescaling of the vaniables by

ﬁ’!‘r? we deduce
[I(vo + v1) exp{—Ble(up + u1) + 2o (v + v1 )] Hloo <
< |lvo exp{—Bleus + 2J.v0]}H loo|| exp{—Bleus + 2Ju01]Hleo+
+(|v1 exp{—Bleur +2J.v1] Hleo| exp{—Blevo+2J.v0] Hleo < o (1 + T + ﬁ""l) ;
where

o =etPc sup [2-4+ RE™ 4 REMx
Rli-ﬂdpaﬂ[ : Rﬁ ]

x exp{~2""e(n — ) RI" — & ((no — 2 "m — ) B+

=T m—=wnl

+ol. (6" RI™ + =5 R}, A=1
Inequality (4.8) and the last inequality yield the following inequality:

llve P2y < (a+ o) (1467 4+ g8 4572 4 7% <

Sd(a+a) (14458, (4.9)
1.1 ; Lom, m=1 ;
where M = max(m, m',n') and the inequality i = —T W applied.
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1372 W. L SKRYPNIK

Applying the bound
lfueB |5 < [[ue™oew=20-0)| L jef b,
the bound

(G1+...+an)? <n(ad+...+63), (a1+...+an)? S VG +...+/Oni6, 20

for n = 4 (there are four terms in the expression for v) and repeating the previous
arguments we derive

llve®*-*llz < le#8¥lla6 (1 + 4~ + g% 4 g2 4 57%) <

< lleP8 lp (1 + 45~ H51) | (4.10)

where & = 2(,/&1 ++/a]), @) and «| are obtained, respectively, from &, o by squaring
the powers of 1.t only in the square brackets.

Let us consider the expression for ||@||2. Inequality (1.15) and independence of u
on-w*™ yield

-2
ligll3 < 8&8* ( ff-r]'qu[dwjn‘ﬁ“{‘“"‘"}) i

x f dqdq’ B, (dw) By (dw') e’ ) ula’ )] f [(Bu® (w(r), w'(7)))*+
o

-3

@' (w'(7), w(r)))*Jdr < 87 ( f ;.ﬁm!.[m]g—ﬂu{w:) "

x f dgdg’ P, (dw) Py (dw")e~Plela-o) (e w0l 1y, 00) 4 ug(w’)] = 47 Juall1,

rl‘
va(w) = f v (w(r))dr.
[
Therefore
6113 < 47 luslls < 47" [luae™ 2 lclle|]1. (4.11)
; ; ; 2(2n —1)
Applying once more (3.13) and the Holder inequality for p = em—1) and the
: : 2(n-m)
—p=l =
previous arguments we derive (1 P p— )
6113 < a“lle®*Il; (1 + 87, @.12)

where
o = csup [1 + ({t"}aﬁrﬁﬁﬂ'ﬁﬁ + 1)] exp {—e((2nm)® — )R + 6a(R) } .
/=0
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ON POLYMER EXPANSION FOR GIBBSIAN STATES ... 1373

From the expression for f3(R) = 8%0'(R), where & > 0, &' is finite at zero temperature

and depends on powers of R less than unity, it follows that ||ef(®»=7-¥)|| _ tends to

unity at J = 0 and that the conditions of Proposition 1.1 and Theorem 2.1 are satisfied.
Proposition (4.2), (4.9), (4.10), (4.12) show that the condition (1.10) is satisfied if

-1  2(2m-1)
S Zn-1" 2n-—1
This fact proves Theorem 3.1 and part of Theorem 2.1 conceming expressions for the
elements of the sequences p and p*. The norms of the sequences are derived from the
Corollary 3.1.
From (3.11) it follows that

=0, n—-m—=2m+1>0. (4.13)

= M(1 - eB€)™. (4.14)

£ = ef f Patdw}e‘ﬁ“‘“”) ||~ Btt-edu=duadl (1 4 [8]l2). (4.15)

Here we applied the Schwartz inequality and as a result obtained the inequality
J P(dw)b(ew) < ||@||z- Items | and 2 of Theorem 2.1 are proved.

MNow, we have to prove that the sequence of the correlation functions isa generalized
solution of the diffusion hierarchy. In order to do this it is necessary to prove that
the both sides of the averaged with a test function finite volume diffusion hierarchy
converges to the averaged infinite volume diffusion hierarchy.

Proof of the third item is a standard one. If follows along the lines of the argu-
ment, given after Theorem 1.1, taking into account the sccond item of the Theorem.
We have to prove that the averaged left- and right-hand sides of the finite volume hi-
erarchy converges to the corresponding averaged sides of (2.7). We have to rely on
the local convergence of the sequence p™(t) to the sequence p(t) in the Banach space
BE,_*“_‘J““. This convergence leads immediately to the convergence of the first two
non-integral terms on the right-hand side and the left-hand side of the averaged finite
volume hierarchy. In order to prove the convergence of the third right-hand side term
one has to estimate the integrals for X € A

> [ Faxitidaxat [(Ouly) e an)lplaxunit) = /ey Olday.

PEALN

S [ faxiodaxdt (06 )ae, t)olaxon: day,

NEA
where f 15 a function with a compact support. The second integral converges to zero
since (2.2), (2.4), p(t) € B, , T and ||Jo|li < oo hold. Indeed, from these

inequalities we deduce that the second integral is bounded by
- 1
5 alle gu-all A TCA,A) [ dayg o)+

: .
-1"*»"{6;))&‘*““‘"“"Imﬂ"tm’(Ilr#tl—;;u"llnc)l S
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< €Ml g0 11100 [l FE- | flem § -1

T e e T [ (e 1% R CRT)

This expression tends to zero in the thermodynamic limit since £° tends to zero at
After decomposing the sum over A\ X into the sum over two sets S35, A\Sgasr
from the first section (2.2) and (2.4) we see that the first integral also converges to zero.
Indeed, in the first set we have to take into consideration the fact of the local convergence

of p* to p. So, this sum is bounded by the last expression in which E(%A)]Iﬂll is
inserted instead of £”. Applying the bounds, used for obtaining (4.16), we see that the
second sum is bounded by the expression on the right-hand side of (4.16) in which
250(%,\) is inserted instead of £°()).

This concludes the proof of Theorem 2.1,

5. Appendix. The KS-relation is given by

Foy(wy) = e~PWlwrlwx) I:Fux\- (wy )+

+ > K(wmlwz}FunM(mz}], z € X, (5.1)
ZeY|Z]|=0

where

W(welox) = Ulwx) - Ulwx), K(wslwz) = [ (ePua-vimen) 1),
EEE

Fo. (@) =exp{—;3 3 uz_y{w,.wp)},

=yEX
Fylwy) =0, F,, (wy) = e Pre=plieay) _ 3
Proof of inequality 1.7. From (1.2) it follows that
I(0,n) < ||le~P=TV |5,
Now we have to estimate the following expression for m > 0:

Iqar(m,n) = ess sup S F¥wwoxe),
X'CAJX =n—1

X! Y oA Y [
I(m,n} = IA.A"{m. n}r A=A = zldl
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where
F¥(wy) = J] e#0) f P(dwy)|Fuy(wy)l, Flwx) = [] e#*==)F, . (@).

zeX sEX
Our estimate will be derived with the help of the symmetrized (5.1) and induction.
Symmetrization of (1.5) is based on the inequality (1.2) and is analogical to the sym-
metrization of the KS-recursion relation for particle systems [3]. It is performed by
multiplication of both sides of (5.1) by the normalized characteristic function . of the
set where W(w;|wy) < Jov(w:) and summation over £ € X. The normalized charac-

teristic functions mean that % y. = 1. So from the symmetrized (5.1) by integration
zEX -
and summation of both its sides we obtain

m=1

I(m,n) < T4 a(m,n—1)+ sup Z E H bemz(we ) (k,n—1+m—k) <
Tllr k=0 Z,|Z|=m—kzEE

LiLd BI
< I(m,n—1) +ZFIEm—I,n—1+Ij,

=1

where sum over Z is performed over %, Here we used the following relation:

1
E = ? E IA,A:{m.n} = I.-l..r'." I{m,n =5 ]':H'
'Y" |Y|=§ ’ Vigree ylim

m=—1

oS T (bt
TEA weEDN k=0 Ze A" |Z|l=m—kzEZ

Y B; "
EIA,Ar[m,ﬂ—I}+?%I{mwi,n—l+£}£
=1
m Bi-1
SIA,A*‘{!‘T!,TI—1}+34,ArZTI{m-I,ﬂ—1+IJ.
=1 :

Here we changed the order of the summation in the following way:

S B D

YCAr ZQY SCA'Y\ECA'

and used the inequalities Bg.av = B, Ly (mn—1) <I(m,n-—1).
Singe I'(1,0) =0, I(0,1) =1, I(1,1) < B, by induction we easily conclude from
the obtained (recursion) inequality that, for I'(m, n) and arbitrary positive a,

I{m,n) < a™(e*Fa=1)mn,
Az a result, fora = B!
I{m,n) < (eB)™e™.

Hence, (1.7) is true for A = A' = Z9 only for small temperatures since I(0,n) < 2"
only for them.
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From this inequality and the recursion inequality for I4 4-(m, n), by induction we
derive (1.7). Here one has to take into consideration that

Tapr(1,1) < |le™P||oBaar < |le”P¥T%)||oBa 4 < eBaar-

Proof of Proposition 1.1. From
P [ eilma{ERnn s 1} + Egﬂmn i 1}’ Ieﬂma -1 = |III1|'II,
it follows that '

ba(w) < e AEI=Iw(0)] [B3(0) [|g=BRenawal) — 1 4 Bl (Jal)l s )] P(d).
(52)

From the definition of b and the Schwartz mr.qunllt}r applied to both terms in the square
bracket, we derive

be (w) < 1€ |2(62(w) + B1[be™ 2| T (1z])]), (5.3)

b (w) = e~ J-v(w)] ( [retmesatonn IFPW}); :

where by ||.||p the norm of the space LP({1, P) is denoted.
Mow, we have to estimate the term with b2. We have to start from the standard
inequality (it differs from the bound used in [1, 2]) taking into account (1.2)

|!—3Ruu,{u1n.r‘} o ll < ﬂlRﬂﬂ;{W, wr}le‘ﬂMu.{w‘hﬂH <
= ﬁigxl)’{u{m] +v(w!))e P EIuw),

It is clear that J(A4,Z%) = ||J||y. From the last inequality and the inequalities
(a+b)? <2(a®+b?), Vatb<a+vh J(z|) £ J. we derive (v > 0)

+ eas8 8] B (w) <
=E£ l_;:_r F{ }

%
ﬁf {A A') e~ Al -21v(w)) ( / (v(w) + v(w')) e B0 P(dw"}) <

< BI(4, A) [e~ B0y () |87 + ||vef-2]a]| =
< BI(A, A) [llue P24 |72 15 + jve ][]
From (5.3) and the last inequality we obtain '
Ba < J(A,A)B, B<|J|hB,
B = B[]z (Jlve B39 |o[ e~ ||3 + |[ve”"][2 + [Ibe™P~]lcs ) .
Applying the Schwartz inequality we derive (P is a probability measure)
D < 1%z < [1e®IalI1 + bllz < 211121 + lI¢lla)-
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These inequalities yield the Proposition 1.1 since

[lbe™2 = loo = [[b(1 + b) €207 o < ||e~PI—2)] |,
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