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SUBHARMONICS OF A NONCONVEX NONCOERCIVE
HAMILTONIAN SYSTEM

CYBI'APMOHIKH HEOIIVKJIOI HEKOEPIIATHBHOI
I'AMLIBTOHOBOI CHCTEMHA

In this paper we study the existence of multiple periodic solutions of the Hamiltonian system
T + w VG0 ulx)) = ),
where i isalinear map, & isa C.'L-f‘un::u‘nn, and & is a continuous function.

Tocniisei1o MHTaniy npo iCiyDaima KpaTiHx neplojHausx po3s” AsKis raMiabTonosol cHeTeMH
Jx + 0" VG u(x)) = eld),
me w— ninifine nijpoGpaxemns, &— C‘—q.tg,'m:nin Ta & — nenepepoa yIKLIA.

1. Imtroduction. In Lhig paper we are interestéd for the existence of periodic solution
of the noncoercive Hamiltonian system

Jx + u VGt ulx)) = e(t),
where u: R — R™, 1< m< 2n, is a linear map not identically null with adjoint
u™; G:RxR™ = R, (t,y) = G(t,y) is a continuous function, T-periodic in the
first variable (T > 0), differentiable with respect to the second variable and its
derivative VG is continuous; e: R — R*"

mean value zero, and
pals o
I, 0

is the standard symplectic matrix.

There are many papers studying the multiplicity of periodic solutions of the Hamil-
tonian system x =JH'(t, x). Numerous results were obtained by using many different
techniques, for example Morse theory, minimax methods, etc. However, most of the
results concerning the existence of subharmonic solutions have uac:d the convexity and
coercivity assumplmns on H, see[l—=4].

Our first result is the following,

Theorem 1. Assume that & satisfies:

(G) IM>0: VieR, VxeR" VG x| = M;

(Gy)  either
(i) | |1m:- Gir,x) = +ee, wniformly in re [0,T],

iz a continuous T -periodic function with

or
(i) lim G(t,x) = —e=, uniformly in te [0,T],
|l 4=

then the Hamiltonian system

Ji + u*VG(t, ulx)) = e(t) (#,)

has at least one T-periodic solution.
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In the case where the forcing term e is null, we oblain the following theorem.
Theorem 2. Under the assumptions (G,), (G,), the Hamiltonian system
(H,) possesses forall integer k21 a kT-periadic solution x, satisfying

:]-lT... lxell. = +=.

where [[x||_ = sup {|x(®)], r e R}.
Concerning the minimality of the period, we have the lollowing result,
Theorem 3. Jfthe Hamiltonian G satisfies (G)) and the assumption

(G3) either
(i") | ’lml (VG(t,x),x) = 4=, uniformly in e [0,T],

ar
(i) |Ii|'|'| {"I?G{I..r],x> = —oo, niformly in te [0, T],
[ |= o

then for any sufficiently large prime number k, the system (H,) possesses a kT-
periodic solurion with niinimeal period kT,

2. Preliminaries [5]. Let X = W3 Z be a Banach space and X,= W, B Z, bea
sequence of closed subspaces with ZycZ,c..cZ, WcWc.cW, l<«
<dim W, <. Forevery ©: X - R we denote by @, the lunction ¢ restricted to
Xy, Let us recall that, forany Ac X, A,=ANX,.

Definition 1. Let ce R and ¢ e C'(X,R). The fimctional ¢ satisfies the

(PS). condition if everv sequence (xy )= X satisfring: @, (%, ) = e, 9, (6 ) =

— 0, possesses a subsequence which converges in X to a critical point af .
Theorem 4 (Generalized saddle point theorem)., Ler g & C '{X R, Assume
that there exists r>0 such that, with ¥={we W;|w|=r}:
a) supy@ = inlz@;
b) @ is bounded from aboveon A= {x e W |x[i=r};
c) @ satisfies the (PS), condition, where c= infygq @ Sup e @x), with

A= {A cX; A is closed, ¥ cA, cal;_YM}=]},

Then ¢ iz a critical value af @ and c=infz¢.

Remark 1. In a) we may replace Z by g+ Z, ge W

3. Proof of Theorem 1. We will prove here the case where G satisfies (G;)(i),
the case (Gy)(ii) is the same.

Before giving a variational formulation of (#_.), some preliminary materials on
function spaces and norms are needed.

Let L*(S'.R*) be the space of squarc integrable lunctions defined on §'=
=R/TZ, with value in R*". Each function xe L*($', B*") has a Fourier expansi-
an

x(t) = Z cxp(z—;'mri].?m,

mek

where %, € R* and Emezl‘;mF <es,
Set
H2(S R™) = {x e LS R™); x|z < =},
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where
12

lelgin = [3,00 Q+ImDIE ]
Consider the subspace
X= {.r e H'3 (5! ™), xp € Kerul}.
It is easy to check that the quadratic form @ defined on X by
Glx) = l]:{ﬁc xVdr
23 :

satisfies, for a smooth xe X

2x)= -n E ml"?m F‘ (1)
mek
Set
x% = (Keru)t,

Xt = {x eX:;x(t)= 2 :xp[z—nm.r.f]fm a.c.},

ma=1 T
X = ][.1: eX;x(t)= E- nxp[gErJl.rJJJ?m a.c.},

mzl Y i

then X=X*@X ®X°, and X*, X7, X° are respectively the subspaces of X on

wich @ is positive definite, negative definite, snd null. X*, X7, x° are mutually
orthogonal with respect o the associaled inner product and mutually orthogonal in

L* (s, R™),
These remarks show that if x=x*+x"+x%€ X,
] 2 ._
I = [°] + o™ - g7, )
serves as an equivalent norm on X. Henceforth we use the norm defined in (2) as the

noem for X. Foreach pe ]1,=], X is compacily embedded in LP(S', E™). In
particular there is o, >0 such that

Ixly = o llxll ¥xe X (3

Now, consider the funcltional
T
flx) = J[E{”’ x) + Gt ulx)) - {e[r},x}]d:
0

delined on the space X. The lunctional f is continuously differentiable and verifies

T
Fy = [(Ux+u* VG0 u@) —e(r), y)dt ¥x,y e X. “@)
o

We claim that the critical points of the functional f correspond to the T-periodic
solution of the system (#,). Indeed, let x be a critical point of f on X, then by (4)
there exists a constant & e Keru such that

S+ u"VG(tu(x)) —elr) =& a.e. (5)
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Integrating (5) we obtain
T
u* [ VG(t, ux))dt = TE,
0

so £ e (Keru)', which proves that E=0 and x isa T-periodic solution of (#f,).
Inversely, it is clear that every solution of (#,) is a eritical point of f on X.
To find critical points of f we shall apply the Generalized saddle point theorem to

_the functional f on X with these subspaces W=X, Z = X*®Xx% and the sequ-
ence of closed subspaces

‘X’" = {x s X'. x{:} — z Mp[z?ﬂmﬂ)im 3.8, Xnu = (Kﬂru}l}.
|

m|sn
- First, from (1), the assumption (G;) and the mean value theorem applied to the fune-
tion G(t,.), wehavefor x=x"+x*e Z

T
) 2 Zhetf - o] + i Gle, u(x ), (6

where ¢ is a constant. Since the function u is invertible on X©, we deduce from (6)
and the assumption (G;) that f(x) goes to infinity as x goes to infinity in Z.
Second, there exist two constants @, b & R such that for every xe W

£ s =l + allx] + b,

Consequently there exists r> 0 such that
suppf = infgf,
where ¥Y="{x e W, 1|x||= r}. Furthermore, f is bounded from above on D,, where
D, is the closed disk in W centered in zero, with radius r.
Finally we will show that for all ¢ € R, the functional f satisfies the Palais —

Smale condition (PS). withrespectto (X ,). Let {x,}j be a sequence such that

FGy) e fola) =0, m ==, 1, € Xy, (7)

(]

we set x, = x% +3n , Where x,

from (1) and (4):
fi:I[xir_;](x; "xr:‘;) =T E [m||£_‘r,m|: +_

Ls|m|sn

is the projection of x, onto X U We have

T
+ i{u'?ﬁ{r.uﬁr])— e(t), x:j —x;J Y.

It follows from (7} and the assumption (G;) that (fnj } is bounded in X. Elsewhere,
we have

T i & T
fy) = %Jj{ﬁ,ﬁ,iﬂj}m i £G{r, ey, et _E[(s,fnl}dr,

50, by (7), the sequence U:G(r, u(xy, }]dt) is bounded. By applying the mean value
theorem to the function G{r,.), there exist Yy € X such that
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T T T
[g(,,u% Ydr = J‘G(:,u(x}; Vdt + j{u'vc{:,u% ), u(Ey, )t
[i] i} 0

and we deduce from the assumption (G,) that the sequence U:G{r, u{xfj })dr] is
bounded, so by the assumption (G;)(i), (x;) is also bounded in X. Up to a sub-

sequence, we can assume that Xy X and x,E; —x% in X. Note that

Qe —x*) = {fy (%))~ F/(), x5, —5") -
- B

~ [(VG(t utxn, ) - VOl u(x)), ulxhy —x*ar.
o

This implies that _r:j —x* in X. Similarly Xy —x~ in X. It follows then that

x, —x in X and f'xy=0.

The function f satisfies all the assumptions of the Generalized saddle point theo-
rem, 50 f has at least one critical point. The proof of Theorem 1 is completed.
4. Proof of Theorem 2. As in the proof of Theorem 1, we will prove the case

where G satisfies (G,) and (G,;)(i), the case (G;)(ii) is the same. By making the
change of variable t— r/k, the system (%) transforms to

Ji + ku*VG(kt, u(x)) = 0. (3£,
Hence to find kT-periodic solutions of (), it suffices to find T-periodic solutions
of (#,), which are the critical points of the continuously differentiable functional

T T
Folx) = %J{J;&.x}d: + k [ Gk, u(x))dt
0 i

defined on the space X introduced above. By applying Theorem 4 to the functional
fi onthe space X, we prove as in Theorem 1, that for all integer k= 1 the system
(#) possesses a T-periodic solution x; such that

Fileg) 2 inf Fife) . ' (8)
MNow we will prove that the sequence (x.) obtained above has the following property
o |
kll}m_ E‘f Elx) = oo ()

This will be done by the following lemma.
Lemma 1. Assume that G satisfies (G,), then:

1z
LR S a0

where @ = (1/n"?)exp(2nes [T)eq and e is a paticular element in X° (eq# 0).
Proof. Assume by contradiction that there exist sequences k; — e, x; =.=|:}' +
"'-*an Z and a constant ¢ € R such that
fi, (kj* @ +x;)) < ke Vje N, (11)

Taking xp= _r; +xf', x:; & X", i =+; 0, by an easy calculation, we obtain
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fi, (] +xp) = k_r]i"-tflz'"‘uni"'l"ﬁ(k; L ulki ™+ }})dr]. (12)

soby (G;) there exists a constant ¢; >0 such that
fy WP +x) 2 k(|57 - @)
and we conclude, from inequality (11), that (x]") is a bounded sequence in X. Taking
a subsequence if necessary, we find x* & X* such that
x5@) = x*(t) as j > e forae te[07T). (13)

We claim that (xf) is also bounded in X°. If we suppose otherwise, we easily de-
duce from (13) and the fact that u is invertible on X° that

|u(k{ (@) +xf @) +x))| = = as j = e forae re[0,T)
Consequently by (G,) and Fatou's lemma, we obtain

T
[Glky t,u(k/ (@) +x7 @) +xP))dt = = a5 j — o, (14)
o
and we deduce from (12) that
Fi, (k" (@ +x] +xP)
G k-‘ Eeoyes e e (15)
i

which contradicts (11) and proves our claim. Going if necessary to a subsequence, we
can assume that there exists x%e X° such that

q:u[r}+.J¢:}’|l3t‘}+,1:J{u = x(t) = q:(.t]l+x+(.r}+x° as j— e forae re[07T]
By Fourier analysis, we have x(t)# Ker u for almost every ¢ e [0, T]. Therefore
|u(k}’1{¢(:]+xf{r}+xf))[ — o 85 j = oo,

and by (G;) and Fatou's lemma, we obtain (15), which contradicts (11). Thus (10)
must hold. The proof of Lemma 1 is completed.

Hence Theorem 4 (Remark 1) implies that forall £ M, we have
frbg) = be 2 inf £ (k"0 +x)),
50, we have by Lemma 1:
%- —» == as k —b es,

We claim that |xg|l. — = as k — eo. Indeed, if we suppose otherwise, (x;)
possesses a bounded subsequence (x,,). Since

fa _ 1F r
Lo - - EI{H’?G{h.u(xk}},xt}dr + k | G(kt, u(x,))dt
0 i}

the sequence [bkp.fkp]l is bounded, contrary to (9). Consequently, we have

Jim fxgll, = =,
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which implies that v, (r) = x,(t/k), is a kT-periodic solution of the system (#,)
and verifies: _

fim ol = Jim [, = .

That concludes the proof of Theorem 2.

5. Proof of Theorem 3. We begin the proof by the following lemma.

Lemma 2. Thee assumptions (G)), (G3) imply the assumption (G,).

Proof. Assume for example (G,) and (G3)(i') hold and let us prove (G,)(i).
Let R>0 be such that

x| 2 R = {(VG(tx).,x) 21 ¥Yte R.
Then, for !x] = R, we have

Rilx| 1
G(tx) = G0 + | (VG(sx),x)ds + [ (VG(esx),x)ds =
0 Rix|

1
> 60 - MR+ | = > inf 6(,0) - MR + Log[i-"-[)
Ril] £ el R

and (G,)(i) follows.
Let k be an integer = 1, we consider the functional ¢,

1 i e
%) = 5 [ (hxdde + [ Gl uG))de
1] 0
defined on the space )
x* = {x € HIE{SLRI"}; Xy € {Kcru)J'},

where S = R/KTZ.
Itis clear that x € X is a critical point of f, if and only if v (#) = x{t/k) belongs

to X* and is a critical point of ;. By Lemma 2, the assumptions (G,), (G) are
satisfied, 50 we use Theorem 2.

Let (v) < X* be the sequence of critical points of ¢, associated to the sequence
(x;) = X of critical points of f; obtained in the proof of Theorem 2, the property (9)
is wrilten

.1 _ .

Jim P Qpluy) = =, . (16)

On the other hand, let us denote by Sy the set of T-periodic solutions of ()

which are in X. We claim that S is bounded in X, Indeed, assume by contradiction

that there exists a sequence (v,) in §y such that [Ju,|_ —==. Let us write i, =

= v} +u, and T, the mean value of v,, then v, = i, +1,. Multiplying both sides
of the identity

Ju, + &"VG(tulp,)) = 0 (17)

by v —v, and integrating, we obtain

.
15, + [(VG G, utw, @), u(ol - vyt = 0.
o
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Using assumption (G;), we easily deduce that (B,) is bounded in X. So (9,) is
bounded in  L™([0,T]), and then (u(%,)) is bounded in L™([0, T]). The identity

loal? =[5, + 15,1
shows then that

nl_i&nllﬁnl = o,

and then
_ o x| =
Consequently, we obtain

Jim, o] = = 09

Multiplying (17) by v, and integrating, we get

T T
[ om,ddr + [ (VG uw,)) ulv,))de = 0. (19)
o 1]

Mow, since (D) is bounded in X, we deduce from (19 that

i
[.[ (VG(e, u(w,)), H(U,,)}dr]
0

is bounded.

But this is in contradiction with (18) and (G3). The claim follows immediately.
As a consequence, §,(Sy) is bounded, and, since for any v e Sy one has @ulu)=
=k (u), wehave

¢>0: Vee Sy, Ykxl :-c|¢+,:{u}|gc. (20)

Consequently, (16) and (20) show that, for k sufficiently large, v, e Sy, and if k is
chosen to be a prime number, the minimal period of v, has tobe kT and the proof is
completed.
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