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MULTIDIMENSIONAL LAGRANGE-YEN TYPE
INTERPOLATION VIA KOTEL’NIKOV - SHANNON
SAMPLING FORMULAE

BATATOBHMIPHA THTEPITOJISIIA THITY
JATPAHIKA - HEHA YEPE3 BHBIPKOBI ®OPMYJIIHA
KOTEJBHIKOBA -~ INEHHOHA

Direct finite interpolation formulac are developed for the Paley—Wiener funclions spaces L2, Ll’_. i

where L2 collects all twovariale entire functions which Fourder spectrum is supported by the set
& = Cl{{w v)||ju| + [v| < =}, while in L3 1 the Fourier spectrum suppart set of its d-variate entire

[==.x
elements is [—w, 7%, The multidimensional Kotel'nikov - Shannon sampling formula remaing valid when
only fnitely many sampling knotg are deviated from the uniform spacing. By this interpolation procedurs
we realize truncaling sampling sum to its irregularly sampled part. Upper bounds of truncation error are
derived in both cases, 1

According to the Sun—Zhou extension of the Kadets's -;-Ih:b‘r:m. the magnitudes of deviations
are limited coordinatewise to 1/d. To avoid this inconvenience, we introduce weighted Kotel'nikov-
Shannon sampling sums. For L[z-r.l-]"' Lagrange-type direct finite interpolation formulae are given.

Finally, convergence rale questions are discussed.
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1. Introduction with historical background. The Kotel'nikov—Shannon (sam-
pling) reconstruction formula is deveted to bandlimited to w function coming from
some function space S, say, and uses the infinite lincar combination of uniformly sam-
pled (digitalized) values of the considered signal function with the well-knewn sampling
(reconstruction) function

sin(t)
t

sinc(t) := xmy (o} (2) + deo,

where x4(t) is the indicator function of the event £ € A, while §,, denotes the Kro-
necker's delta. Precisely that means

=37 (En) sinc(wt — nr). )

negl
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1504 T. K. FOGANY

The latter results precises functions spaces, and convergence results in (1. Anyway,
the history of the formula (1) is widely known, we refer e. g. to [1, 2] and [3] for the
interested reader.

The uniform setting in measuring the input analogue signal function is not a reason-
able idealization, since the timing of the digitalization is rarely exactly uniform. This
statement led Yen to give a generalization of (1) in few directions. The most inter-
esting for vs from these is the migration of a finite number of uniform sample points
((M) in the sequel), speaking in Yen's terminology [4] (Theorem I). By him, some of
time points are disturbed from the uniform spacing vk /w, k € Z, but only for the k's
from set {1,...,N} C M. Otherwords, he prescribes that ¢, are the new irregularly
placed sample points migrated to N new positions from wngy fw, that wiy/m, p = 1N,
is not an integer and the new sample is 7, m € E. This results with )

F) =3 Flm)Ex (1), )
nek
where the sampling function is

(t —tg)(n —ng)
(wt = ngm)(nm — wt,)

N
Y (t) = (wr)¥sinc(wt —nr) ] X{rm=Ens¢Zn,} +

q=1
sin(wt) {7 (t—tg)
sin(wtp) #111 {t,,—:g} H (wt — nq,r} X{rm=tn}> (3)

where x4 denotes the indicator function of the event A. Yen does not precise conver-
gence rates of the sampling series, the kind of the convergence and the function space S.
Following Yen's idea Bond & Cahn [5] and Bond, Cahn & Hancock [6] consider the
so-called zero-crossing in the signal reconstruction procedure supposing (M) is satisfied.
His approach is outside of our framework. :

Considering the same problem (M) for the so-called L2 -functions (such that are
in L*(R) and their Fourier spectrum is bandlimited to w simultaneously), Flomes,
Lyubarskii and Seip examine

=2 fOeEm+ X £(In) 25 @
|n—t|<L In—t|=L |
where for

w ™
Anat = [Dn} 1= {J'.,n-nEﬂ+hﬂ.ln—t|EL}U{An=En,|n—t|}L},
and [hn| € M < 1% (Kadets’s theorem!), it is

GA )
G Mg, An)(E = An)’
Here the auxiliary function & we get from the infinite product representation of the sine
by migrating 2L + 1 its zeros from the uniform (regular) spacing to get Ay, 1. e.

G(Ae,t) = (t = o) 1—— 1__ ;
s 1!-![51-' ( ) L{]H]{R( )
compare especially [7] (§C-2) and [E].

TFt) = (3}
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MULTIDIMENSIONAL LAGRANGE-YEN TYPE INTERPOLATION ... 1505

By rewriting the sampling function ¥X (t) putting ¥ = 2L + 1, translating the
migrated knots 5, p=1,2L + 1, into
"
= =i =t <Ly, -
{Po=Zn+hn:n-t| <L} :
we get exactly TF (t), therefore (4) is the actually the Yen’s formula (1).
Further, Flomes et al. modified (4) in the Valiron manner (they said Boas — Bemstein
formula) with a weight function

wa(t) = sinc (§(t — M) /1), b€ (0,7), LEN. (6)
They derive the sampling formula
f)= 3 fOJun®¥E@+ 3 F(In)un®¥i®) )

In—t|sL In—t|>L .
and develop truncation error estimates, and evaluate L, M, [ for some already given

reconstruction error level. Obviously (2), (4) and (7) are Lagrange-type formulae.

The next author revisited (M) was Houdré, who is assumes not only that either
finitely many sampling knots are missing and for finitely many sampling knots migrate
from the uniform distribution. His results for the class of weakly stationary stochastic
processes can be interpreted as statistical missing data results. These allow interpola-
tion, using finite data, of sets containing mixtures of uniform and nonuniform sample
points with gaps, satisfying the uniform density d > 0 condition (we write (H) for this
approach). Obviously (M) C (H). The set of sampling knots is

k
{te}rez = {E} U{sy,...,5}
FAY |- TYR W )

Therefore, when {X(t), £ € R} is weakly stationary stochastic process bandlimited to
w < wd, we have

1@ =3 flm)ef (1),

nek
in the mean square sense uniformly on compact sybsets of R. Here

‘I’f {t} =

- 'f_.; {Siﬂw{tkfd —-t)+ :—d 33 Vo sincw(ky/d — t)sincw(te — ko) /d —

pe=l gel

md e b

1 i
i Z E Vop sincw(sp/d — t)sincw(te — s,...]fd} i
and V, ; is the (g, p)-entry of the inverse of the matrix:

w o,
V= (I = sincw(fp — ff})p_q_'l,....r-r! :

witht € R and f, = ny (sp) when p = T,7 (p = v +1,1) compare [9] and [10)
{Theorem 3.7).
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1506 T. K. POGANY

The main goal of the paper such that precises and generalizes the results of [11] is
to give direct finite optimal size interpolation formulae of Lagrange—Yen type for the
functions spaces L}, B = &, [—, 7], truncating the sampling sums to the irregularly
sampled signal functions, having on mind the already known relative approximation
error. The simple truncation error upper bounds are the main results in numerical im-
plementations of the derived results, since they not contain infinite products, iterative
procedures and unknown function values. Convergence rates are obtained in all consid-
ered cases, when the interpolation sum size grows to the infinity.

2. Lagrange—Yen interpolation in L%. 2.1 Introduction with preparation. Let
us consider the closed, connected twodimensional region B C R? such that tessellates
the same plane. (That means, the union of all integer translates of B covers R%) The
bivariate Fourier transform couple f, f* is given as usual:

MMley) = 2i emivzdun) g yydady,
Tl'n:l

flz.y) = E} f ef (=) £4 (u, v)dudv.
CI{E)

The set of all square integrable on R? twovariate functions f having the Fourier spec-
trum of f supported by closure C1(B) is oftenly called Paley- Wiener space L%. The
most commeoen space of this kind is Lz_mﬂ,' and the Whittaker - Kotel'nikov - Shannon
theorem for such that f is well-known standard result:

flz,9) = Z flm,n) sinc 7(z —m) sinew(y —n), z,v€R?,
(m.n)eZ?

where the convergence is absolute and uniform on R? [3].

In this paper we consider the functions space L%lt{{l )] Al +lulex))yr Where for
the sake of brevity we will write < for the closure CI({(A, u)] |A + el < =}).
By obvious reasons we can arrange just finite size samples for f reading on the lat-
tice Z2, and these sampling nodes (m,n) are moved from the uniform spacing into
Cmn = (T, ¥n) = (M + im0 + gn), Where [hym| < M, |gn| < N (by the Sun-Zhou
extension of the Kadets theorem the best possible bounds are M, N < 1/4, see [12]), .
assume that this situation appears when |z — m| £ L, |y — n| £ L, compare the ap-
proaches in [7, 8]. (For additional informations on sampling bandlimited homogeneous
random fields consult e.g. [13].)

We have to point out that L2 is Hilbert space with the scalar product

(f.9) = f f(z,1)3(@ ) dedy = f g o) dudy  Vf,g € L3,
R? o

which implies the norm ||f|lz,0 = +/{f, f) which is oftenly calling signal energy.
Our main goal in this chapter is to develop a direct Lagrange—Yen type interpolation
formula S¢(f;x,y) for L2 -functions when the interpolation, relative error level £ and

ISSN 0041-6033. ¥ep. anam. scypa., 2003, m. 55, M [f



MULTIDIMENSIONAL LAGRANGE~YEN TYPE INTERPOLATION. .. 150,

the parameters M, VW are already known. The size of parameter I can be directly
computed by this method fixing the values of the arguments x, y.

2.2, Main results. According to the notations introduced in the previous sectior
denote in the sequel

Anye ={An}=(E\{n|t-n| S LHU{dn=n+ha| t=n|< L}, |ha|<M

for fixed ¢ € R, and some positive integer L. Using the well known infinite product
representation of the sine one defines the sampling function:

Gult) = (= hajsinetrt) [T (1-3220) £, i<,

lt—k|<L

called window canonical product in [7, 8].

For f € L3 and Ag:=Ap ae X Ag,n wewrite | flAzll =0, uyens [F(An, m) 2
Then As is said to be a set of sampling if there exists absolute constants C, Cy such
that

Giliflle < If|A2] < Caflfllo-

A set Ag is said to be a sef of unigueness if ¥f € L% that vanishes on A, vanishes
identically. The classical Plancherel-Pélya theorem states that the upper sampling
inequality it holds for uniformly discrete sets in L2 [14, p. 97]'. With the condition
M < 1/2 the set Ay pr becomes uniformly discrete, so As is uniformly discrete as well,
so it is a set of uniqueness. It is well-known that the Lagrange interpolation formula
remains valid when only a finite nnmber of sampling nodes deviate from the integers,
therefore the following reconstruction formula holds for the function f € L2 reading
on the lattice As = Ay pr % ﬁg,N:

F(Zm + ¥n: Tm — ¥ ) GL (fﬂ +: ﬂ) G (u)
e o () ()

[

EL {I )

Flm+yn,m—yn)GL ($+F) & (i —y)
+|=-§|:-m-nrﬂ« G (m)GY (un) (mﬂ' ri) (I;y _1) i

RE,”{Ii#rv}I

> f(Zm +n,&m —n)GL (-E—:—y) G (z;y_)
+ . +
le-mISL ly—nl>L G (@m)Gh(n) (m—:y - ﬂ:m) (”;y - )

RO (fima)

I'The increasing sequence of reals A = {An} is uniformly diserete if |An — Am| 2 >0, n#m.
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1508 T. K. POGANY

f(m+n,m-n)Gy (”F) L (Emy)
= §|:>L|,.._.Z.ﬂ_;4, G, (m)G, (n) (E+y 2 ) (¥fﬂ> A

L

+ (®

R (fiz.9)

The right-side series converges absolutely and uniformly on B2, (The case of 2D ban-
dlimited to < homogeneous random fields with M, N = 0 is discussed in [15]) For
convenience the deviation bounds Af, NV have to be precised in (12); we are taking such
M, N that M 4+ N < 1/2; this condition is used according to the Sun—Zhou result [12].

In the approximation f = Sp(f;z,v) we have to be under the prescribed emror
level &, even the already precised values of parameters M, N are considered. The
truncation error is the remainder TL(f;x,v) = |f(z,¥) — Sc(f;=,y)| of the expan-
sion (8). Then there remains the problem of choosing L which minimizes an estimate
of Tr(f; =, y) under the constraint

To(fiz,v) = gllfllz0-

In the sequel we need estimates for the truncation error in our approximation. In order
to choose optimal L we evaluate the Lagrange-type sampling function

‘I;!!“{.ﬂ.g,t}l - ‘Jf’ﬂ{t:l E’T.’\% An € Aa.h{-

Lemma 1. For all k satisfying |t — k| > L, t fixed and M < 1/2, L > 3 we have

|G i, DAMELAT 4 1) M
W (t)] = AT B T . @)
where
o 3(4e?F3M/3 VM (] 4 M) M (2 M + 1) (10)
= aw(1 — M)+M (3 _ M)
Moreover for all k given by |t — k| < L and for all M < 1/3, L = 3 it holds
3 Gr(t) LM (2L 4 1)3M
e P L4 R BT T il et i R 11
Wil = | e - < P* =l k)
where
2 M 1-ZM
By _ 22(4e*Ve?)M(1 4 2M) 12)

(1—8M)#3M(11 — 12M)

Progf. Following the procedure used by Flomes in [7, p. 59-60], we clearly get (9)
with the constant Aps which modestly differs from hers.

Othersides, since sinu = 2u for all u € [0,1/2] we deduce

sin 7t A=t 5=
[z (t)] = - ki Sasc. - Becis 4 B
J. (—1)*sinmwhyg |j-1|5L.5nkJ'-"-J‘“ j—t
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MULTIDIMENSIONAL LAGRANGE=YEN TYPE INTERPOLATION ... 1509

; T ok
. - H li-4 < 2 H _li—t _
== Al li—tI<k, j#k 1 — S kel li=t|<L, jsk 1 — M

i i — |+ M : i =&l
2 M 3N
“Ea Py 2 “‘(“i t|) ‘“("l'mm) '
k §—tISE, sk J

Mow estimating the sums with integrals repeating the evaulation procedure by [7] we
clearly derive (11) with the constant By which is depending just from M.

The lemma is proved.

Theorem 1. Let (z,y) € R?, M, N < 1/3 and let L = 3 be positive integer. Then
for all f € L% and min{z,y} = L + 1/2, in the approximation procedure

flz,y) = Sp(fiz,y9) =

F(Zem + Yns Ten — Un)GL ('t:y) Gr (I;y)

lz=mISL ly=nI<L G, (Zm)CY(Un) (m e zm) (I = Y- yn)

the following fruncation ervor upper bound appears

[2M+2N=17] 4 or ) M-+E3N+1
Ty(fs2,9) < 26 (AscBr e N ()

L!Ai-i-‘zh’-l{l e 2L)3M+N+1
vL-1

+Aw B 4+ (14)

+ ApAn (15)

LAMH3N=2(] 4 oL)yM+N+2
.
Progf At first it is easy to see that

Te(f;2,9) = f(z.v) - Se(fizy)| < Zlﬂ"’ (z, )],

Jul

where RY(f;2,9), 7 = 1,2, 3, are defined by (8). Concentrate at first to Ry (f; 2, %)
Applying twice the Cauchy —Buniakowsky = Schwarz inequality, having on mind that
f* is square integrable on ©, by the estimates (9), (11) it follows that

f(m+yn, m—yn)Gr (E-w) Sl ( y)
R (fizy) = MEH o i) (Hy m) (%y _"yn)

ety x—y
) ()

jg=m|=L |y=n|<L G'i{m](}i{yﬂ} (2: ';' ¥_ m) x ;;‘E" i ll'n)

<

f{mm.m—yﬂm,(

=

35N 0041-0053. ¥ep. aram. weppre, 2003, m, 55, M 1S



1510 T, K. POGANY

3 3 Iftm+yaam—ya)? x

[g=m|>L |jy—n|SL
)
- T —
m( 2*’)‘ <

r+y 5
o2 ()
|z=m|>L

< || fllz,0 Ape By LAM+2N=1(1 4 oL)M+3N+1 o

2

ly=n|<L.

T [y
|z=m|>L :’:-;—y m‘ ly=m|=L m_ﬂ_yn

L2M+2N—-1,|:1 +2L}M+3N‘+l
vL-1
In similar manner we collect the estimates of RU)(f;z,y), j = 2,3, getting (14)

and (15). The desired upper bound is just the sum of estimated remainders. Finally, it
remains the estimation of the sum

o0
1 dt 2
=T L=l+4z

Similarly, for all m satisfying the reasonable bounds 1/2 < |z —m| < L and all
N <1/3,itis

< 2/6Ap By Ifllo-

1
W=l = -

ly=n|=L

Indeed, we c-,icarly see that

1
Z 2 = Z —nlE = Z —— g =
lymlSE v —val? ynl yoricz (p=nl- Iz.rn )2 =, (y—nl _N}
T dt YA 1 4
< 2 _ ” {
= f - N) 2(1-mv L—N)-1-2N"12

1
sSly-nlsL
This ends the proof of the theorem.
Example 1. Assume that the deviation parameters M, N belong to the simplex
Simpy == {(u,v)| uv,v > 0,6u+10v <1, 10u+6v <1, 3(ut+v) <1} c[0,1/4)%

Then no oversampling arises, because the Kadets — Sun—Zhou condition, M, N < 1/4
is satisfied.
On the other side for such one (M, N) it holds uniformly on bounded (z, y)-regions
from R? that
Jim Sp(fiz,y) = fz,y) Yfe L}

ISSN 0041-6053. Yip. mam. ascypu,, 2003, m, 55, M 11



MULTIDIMENSIONAL LAGRANGE=YEN TYPE INTERPOLATION... 1531

2.3. Sample size paramefer discussion. The Theorem 1 gives us the following
mathematical model.

Model 1. For approximation
f{ﬂ:!y} = SL-':I] milﬂ') =
.f{ﬂ-'m + Vns Tm — E’n}GL (jt ;_y) 253 (ﬁ ; y)

+ o 1
I mISEly-nISE Gy ()Gl (vn) (I z z,n) (x g vn)

find the minimal L with min{z, y} = L + 1/2, such that

ﬁL!AI-i-ﬂN-J. “- o EL:l.fl.r+N+2
L—-1

2 (AMEN[1+2L W=l

LJ6L-1)

where A(:), B(-} are defined by (10), (12) respectively,

+ANBar(1 +2L)2M-1 4 _AMAN )f_:s',

To find the optimal L we avoid the approximative computation of infinite product in"
sincwt and thanks to Yen's method we avoid the trap of the unknown values of f € L2
at nodes which contain some indices m,n: |z —m| > L, |y —n| > L. The norm of
the considered signal function is incorporated in the left-hand term in the last relation
such that coincides with the relative error of the truncation in f = 5.

On the other side we cannot be really satisfied with the developed method because of
simple calculation showes us that the approximation procedure f == Sp- converges with
the growing L just for (M, N) € Simp,, see the example in the previous chapter. Now it
is evident that there is a "huge"” space in applications, since Simp, is far from exhausting
the Kadets region [0,1/4)2, In the goal to escape from this inconveniences we will
introduce a weight-function method such that is developed for L2 (see the Introduction
chapter and [7, 8]). There are weight-functions used, involving new parameters, since
by the Kadets's %-thsurcm no oversapling occurs just for dM < 1,1 e

Ti(f;t) = |f(t) — Scf;t)] < ClflL?-¥ vfel?,

compare [16, 17]. If the weight-function ensures the convergence of approximant Sg.{ f)
to f altough M is from [0,1/2], then the whole real axis will be convered by possi-
ble measuring times (sampling nodes). The bill for this effort will be applyed with
oversampling.

Finally, we point out that no generalizations are possible to functions spaces with
higher dimensicnal support sets on traces of the presented method, because the tes-
sellation of B by © cannot be followed. For example consider R®. The octahedron
CI({(u, v, w)| |u| + |v| + |w| < w}) does not tessellate R®. Altough them we can cover
the basic tessellation cell B always with a suitably large cube [—w, w]®, say, but the use

ISSN 0041-6053. Vep, aam. agypie, 2003, m. 55, M 1



1512 T. K. POGANY

Kotel'nikov - Shannon sampling formulae with respect of [—w, w]* D B automathically
means oversampled sampling sums.

3. Weighted Lagrange—Yen interpolation in L?—w.w]*" 3.1 Introductionary
remarks. Denote

x=(21,...,74) ERY, m=(my,.... mg)€Z% M=(M,...,M3)=0

and let L = (Ly,...,Lq) be a d-tuple of positive integers up to 3; endly we will
write D := {1,...,d} € N. The entire product of two d-tuples a, b, say, we write
{a,b) = E:_l ajb;. Let us denote Li’_w_w],, the Paley—Wiener type functions space of
entire d-variate functions f which Fourier spectrum is supported by [—m, rr]", d=>21e
_ 1 fx,u) ph A 1 f —i{ux)
109 = G [ i@, ) g | € dx
R

{l—==]")

The elements of I'.-In x4 We oftenly call signals bandlimited to [—m, w]9. We have to

mention that Lig-sr. xj« is Hilbert space equipped with scalar product

(f,9) = [ <)Y axdy,
Rﬂ

so the depending norm of f is 4| fll2 = +/{f, f).
The Kotel'nikov—Shannon theorem with regularfuniform sample nodes for such

signal f is standard result:

d
J(x) = Z flm) Hsinc m(z; —m;), x€RY,
mELH

=1

where the convergence is absclute and uniform on R? [3].

For numerical implementations only finite size samples of F' can be measured read-
ing from the lattice Z* around fixed value of the arguments x that |z; — my| < Ly,
j = 1,d. The sampling nodes m, where f will be measured, could deviate from the
uniform spacing into Am = (AL,,,..., A% )=m+h=(mi+hl,, . ..,ma+hd ),
where |hf‘| < M;, j =1,d, l; € Z. The set of sampling we denote now with
Ay = ﬁhJ,MI A 4 ﬁhaer.

3.2, Main resulfs. In this chapter our main goal is to develop a direct weighted
Lagrange - Yen type interpolation formula for L'[*_,:r]¢-ﬁ]nclinns when the interpolation
relative error level £ and the parameter vector M is already known. The interpolation
sum size vector L can be directly computed by the proposed method. Let us recall the
notations:

Gry(zs)
;L;{}‘{":j{m.f — Aing)

Gr,(zk)
th (me)(zp — my)’

ﬂ’m..(zxe)_ = Y, (25) =

where k : |z —mpg| > Ly and j: |z; —my| < Ly, G,k =1,d

ISSN 0041-6053. Yp. sam. wcypn., 2003, m. 55, Ne 11



MULTIDIMENSIONAL LAGRANGE=YEN TYPE INTERPOLATION . .. 1513

Theorem 2. For every f € Lf‘*rﬂri‘ we have

d d
=3 3 fOum) [Jnla)+
I=1|zs—my|SLy L=l )

St (i)

d d
+3. 3 fm) [] v ) +

J=1|zg—mgy|>Ly =1

d d
* Z E Z ‘ﬁ)‘l L TEE :W)¢Lliml}n¢mfﬁl}+

|ma=mg| =Dy P2 g —my | Ly b=d

d
+ 3 Z 3 flmu Ak, ma, . ma )W, (22) [ ] tm () + .

lzg—my|S Ly l'-l lzp—mp|>Lp ::;
d=1 d=1
D D > Flmamay, X000, (=) T Y () +
l=mg—mmgl s iy p=l lzp—mpl>ly I=1
d—1 d—1
BRI DD DI DU (- . R )
|zi—ma|> Ly P=1 [sp—mp| 2L, {=1

(18)

Here the right-side series converges absolutely and uniformly on R®.,

Proof As for all fixed real t the integer lattice & (or its constant multiple!) is set
of uniqueness for L2, the same is valid when only finite number of its elements devi-
ates from the uniform (integer) spacing, compare e.g. [7]. The Eotel'nikov—Shannon
restoration formula (18) holds reading on the lattice Ag = Ap ag, % ... X Api g,

Indeed, the right-hand series in (18) converges to certain function g € L[E_mn,].. It
is not hard to see that f(Am) = g(Am) where Ay € Aq. Hence, the function

d
e = | Flx) — u
@=tw-o]l T 355,

is in L?—r,r]" too and vanishes on Z9. Therefore v(x) =0, ie. f=g.

The theorem is proved.

Since the next results are connected to emmor estimates in the' approxamation
f = 5.(f;x), we denote with

T (f;x) = | £(x) = Su.(f3x)|
the truncation error upper bound.

ISSN 0041-0053. Vep. sam. xcypi., 2003, m. 55, Ne 1)



1514 T. K. POGANY

Theorem 3. Let 0<M; <1/3, j=T1,d, and x€R® such that min(z; — L;) 21/2.
Then for all f € L?—!'.!I' , we have

d ]
Tu(f;x) < (,,@' SvE Y T B )L (1 + 215, )M x

ye] 1€f1 < <iatd re=l

wa—l{l 2 ng)Hu-H
x A(M;)-E dll fllz- (19)
ke D&{l;[;....,j;} v {Lx—1)

Proof. At first denote

Rifte-dd) (fi) =

&
=1l .2 II 3o I, (25 )¢ (2k),
=1z =y | S Ly KED\{J11oida} |=a—ma|>La

By

the addend indexed by the multiindex (4;,...,J,) addend in the remainder of the ap-
proximation f(x) = Sp(f : x), using the abbreviated notation

FOI) = Pl s Moy MRy vt
Now, by the Cauchy - Bunyakowsky — Schwarz inequality one gets
RY) (£i%) € /Sl F O[T 19, @3) Pl (20) P = H.

As /S £8P < ellflla and 3y 195, (25, )2 lm, (22)|? is splitting into product

of two multiple sums, by Lemma 1 we deduce

H<dfl: ] D AMLPETHL 4 2L)™H x
EEDN{f1uennide } |2r—mp|>Lu

% f[ ST B(M; )L (14205, )M x

]
T — Mk
In-—ma.l:blrhl [ r=1|zy,.—my.|= Ly,

I
% 7
e 3 =
\/‘%—m:.-lsz—,-., |z5, —mj.|

2M—1 mp+l
<|vim JI X et R T
EED\{#1,mide } l2a=mu|>Ly VI —1

x

I T B(M,-,}L::’*(1+2L;,}%-) ISl

r=1|zj, —mj, | SLy,

55N 004 1-6053. ¥iep. aam. xcypar, 2003, m. 55, M 11
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where the sum evaluations (16) and (17) are used. Finally, by

d
w0 <y, Y IRED (x|
a=114; <...< 4, =d )

we deduce the asserted truncation error upper bound {19}

The theorem is proved.

In all numerical implementations it is more convenient to put Ly = L, j = 1,4, i e
the rectangle of sampling nodes we replace with a sampling cube, L = (L, ..., L)1xaq.

Corollary 1. When M = (M, ..., My) belongs to the convex d-dimensional re-
gion Simp, = {u| (C) Nu = 0}, where

d
ﬁ-Z‘uj < d,

§=1

. 1
5Zu_.;,+3 E uk{ﬁl:d—s}, (%))
rel KED\{Fay-rrd} :

wsliih<...<j,=d s=1,d-1, then
Jim Sp,(f;x) = f(x)

uniformly for all bounded x-domains from R* and in sampling reconstruction for-
mula (18) no avemﬂmpﬁng oCCurs.

Proof. Put L; = L, j = 1,d, in (19) and Chy,, for suitable absolute constants, we
get

CTu(fix) =
2L M;.—d-q—.;.{_z'z;ul M;,, (1+ ELJE* Mytd=a423 1 1, My,

= i Z Ch,s =

r=1 1y ., i d '\v/U" L l}d—a

= (Lm“;slﬂd{ﬁz:\.; Mf"-"azkfp\ﬂp--uh} Mj,-l-'lv}—*) i

Therefore by () we deduce the assertion of the Corollary. As Simp,; C [0,1/4)¢, no
oversampling occurs in our case.

Model 2. In the approximation

d d
FEI=SLfx) =2 D fwm) ][],
: =1 |t’—mj’|s.[nj' =1
for already known £ > 0 find the minimal L with min, <j<4(®; — L) = 1/2, such that

VESVE Y TTBOGIL G+ an) x

#=1 l<i <. <j,<d [=1

ISSN 0041-6053. ¥ap. mam, scypr., 2003, m. 55, M LI
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IMe—1 My41
L {1+2Lﬂ * <
v m =1

x IT A=
lbED'I'I.{.;’IHH'L."Ill'}

where A(-), B(-) are defined by (10), (12) respectively.

4. Weighted interpolation in LT _ ... The efficiency of the approximation
procedure :

d
=S¥ =3 3 fOm) 1‘[ ¥, (25)
F=1|zj—my| <Ly

is not quietly satisfactory, because for positive ]:mmm-:.tsr vector M the interpolation
formula Sy,(f;x) is to long and for convergence purposes we have only very limited
choice for choosing suitable M that the truncation error upper bound vanishes when the
minimal coordinatewise sampling size parameter L* = minj <j<g4 Ly runs to the mfimty.

Therefore from now on we assume that the signal function f belongs to Paley—
Wiener type functions space L%.d, Ty = [-m,7] % ... X [-74,7a], where
§=(d,...,80p) = (m—11,...,m—74) = 0. So, we follow the onedimensional approach
of exposed in [7] and one introduces the weight-function

wa (t) = (sine(at/1))".

Of course L2, C L?rw.’l" At this point we have to remark that the type of the entire
function w,(t) is equal to a.

Theorem 4. Let f be in L3, . Then it holds uniformly for x € R? the following
restoration formula:

d d
=3 3 fOm) [T v adwsi (on = A5,) +

J=1 |zy=my| <Ly k=1

rl

n{}'::}

d d
s Z E f(m) H Py, (Tk)way 1y (T — M) +

j=1|zy=my|>Ly k=1

d
+ XY 3 fhma . madh, (@)we b (21— A, ) X

|zy=mg | Ly p=d |2y —mny|> Ly,

d
X 1-_[ ‘ﬁ'm {mk)wﬁhh. (IJ’: - mk} +

el
d
+ Z Z E -f(mli-""zi,,im.h“4:md}ﬂbrnﬂfﬂ:i)wa':lhiﬁg—lgh} =
lwg—mglsiy ::;- lop =y > Ly

d

X JT tmu(@r)wsy g (2 — me) + ..
2tk=1

ISSN 0041-6053. ¥xp. mam. wcypu., 2003, m. 55, M 11
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e D 3 DT Flmaye My, X W (B W (2 — A, ) X

lwg=mlSly p=l jep=mpl>Ly

d=1
x 1—_[ Ym, {mﬁ]wﬁhlg (T —me) + ...
ey

S E E 2 ‘f{}'ml’ il m—l'md}%‘ [:zd}wh I:{xd — mﬂ'.} X

log—mg | b Pt fep—mpl Sy

d—1
¢ [T s (o)t (o — AE,). (20)

k==l

Proof. As f € L%, we apply (18) to the function

d
f{xj Hw'ﬁpnlp t:t'.“ = ﬂ:p} € L[Z—t,,:rr]"_t
=1

specifying t, = z,, s = 1, d. All limit processes and the convergence are valid because
Ay is the set of sampling in L!g—rr.r]" Therefore we derive (20) by the Valiron-Boas-
Bemstein method.

The theorem is proved.

In the next step we introduce the truncation error, i. . the remainder

TL(fix) = | f(x) — on(f; x)|

in the expansion (20), and we give an estimate of this quantity.
Theorem 5. Let f be band-limited to Ty Paley— Wiener type fimction, i e

fe Lﬁ-..- Ty:=[-n,n)%...%x[—7a,7d),

where § = (81,...,8p) = (T —71,...,m—74) > 0, M; < 1/3, j =1,d, and for all
positive integers 1 = (ly,...,la) emdeR“ mjm__jgl:n:j—L}zl,f'z we have

5‘4’9*2 N w

d 7]
£ox) < (a2 [T Lals0
.l f; %) ( jI_Il 2!:34-1 ,_“5_,-.,;1.53

L‘iﬂ-ﬂ-l{-l 4 ZLk_]MrH'
v/ (g — 1)20x+1])

N |

FEDN{1pnida}

X H B(M;,)L;, (14 ELﬁ}an') allfllz- ) (21)

F=l

I5SN 0041-6053. Vip. sam. xcypr., 2003, m, 35, Me 1]



1518 T. K: POGANY

Proof. 1t is not hard to see that
lwsa(t)] = |sine’ (6t/1)| < 1'(8]¢))~".

So following the steps of the proof of Theorem 2 it only remains to apply the upper
bounds for the following sums:

1 36ttt
— 1

Imi'. :—m_f,’
2 - 2
el = mPOFD = (2l + 1) (T — TP

|=

{(We derive these upper bounds following the procedure in getting the evaluations (16),
(17).) Now, obvious transformations gives us (21).

The theorem is proved.

Similarly as in the previous subsection, we are interested now in the convergence
question discussion in the approximation f = o, when we specify L; = L — co.

Corollary 2. When M = (My,...,My) belongs to the convex d-dimensional re-
gion Simpy = {u| (E) Nu = 0}, where '

d d
EZuj {d+zh,

=1 F=1
Fl 1 .
5) up+3 >0 we<zld-9)+ 3 (E)
r=1 EEDN\{F1,meuda } kED\{f11emfu}
and1<jy <...<j,<d, s=1,d~1, then
lim op(f;x) = f(x), (22)
L=t

uniformly in any bunded x-region in R? without oversampling.
Proof. Specifying Ly = L, = 1, n, in the truncation error upper bound (21), by
the same procedure as in the proof of the Corollary 2, we deduce

m(fix) =0 (mecls. {50 J'-'f.i-'l'xEnml_ﬁ....J.JI(MI-_"']“'!}_!) .
Therefore as L — oo we get (22). Finally, since Simp, is proper subset of the Kadets—
Sun—Zhou region [0,1/4)%, no oversampling cccurs in our case.

Model 3. To optimize L in the approximation

d d
f@=ou(fix)=3, 25 FOm) [T vm@dwanlz: — M),

§=1 Jag—my| <Ly k=1

for already known & > 0 solve with respect to L with miny<;<a(z; — L;) = 1/2, such
that c

g |[[GLY ) S~ 5 gty
j=1V 2 +1 aml 1<) <o sd

ISSN 0041-6053, Vip. mam., xcypn., 2003, m. 55, Me 11
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i 2”&-1{1 e ZLk}MJ'+1
. H l:M ] ‘\,-"T—Lk e ]_ iyl
kEDN {f1,.fu}

E ]
x [T BOM; L3 (1 4+ 2L, )M <,

rml

where A(-), B(-) are defined by (10), (12) respectively.
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